Stoichiometry. Introduction. Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Avogadros Number: (number of Molecules)

Size: px
Start display at page:

Download "Stoichiometry. Introduction. Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Avogadros Number: (number of Molecules)"

Transcription

1 Stoichiometry Introduction Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Or Avogadros Number: (number of Molecules)

2 Or Moles (amount of a substance containing avogadros number is a mole...so) Converting Moles to Grams Converting Once you have the molar mass, you can easily convert from grams to moles, and also from moles to grams. Number of moles = (# of grams) / (molar mass)

3 Number of grams = (# of moles) * (molar mass) Stoichiometry Stoichiometry is the accounting, or math, behind chemistry. Given enough information, one can use stoichiometry to calculate masses, moles, and percents within a chemical equation What You Should Expect The most common stoichiometric problem will present you with a certain amount of a reactant and then ask how much of a product can be formed. Here is a generic chemical equation: What You Should Expect Here is a typically-worded problem: Given 20.0 grams of A and sufficient B, how many grams of C can be produced? You will need to use molar ratios, molar masses, balancing and interpreting equations, and conversions between grams and moles. If you struggled with those in class, welcome to the club.

4 Go back and review them if you need to, because if you can't do that stuff, you can't do stoichiometry. Summary of molar ratios, molar masses, balancing and interpreting equations, and conversions between grams and moles Molar Ratio A comparison of the number of moles of one substance in a chemical equation. For example, The ratio of sodium carbonate to potassium chloride to sodium chloride to potassium carbonate is 1:2:2:1. Molar mass, symbol M, is the mass of one mole of a substance in grams (chemical element or chemical compound). The base SI unit for mass is the kilogram but, for both practical and historical reasons, molar masses are almost always quoted in grams per mole (g/mol or g mol 1 ), especially in chemistry. Balancing Chemical Equations A chemical equation is said to be balanced when there are equal numbers of each type of atom on each side.

5 Balancing is achieved by adjusting the stoichiometric coefficients not the subscripts in the chemical formulae. Chemical Equations A chemical equation describes a chemical reaction. Example: CH 4 + 2O 2 CO 2 + 2H 2 O Each reactant and product is described by its chemical formula reactants on the left and products on the right. A number in front of a chemical formula is a stoichiometric coefficient. To calculate the percent (%) of each element in a compound Example: Calc the % composition by mass of each element in CaO (calcium oxide) Example 1: Calc the % composition by mass of each element in CaO (calcium oxide)

6 Example 2: Calc. the % water of crystallisation in Copper II Sulfate crystals (CuSO 4.5H 2 O) An explanation: Water of crystallisation is water chemically combined but not bonded to a host molecule Substances containing these crystals are said to be Hydrated those with no crystals of this sort are said to be Anhydrous Calc. the % water of crystallisation in Copper II Sulfate crystals (CuSO 4.5H 2 O) Solution: M r CuSO 4.5H 2 O : H = 1; O = 16 ; S = 32 ; Cu = 63.5 Remember to count the number of atoms *Just water Empirical Formulas Each Chemical Element is composed of atom Each element is represented by a symbol Some elements are present as small molecules (H 2 ) Chemical formulas tell us how many atoms are present in the element

7 Element Formula Hydrogen H 2 Chlorine Cl 2 Nitrogen N 2 Bromine Br 2 Oxygen O 2 Iodine I 2 Fluorine F 2 A compound is represented by a chemical formula e.g. A molecule of water is represented by H 2 O Called the Molecular Formula Definition The empirical formula of a compound indicates what elements are present in the compound and the simplest whole number ratio in which the atoms of these elements are present

8 Example 1 What is the empirical formula of Ethyne (C 2 H 2 ) Ratio is 2carbon:2hydrogen Simplest WNR is 1:1 Therefore empirical formula is CH Example 2 What is the empirical formula of Glucose(C 6 H 12 O 6 ) Ratio is 6 carbon:12 hydrogen: 6 Oxygen Simplest WNR is 1:2:1 Therefore empirical formula is CH 2 O Example 3 What is the empirical formula of Water (H 2 O) Ratio is 2 hydrogen:1 Oxygen Simplest WNR is 2:1 Therefore empirical formula is H 2 O Using an empirical formula Chemists needing to have a chemical analysed determine the empirical formula using an elemental analyser then using the empirical formula they can determine the molecular formula of the unknown chemical

9 Example of an Empirical formula from analytical data On analysis a compound is found to contain 68.85% carbon ; 4.92% hydrogen ; 26.23% Oxygen What is the empirical formula? Answer: Imagine we have 100g of the compound then the ratios in grams is 68.85: 4.92: We divide by the molar mass (periodic table) of each element Carbon = 12 Hydrogen = 1 Oxygen = : 4.92: We divide by the molar mass (Mr) : : This gives us a relative atomic mass (Ar) ratio 5.74:4.92:1.64 Divide each by the lowest Ar which in this case is :4.92:1.64 Divide these by the lowest Ar

10 ; ; And we get the basis for an empirical formula for the unknown 3.5:3:1 The rule is it must be a whole number so! The empirical formula is 7:6:2 or C 7 H 6 O 2 Another Example A compound containing only C (52.17%); H (13.04%); O (34.79%) You are told The Mr is 92 What is the empirical formula? What is the Molecular formula? Remember C = 12, O = 16 and H = 1 Solution To answer this problem we need to under stand...if we have 100 grams of the compound then Carbon will make up grams; Hydrogen, 13.04g and Oxygen, 34.79g Convert each of these masses to moles by dividing by the relative atomic mass to get a mole ratio If we then divide by the smallest mole ratio we can get a simplest whole number mole ratio

11

12 Remember Sometimes when we divide by the smallest mole ratio we do not get a whole number and it is necessary to multiply by a factor to get a whole number Compound contains C (65.11%);H (8.83%);O (26.06%) Find the empirical formula

13 Empirical formulas from combination data Example 0.72 g of Magnesium is heated in excess oxygen, 1.2g of Magnesium Oxide is formed what is the empirical formula of Magnesium Oxide Mass of Magnesium Oxide formed = 1.2g Mass of Oxygen consumed = = 0.48g Moles of Magnesium atoms consumed = = 0.03 Moles of Oxygen atoms consumed = = 0.03

14 Ratio of Magnesium to Oxygen atoms = 0.03 : 0.03 = 1:1 Empirical Formula = MgO Empirical formulas from decomposition data 5.8g of an oxide of Iron was heated with carbon and 4.2g of iron was formed What is the empirical formula of the oxide? Mass of Iron in the compound = 4.2g Mass of Oxygen in the compound = g = 1.6 Moles of iron atoms in the compound = = Moles of oxygen atoms in the compound = = 0.1 Ratio of Iron atoms to Oxygen atoms in the compound = : 0.1 Whole numbers = 3:4 Empirical formula = Fe 3 O 4 Molecular Formulas Empirical formulas are used only for ionic compounds Covalent compounds are more complex (molecules) and so we use molecular formulae

15 Definition The Molecular formula of a compound indicates the actual number of atoms of an each element present in the molecule of the compound To find the molecular formula of a compound we need to know the empirical formula and the relative molecular mass Example Empirical formula for benzene is CH & Mr = 78. what s the molecular formula? Answer Formula mass = 12+1 = 13 Mr = 78 Number of CH units in a benzene molecule is = 78/13 = 6 Molecular formula is = C 6 H 6 Another Example Mr of propene = 42. The solution contains 85.7% C ; 14.3% H by mass. Molecular Formula? Answer Carbon = = 7.14 Hydrogen = = 14.3 Simplest ratio = 1:2 Therefore empirical formula = CH 2

16 Therefore empirical formula = CH 2 Formula Mass of CH 2 = 14 Relative Molecular Mass of propene = 42 Number of CH 2 units in a propene molecule = 42 / 14 = 3 Molecular formula of Propene = C 3 H 6 % composition by Mass If the empirical formula of a compound is known the % by mass of each element present can be calculated To calculate the percent (%) of each element in a compound Example: Calc the % composition by mass of each element in CaO (calcium oxide)

17 Example Calc the % composition by mass of Nitrogen in ([NH 4 ] 2 SO 4 ) Example Calc. the % water of crystallisation in Copper II Sulfate crystals (CuSO 4.5H 2 O) An explanation: Water of crystallisation is water chemically combined but not bonded to a host molecule. Substances containing these crystals are said to be Hydrated those with no crystals of this sort are said to be Anhydrous

18 Structural Formulas Molecular formulas of covalent compounds give the chemist a lot of detail about the compound and the molecules in it The structural formula shows the arrangement of the atoms within a molecule of the compound

19 IF THE STRUCTURAL FORMULA IS KNOWN THEN THE EMPIRICAL AND MOLECULAR FORMULAS ARE EASY Example Structural formula of ethene is

20 To get the Molecular formula, count the atoms C 2 H 4 To get the empirical formula just assess the simplest ratio CH 2 Chemical Equations Tells us what substances are in and what is produced during a chemical reaction The correct formula for each of the reactants and the products must be used and the equation must be balanced To balance an equation the formulas cannot be altered just multiplied Example Carbon reacts with oxygen to form carbon monoxide Balance the equation from this unbalanced one There is one carbon atom on the left There is one carbon atom on the right There are two oxygen atoms on the left There is one oxygen atom on the right The equation is unbalanced

21 We must check the equation and multiply the atoms to ensure that they balance out There are two carbon atoms on the left There are two carbon atoms on the right There are two oxygen atoms on the left There are two oxygen atoms on the right The equation is balanced Example Unbalanced equation There is one carbon atom on the left There is one carbon atom on the right There are four hydrogen atoms on the left There are two hydrogen atoms on the right There are two oxygen atoms on the left There are three oxygen atoms on the right The equation is unbalanced

22 Multiply the atoms until balanced The equation is short 2 oxygen atoms on the left and 2 hydrogen atoms on the right Calculations based on balanced equations A balanced equation gives the relative amounts of each of the reactants consumed and each of the products produced in a chemical reaction If the amount of any one of the reactants consumed is known then it is possible to calculate the amounts of the other reactants and products If the amount of methane consumed is known we can calculate the amounts of carbon dioxide and water produced. We can also calculate the amount of oxygen consumed The reverse is also true...if we know the amount of a product then we can calculate the others example Methane burns in air

23 If 2.5 moles of methane are reacted fully with oxygen calculate the number of moles of carbon dioxide and oxygen produced and the number of moles of oxygen consumed We know that 2.5 moles of methane were consumed Calculating Masses of Reactants or products from Balanced Chemical Equations Example Magnesium reacts with Oxygen to produce MgO The first step is to change the given quantity (gas or volume of gas at s.t.p.)to moles

24 To achieve this divide the given mass by the molar mass If we burn 9g of Mg in excess O 2 (enough to react all the Mg) what mass of MgO will be formed Solution First write down the equation and circle what we want to know Which is the same as :

25 Another way of achieving the same thing 9 g of Mg = 9 24 = From the equation

26 USE YOUR MOLE MAP Calculations of volumes of gaseous reactants or products from balanced chemical equations example Propane burns in air according to the equation What volume of O 2 (measured at s.t.p.) is needed for complete combustion of 11g of propane

27 Answer: 11g of C 3 H 8 = 11/44 moles = 0.25 Another type of calculation A solution of NaOH is reacted with enough H 2 SO 4 Solution to easily neutralise it. The equation for the reaction is On evaporation of the water 284g of Sodium Sulfate are obtained. Calculate : A. The number of moles of H 2 SO 4 acid consumed B. The number of water molecules formed

28 C. The mass of the NaOH used to make up the solution Answer: A. The number of moles of H 2 SO 4 acid consumed 284g NaSO4 = moles = 2 From the equation Answer: B. The number of water molecules formed B. Avagadros number = 6 x From the equation

29 Answer: c. The mass of the NaOH used to make up the solution c. Relative Molecular mass (Mr) From the equation Calculations involving excess of one reactant Sometimes when a chemical reaction occurs there is excess of one of the reactants. If the balanced equation is known and the initial quantities in the reaction are known then it is possible to identify the chemical that is in excess. The substance that is not present in excess is called the limiting reactant as it is the amount of this substance that will dictate how much product will be produced Example Zinc reacts with sulphuric acid according to the equation

30 A 250 cm 3 aqueous solution containing 9.8g sulfuric acid is added to 13g Zinc (a) Show that zinc is present in excess (b) Calcuate the mass of Zinc Sulfate formed (c) Calculate the volume of hydrogen gas (measured at s.t.p) formed Answer: a : Show that zinc is present in excess Moles of zinc present initially = = 0.2 Moles of Sulfuric acid present initially = = 0.1 Answer: b : Calcuate the mass of Zinc Sulfate formed Sulfuric acid is the limiting reactant

31 Answer: c : Calculate the volume of hydrogen gas (measured at s.t.p) formed Percentage Yields When a real reaction occurs the amounts of product isolated are often less than those calculated. This may be due to the reaction been reversible, or to some of the products reacting further to form yet other products or to loss of product during purification

32 Percentage yield accounts for these factors Percentage Yields Example 10.2 g of ethanol (C 2 H 5 OH)were heated with aluminium Oxide and 1.7g ethene (C 2 H 4 ) were formed Calculate the percentage yield of ethene 10.2 g of C 2 H 5 OH = moles = 0.22

How many hydrogen atoms are there in the empirical formula of propene, C 3 H 6? How many neutrons are there in one atom of 24 Mg?

How many hydrogen atoms are there in the empirical formula of propene, C 3 H 6? How many neutrons are there in one atom of 24 Mg? 1 A 2 B 3 C The atomic number of Na is 11. How many electrons are there in a sodium ion, Na +? How many hydrogen atoms are there in the empirical formula of propene, C 3 H 6? What is the mass in grams

More information

The Mole. Relative Atomic Mass Ar

The Mole. Relative Atomic Mass Ar STOICHIOMETRY The Mole Relative Atomic Mass Ar Relative Molecular Mass Mr Defined as mass of one atom of the element when compared with 1/12 of an atom of carbon-12 Some Ar values are not whole numbers

More information

IGCSE (9-1) Edexcel - Chemistry

IGCSE (9-1) Edexcel - Chemistry IGCSE (9-1) Edexcel - Chemistry Principles of Chemistry Chemical Formulae, Equations and Calculations NOTES 1.25: Write word equations and balanced chemical equations (including state symbols): For reactions

More information

Chemical reactions: Chemical reactions change substances into other substances.

Chemical reactions: Chemical reactions change substances into other substances. Chemical reactions: Chemical reactions change substances into other substances. A chemical equation is used to represent a reaction. This has the form: reactants à products Word equations use the names

More information

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with Chapter 3: Chemical Formulae and Equations 1. Relative atomic mass, A r - The relative atomic mass of an element is the average mass of one atom of an element when compared with mass of an atom of carbon-12

More information

Counting by mass: The Mole. Unit 8: Quantification of Chemical Reactions. Calculating molar mass. Particles. moles and mass. moles and particles

Counting by mass: The Mole. Unit 8: Quantification of Chemical Reactions. Calculating molar mass. Particles. moles and mass. moles and particles Unit 8: Quantification of Chemical Reactions Chapter 10: The mole Chapter 12: Stoichiometry Counting by mass: The Mole Chemists can t count individual atoms Use moles to determine amounts instead mole

More information

Stoichiometry. Chapter 3

Stoichiometry. Chapter 3 Stoichiometry Chapter 3 Chemical Stoichiometry Stoichiometry: The study of quantities of materials consumed and produced in chemical reactions. In macroworld, we can count objects by weighing assuming

More information

Chapter 1 IB Chemistry Warm Ups Stoichiometry. Mrs. Hilliard

Chapter 1 IB Chemistry Warm Ups Stoichiometry. Mrs. Hilliard Chapter 1 IB Chemistry Warm Ups Stoichiometry Mrs. Hilliard Vocabulary 1. Atomic theory 2. Kelvin 3. Mole 4. Relative abundance 5. Molar Mass 6. Empirical formula 7. Molecular formula 8. Stoichiometry

More information

(DO NOT WRITE ON THIS TEST)

(DO NOT WRITE ON THIS TEST) Final Prep Chap 8&9 (DO NOT WRITE ON THIS TEST) Multiple Choice Identify the choice that best completes the statement or answers the question. 1. After the correct formula for a reactant in an equation

More information

CHAPTER 11. The Mole. Mole. One mole of = 6.02 x 10 = 6.02 x 10 CaCl = 6.02 x x 10. Representative Particle. molecules, or formula units

CHAPTER 11. The Mole. Mole. One mole of = 6.02 x 10 = 6.02 x 10 CaCl = 6.02 x x 10. Representative Particle. molecules, or formula units CHAPTER 11 The Mole 11.1 The Mole: Measurement of Matter Matter is measured in one of three ways: (How many?) Mole SI unit that measures the amount of a substance 6.02 x 10 particles of that substance.

More information

Chapter 3. Stoichiometry

Chapter 3. Stoichiometry Chapter 3 Stoichiometry Chapter 3 Chemical Stoichiometry Stoichiometry The study of quantities of materials consumed and produced in chemical reactions. Since atoms are so small, we must use the average

More information

UNIT 3 IB MATERIAL BONDING, MOLES & STOICHIOMETRY

UNIT 3 IB MATERIAL BONDING, MOLES & STOICHIOMETRY UNIT 3 IB MATERIAL Name: BONDING, MOLES & STOICHIOMETRY ESSENTIALS: Know, Understand, and Be Able To Apply the mole concept to substances. Determine the number of particles and the amount of substance

More information

C2.6 Quantitative Chemistry Foundation

C2.6 Quantitative Chemistry Foundation C2.6 Quantitative Chemistry Foundation 1. Relative masses Use the periodic table to find the relative masses of the elements below. (Hint: The top number in each element box) Hydrogen Carbon Nitrogen Oxygen

More information

Formulae and Equations

Formulae and Equations Formulae and Equations 1 of 41 Boardworks Ltd 2016 Formulae and Equations 2 of 41 Boardworks Ltd 2016 Forming different compounds 3 of 41 Boardworks Ltd 2016 Elements are made up of just one type of atom.

More information

TOPIC 4: THE MOLE CONCEPTS

TOPIC 4: THE MOLE CONCEPTS TOPIC 4: THE MOLE CONCEPTS INTRODUCTION The mass is gram (g) of 1 mole of substances is called its.. 1 mole of substances has.. particles of a substances The mass of 1 mole of substances is always equal

More information

Chapter 3. Mass Relationships in Chemical Reactions

Chapter 3. Mass Relationships in Chemical Reactions Chapter 3 Mass Relationships in Chemical Reactions In this chapter, Chemical structure and formulas in studying the mass relationships of atoms and molecules. To explain the composition of compounds and

More information

Quantitative Chemistry

Quantitative Chemistry Quantitative Chemistry When we do experiments to measure something in Chemistry, we: Repeat experiments (usually 3 times) to improve the reliability of the results, by calculating an average of our results.

More information

Chapter 2: Mass Relations in Formulas, Chemical Reactions, and Stoichiometry

Chapter 2: Mass Relations in Formulas, Chemical Reactions, and Stoichiometry Previous Chapter Table of Contents Next Chapter Chapter 2: Mass Relations in Formulas, Chemical Reactions, and Stoichiometry Section 2.1: The Atomic Mass The atomic mass is the mass of 1 atom. Atoms are

More information

C2.6 Quantitative Chemistry Foundation

C2.6 Quantitative Chemistry Foundation C2.6 Quantitative Chemistry Foundation 1. Relative masses Use the periodic table to find the relative masses of the elements below. (Hint: The top number in each element box) Hydrogen Carbon Nitrogen Oxygen

More information

How do you measure matter?

How do you measure matter? How do you measure matter? You may count how many you have. Determine a substances mass and weight. Determine a substances volume. But how can you relate these three types of measurements to one another?

More information

Unit 6: Mole Assignment Packet Period:

Unit 6: Mole Assignment Packet Period: Unit 6: Mole Assignment Packet Name: Period: A1: Mole Conversions 1. Identify the representative particle in each of the following: (atom, molecule, formula unit) a. CuSO 4 b. H 2 O c. NaCl d. Zn e. Cu

More information

1.21. Formulae, equations and amounts of substance

1.21. Formulae, equations and amounts of substance 1.21. Formulae, equations and amounts of substance The mole is the key concept for chemical calculations DEFINITION: The mole is the amount of substance in grams that has the same number of particles as

More information

Molar Mass. The total of the atomic masses of all the atoms in a molecule:

Molar Mass. The total of the atomic masses of all the atoms in a molecule: Molar Mass The total of the atomic masses of all the atoms in a molecule: Ex: H 2 O H (1.0079) x 2 atoms = 2.0158 grams O (15.999) x 1 atom = 15.999 grams 18.0148 grams (18.0 grams) Ex: Cu(NO 3 ) 2 Cu

More information

Chapter 5 Chemical Calculations

Chapter 5 Chemical Calculations Calculating moles Moles and elements Moles and compounds Moles and gases Moles and solutions Calculating formulae Finding the formula Chapter 5 Chemical Calculations Moles and chemical equations Checklist

More information

General Chemistry. Chapter 3. Mass Relationships in Chemical Reactions CHEM 101 (3+1+0) Dr. Mohamed El-Newehy 10/12/2017

General Chemistry. Chapter 3. Mass Relationships in Chemical Reactions CHEM 101 (3+1+0) Dr. Mohamed El-Newehy 10/12/2017 General Chemistry CHEM 101 (3+1+0) Dr. Mohamed El-Newehy http://fac.ksu.edu.sa/melnewehy Chapter 3 Mass Relationships in Chemical Reactions 1 In this chapter, Chemical structure and formulas in studying

More information

Stoichiometry Part 1

Stoichiometry Part 1 Stoichiometry Part 1 Formulae of simple compounds Formulae of simple compounds can be deduced from their ions/valencies but there are some that you should know off by heart. You will learn these and more

More information

9/14/ Chemistry Second Edition Julia Burdge. Stoichiometry: Ratios of Combination. Molecular and Formula Masses

9/14/ Chemistry Second Edition Julia Burdge. Stoichiometry: Ratios of Combination. Molecular and Formula Masses 9/14/1 Chemistry Second Edition Julia Burdge Stoichiometry: Ratios of Combination Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Stoichiometry: Ratios

More information

Stoichiometric relationships 1

Stoichiometric relationships 1 Stoichiometric relationships 1 Chapter outline Describe the three states of matter. Recall that atoms of diff erent elements combine in fi xed ratios to form compounds which have diff erent properties

More information

Notes: Unit 7 Moles & Stoichiometry

Notes: Unit 7 Moles & Stoichiometry Regents Chemistry: Notes: Unit 7 Moles & Stoichiometry 1 KEY IDEAS A compound is a substance composed of two or more different elements that are chemically combined in a fixed proportion. A chemical compound

More information

UNIT 1 Chemical Reactions Part II Workbook. Name:

UNIT 1 Chemical Reactions Part II Workbook. Name: UNIT 1 Chemical Reactions Part II Workbook Name: 1 Molar Volume 1. How many moles of a gas will occupy 2.50 L at STP? 2. Calculate the volume that 0.881 mol of gas at STP will occupy. 3. Determine the

More information

Summer Preparatory Tasks for A Level Chemistry 2017.

Summer Preparatory Tasks for A Level Chemistry 2017. Summer Preparatory Tasks for A Level Chemistry 2017. Task One: Why have you chosen to complete an A Level in Chemistry? Research your future career and what subjects and grades are required to achieve

More information

Year 12 Chemistry Transition Work - QPHS

Year 12 Chemistry Transition Work - QPHS Year 12 Chemistry Transition Work - QPHS Contents Task 1: Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 The structure of atoms Writing formulae Relative masses Balancing equations Writing symbol equations

More information

Unit 6: Stoichiometry. How do manufacturers know how to make enough of their desired product?

Unit 6: Stoichiometry. How do manufacturers know how to make enough of their desired product? Unit 6: Stoichiometry How do manufacturers know how to make enough of their desired product? Chocolate Chip Cookies Using the following recipe, complete the questions. Cookie Recipe 1.5 c sugar 1 c. butter

More information

Unit (2) Quantitative Chemistry

Unit (2) Quantitative Chemistry Unit (2) Quantitative Chemistry Chapter (1) :The mole & chemical equation Lesson (1) Mole and chemical equation Chemical equation: The chemical symbols and formulas of the reactants and products which

More information

THE MOLE (a counting unit).again!

THE MOLE (a counting unit).again! Name: Period: Date: THE MOLE (a counting unit).again! A mole represents a, much in the same way that a dozen represents a set of twelve. 1 dozen eggs = 12 eggs; 1 mol eggs = 6.022 10 23 eggs 1 dozen carbon

More information

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Matter Matter is anything that has mass and takes up space 2 Composition of Matter Atom number of protons = atomic number (Z)

More information

Worksheet 1: REPRESENTATIVE PARTICLES

Worksheet 1: REPRESENTATIVE PARTICLES Worksheet 1: REPRESENTATIVE PARTICLES Directions: For each substance below, state the representative particle. If the RP is a molecule, state the number of atoms that make up the molecule. If the RP is

More information

1.21. Formulae, equations and amounts of substance

1.21. Formulae, equations and amounts of substance 1.21. Formulae, equations and amounts of substance The mole is the key concept for chemical calculations DEFINITION: The mole is the amount of substance in grams that has the same number of particles as

More information

Chapter 9: Stoichiometry The Arithmetic ti Of Equations

Chapter 9: Stoichiometry The Arithmetic ti Of Equations Chapter 9: Stoichiometry The Arithmetic of Equations Chemical Calculations Limiting Reagent and Percent Yield The Arithmetic ti Of Equations -- The Arithmetic of Equations -- Using Everyday Equations Stoichiometry

More information

THE BRIDGING COURSE TO SIXTH FORM CHEMISTRY AT Myton School

THE BRIDGING COURSE TO SIXTH FORM CHEMISTRY AT Myton School THE BRIDGING COURSE TO SIXTH FORM CHEMISTRY AT Myton School Introduction Before you start the AS Chemistry course in September you should have completed this new bridging course for Chemists. It has been

More information

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances.

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Moles the SI base unit that describes the amount of particles in a substance. Mole is abbreviated

More information

7.1 Describing Reactions. Burning is a chemical change. When a substance undergoes a chemical change, a chemical reaction is said to take place.

7.1 Describing Reactions. Burning is a chemical change. When a substance undergoes a chemical change, a chemical reaction is said to take place. Burning is a chemical change. When a substance undergoes a chemical change, a chemical reaction is said to take place. Chemical Equations What is the law of conservation of mass? The law of conservation

More information

Note Taking Guide: Episode 701. Lab results: 1 doz grains of rice = g (Use this fact as a conversion factor.) Avogadro s Number - the = the number

Note Taking Guide: Episode 701. Lab results: 1 doz grains of rice = g (Use this fact as a conversion factor.) Avogadro s Number - the = the number Note Taking Guide: Episode 701 Name Lab results: 1 doz grains of rice = g (Use this fact as a conversion factor.)? grains of rice = 1.94 g Avogadro s Number - the = the number Molar Mass the of one of

More information

5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES

5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES 5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES LEARNING OUTCOMES a) Be able to write formulae of simple compounds b) Be able to write

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

The Mole Concept. It is easily converted to grams, no of particles or in the case of gas volume.

The Mole Concept. It is easily converted to grams, no of particles or in the case of gas volume. The Mole Concept The mole is a convenient unit A mole is the number of atoms present in exactly 12 g of the isotope carbon-12. In 12 g of carbon-12 there are 6.022 x 10 23 carbon atoms It is easily converted

More information

Finding Formulas. using mass information about a compound to find its formula

Finding Formulas. using mass information about a compound to find its formula Finding Formulas using mass information about a compound to find its formula Molecular Formula Molecular formula is the actual formula of compounds which form molecules. For example, the molecular formula

More information

THE BRIDGING COURSE TO SIXTH FORM CHEMISTRY Birchwood High School

THE BRIDGING COURSE TO SIXTH FORM CHEMISTRY Birchwood High School THE BRIDGING COURSE TO SIXTH FORM CHEMISTRY Birchwood High School Mrs Ryan Chemistry Please also access the website below which is a link to a really good PPT that will help to bridge the gap between GCSE

More information

CHAPTER 6 CHEMICAL COMPOSITION

CHAPTER 6 CHEMICAL COMPOSITION Chemistry Name Hour Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 6 CHEMICAL COMPOSITION Day Plans for the day Assignment(s) for the day 1 Begin Chapter

More information

2.9 The Mole and Chemical Equations:

2.9 The Mole and Chemical Equations: 2.9 The Mole and Chemical Equations: Stoichiometry Whether you are making omelettes in a kitchen or soap in a factory, you need to know the quantities of ingredients required to produce a certain quantity

More information

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations Lecture Outline 3.1 Chemical Equations The quantitative nature of chemical formulas and reactions is called stoichiometry. Lavoisier

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

Q: How long would it take to spend a mole of $1 coins if they were being spent at a rate of 1 billion per second? A:

Q: How long would it take to spend a mole of $1 coins if they were being spent at a rate of 1 billion per second? A: : The Mole- 6.02 x 10 23 ODE TO A MOLE I find that my heart beat goes out of control Just thinking how useful to man is the mole! So perfectly compact. What could be neater? Only occupying twenty-two and

More information

AP WORKSHEET 4s: Calculations Summary

AP WORKSHEET 4s: Calculations Summary AP WORKSHEET 4s: Calculations Summary TYPE 1: Those involving Avogadro s number (the mole concept). Question 1 A sample of Ge is found to contain 9.7 x 10 23 atoms of Ge. How many moles of Ge atoms are

More information

Notes: Unit 7 Moles & Stoichiometry

Notes: Unit 7 Moles & Stoichiometry Regents Chemistry: Notes: Unit 7 Moles & Stoichiometry 1 KEY IDEAS In all chemical reactions there is a conservation of mass, energy, and charge. (3.3a) A balanced chemical equation represents conservation

More information

Bullers Wood School. Chemistry Department. Transition to A Level Chemistry Workbook. June 2018

Bullers Wood School. Chemistry Department. Transition to A Level Chemistry Workbook. June 2018 Bullers Wood School Chemistry Department Transition to A Level Chemistry Workbook June 2018 This booklet contains questions for you to work through and answer over the summer to prepare for the A level

More information

Student Version Notes: Unit 5 Moles & Stoichiometry

Student Version Notes: Unit 5 Moles & Stoichiometry Name: Regents Chemistry: Mr. Palermo Student Version Notes: Unit 5 Moles & Stoichiometry Name: KEY IDEAS A compound is a substance composed of two or more different elements that are chemically combined

More information

General Chemistry 1 CHM201 Unit 2 Practice Test

General Chemistry 1 CHM201 Unit 2 Practice Test General Chemistry 1 CHM201 Unit 2 Practice Test 1. Which statement about the combustion of propane (C 3H 8) is not correct? C 3H 8 5O 2 3CO 2 4H 2O a. For every propane molecule consumed, three molecules

More information

Stoichiometry Chapter 9 Practice Assessment B

Stoichiometry Chapter 9 Practice Assessment B NAME Hour Date Stoichiometry Chapter 9 Practice Assessment B Objective 1: Interpret balanced chemical equations in terms of interacting moles, representative particles, masses, and gas volume at STP. Directions:

More information

What is a Representative Particle

What is a Representative Particle Chapter 7 Moles What is a Representative Particle The smallest unit into which a substance can be broken down without changing the composition of the substance. Atoms, molecules, and formula units What

More information

Do Now. Agenda Welcome back! The beginning of ALL THE MATH! Homework PBJ procedure Pages 1-3 of HW packet

Do Now. Agenda Welcome back! The beginning of ALL THE MATH! Homework PBJ procedure Pages 1-3 of HW packet Do Now Agenda Welcome back! The beginning of ALL THE MATH! Homework PBJ procedure Pages 1-3 of HW packet All the math Molar Mass the mass of one mole of any substance, reported in grams (gram atomic mass)

More information

6.02 x 1023 CHAPTER 10. Mole. Avogadro s Number. Chemical Quantities The Mole: A Measurement of Matter Matter is measured in one of three ways:

6.02 x 1023 CHAPTER 10. Mole. Avogadro s Number. Chemical Quantities The Mole: A Measurement of Matter Matter is measured in one of three ways: Chapter 10 Notes CHAPTER 10 10.1 The Mole: A Measurement of Matter Matter is measured in one of three ways: Chemical Quantities Mole SI unit that measures the amount of a substance A mole of a substance

More information

1.4 Enthalpy. What is chemical energy?

1.4 Enthalpy. What is chemical energy? 1.4 Enthalpy What is chemical energy? Chemical energy is a form of potential energy which is stored in chemical bonds. Chemical bonds are the attractive forces that bind atoms together. As a reaction takes

More information

Quantitative Chemistry. AQA Chemistry topic 3

Quantitative Chemistry. AQA Chemistry topic 3 Quantitative Chemistry AQA Chemistry topic 3 3.1 Conservation of Mass and Balanced Equations Chemical Reactions A chemical reaction is when atoms are basically rearranged into something different. For

More information

Notes: Molar Mass, Percent Composition, Mole Calculations, and Empirical/Molecular Formulas

Notes: Molar Mass, Percent Composition, Mole Calculations, and Empirical/Molecular Formulas Notes: Molar Mass, Percent Composition, Mole Calculations, and Empirical/Molecular Formulas In Chemistry, a Mole is: the unit that measures the amount of a substance - equals 6.022 x 10 23 particles of

More information

Chapter 5. Stoichiometry

Chapter 5. Stoichiometry Chapter 5 Stoichiometry Chapter 5 Table of Contents (5-1) Counting by weighing (5-2) Atomic masses (5-3) Learning to solve problems (5-4) The mole (5-5) Molar mass (5-6) Percent composition of compounds

More information

Chem 11 UNIT 3: STOICHIOMETRY Name:

Chem 11 UNIT 3: STOICHIOMETRY Name: Chem 11 UNIT 3: STOICHIOMETRY Name: Ms. Pirvu Period: Writing & Balancing Equations Chemical reactions can be described by chemical equations. Recall Law of Conservation of Mass mass cannot be nor. This

More information

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Key Skills: Balance chemical equations Predict the products of simple combination, decomposition, and combustion reactions. Calculate formula weights Convert grams to moles and

More information

Apply the concept of percent yield to stoichiometric problems. Methanol can be produced through the reaction of CO and H 2 in the presence of a

Apply the concept of percent yield to stoichiometric problems. Methanol can be produced through the reaction of CO and H 2 in the presence of a Apply the concept of percent yield to stoichiometric problems. Methanol can be produced through the reaction of CO and H 2 in the presence of a catalyst. CO (g) + H 2 (g) CH 3 OH (l) If 75.0 g of CO reacts

More information

Formulas and Models 1

Formulas and Models 1 Formulas and Models 1 A molecular formula shows the exact number of atoms of each element in the smallest unit of a substance An empirical formula shows the simplest whole-number ratio of the atoms in

More information

Unit 4: Reactions and Stoichiometry

Unit 4: Reactions and Stoichiometry Unit 4: Reactions and Stoichiometry Reactions Chemical equation Expression representing a chemical reaction Formulas of reactants on the left side Formulas of products on the right side Arrow(s) connect(s)

More information

Chemical Equations. Law of Conservation of Mass. Anatomy of a Chemical Equation CH4(g) + 2O2(g) Chapter 3

Chemical Equations. Law of Conservation of Mass. Anatomy of a Chemical Equation CH4(g) + 2O2(g) Chapter 3 Chemical Equations Chemical equations are concise representations of chemical reactions. Chapter 3 : Calculations with Chemical Formulas and Equations Law of Conservation of Mass Anatomy of a Chemical

More information

9.1.1 CHEMICAL EQUATIONS AND STOICHIOMETRY

9.1.1 CHEMICAL EQUATIONS AND STOICHIOMETRY 9.1.1 CHEMICAL EQUATIONS AND STOICHIOMETRY Work directly from Zumdahl (Chapter 3). Work through exercises as required, then summarise the essentials of the section when complete. A chemical equation is

More information

Stoichiometry Ratios of Combination

Stoichiometry Ratios of Combination Chapter 3 Stoichiometry Ratios of Combination Dr. A. Al-Saadi 1 Preview Concepts of atomic mass, molecular mass, mole, molar mass, and percent compositions. Balancing chemical equations. Stoichiometric

More information

AP Chemistry: Chapter 3 Notes Outline

AP Chemistry: Chapter 3 Notes Outline AP Chemistry: Chapter 3 Notes Outline Objectives: Balance chemical equations Use dimensional analysis to solve stoichiometric problems Use dimensional analysis to do limiting reactant problems Use dimensional

More information

Chem A Ch. 9 Practice Test

Chem A Ch. 9 Practice Test Name: Class: Date: Chem A Ch. 9 Practice Test Matching Match each item with the correct statement below. a. product d. balanced equation b. reactant e. skeleton equation c. chemical equation 1. a new substance

More information

Quantitative aspects of chemical change. sdfgsfgfgsgf Grade 10 Physical Science CAPS 2016

Quantitative aspects of chemical change. sdfgsfgfgsgf Grade 10 Physical Science CAPS 2016 Quantitative aspects of chemical change sdfgsfgfgsgf Grade 10 Physical Science CAPS 2016 The mole concept The mole concept Atoms are small chemists know this. But somewhere along the line they have to

More information

Symbols. Table 1 A set of common elements, their symbols and physical state

Symbols. Table 1 A set of common elements, their symbols and physical state Symbols Symbols are a kind of shorthand system for writing down elements and compounds. Each element has a particular one or two letter symbol. The first letter of a symbol is always capital, and if there

More information

Honors Chemistry Unit 6 Moles and Stoichiometry Notes. Intro to the mole 1. What is the chemical mole? 2. What is Avogadro s number?

Honors Chemistry Unit 6 Moles and Stoichiometry Notes. Intro to the mole 1. What is the chemical mole? 2. What is Avogadro s number? Honors Chemistry Unit 6 Moles and Stoichiometry Notes Intro to the mole 1. What is the chemical mole? 2. What is Avogadro s number? 3. What does it mean? 4. How is a mole like a dozen doughnuts? Formula

More information

1.3: Empirical and Molecular Formulas. Ms. Kiely Coral Gables Senior High IB Chemistry SL

1.3: Empirical and Molecular Formulas. Ms. Kiely Coral Gables Senior High IB Chemistry SL 1.3: Empirical and Molecular Formulas Ms. Kiely Coral Gables Senior High IB Chemistry SL Practice How heavy are 1.20 x 10²⁵ atoms of potassium? ANSWER How many grams in 1.20 x 10²⁵ atoms of potassium?

More information

CHEMICAL ARITHMATICS MODULE - 1. Objectives. Chemical Arithmatics. Atoms, Molecules and Chemical Arithmatics. Notes

CHEMICAL ARITHMATICS MODULE - 1. Objectives. Chemical Arithmatics. Atoms, Molecules and Chemical Arithmatics. Notes 2 MODULE - 1 CHEMICAL ARITHMATICS W e know that atoms of different elements combine in simple whole-number ratios to form molecules. For example, hydrogen and oxygen atoms combine in the mass ratio of

More information

Chemistry Section Review 7.3

Chemistry Section Review 7.3 Chemistry Section Review 7.3 Multiple Choice Identify the choice that best completes the statement or answers the question. Put the LETTER of the correct answer in the blank. 1. The molar mass of an element

More information

Balancing Chemical Reactions. CHAPTER 3: Quantitative Relationships in Chemical Reactions. Zn + HCl ZnCl 2 + H 2. reactant atoms product atoms

Balancing Chemical Reactions. CHAPTER 3: Quantitative Relationships in Chemical Reactions. Zn + HCl ZnCl 2 + H 2. reactant atoms product atoms CHAPTER 3: Quantitative Relationships in Chemical Reactions Stoichiometry: Greek for measure elements Stoichiometry involves calculations based on chemical formulas and chemical equations (reactions) quantitative.

More information

Unit 5. Chemical Composition

Unit 5. Chemical Composition Unit 5 Chemical Composition Counting by Mass Individually mass a few Calculate the average mass of one Can count large numbers of by mass Atomic Mass Unit (amu) 1 amu = 1.66 x 10-24 g Subatomic particles

More information

PowerPoint to accompany. Chapter 2. Stoichiometry: Calculations with Chemical Formulae and Equations. Dr V Paideya

PowerPoint to accompany. Chapter 2. Stoichiometry: Calculations with Chemical Formulae and Equations. Dr V Paideya PowerPoint to accompany Chapter 2 Stoichiometry: Calculations with Chemical Formulae and Equations Dr V Paideya Chemical Equations CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2 H 2 O (g) Figure 2.4 Chemical Equations

More information

Chemical Formulas and Equations

Chemical Formulas and Equations Chemical Formulas and Equations 8.5D recognize that chemical formulas are used to identify substances and determine the number of atoms of each element in chemical formulas containing substances; 8.5F

More information

Name Date Class. representative particle molar mass representative particles

Name Date Class. representative particle molar mass representative particles 10.1 THE MOLE: A MEASUREMENT OF MATTER Section Review Objectives Relate Avogadro s number to a mole of a substance Calculate the mass of a mole of any substance Describe methods of measuring the amount

More information

Class XI Chapter 1 Some Basic Concepts of Chemistry Chemistry

Class XI Chapter 1 Some Basic Concepts of Chemistry Chemistry Question 1.1: Calculate the molecular mass of the following: (i) H 2 O (ii) CO 2 (iii) CH 4 (i) H 2 O: The molecular mass of water, H 2 O = (2 Atomic mass of hydrogen) + (1 Atomic mass of oxygen) = [2(1.0084)

More information

Chapter 3 The Mole and Stoichiometry

Chapter 3 The Mole and Stoichiometry Chapter 3 The Mole and Stoichiometry Chemistry, 7 th Edition International Student Version Brady/Jespersen/Hyslop Brady/Jespersen/Hyslop Chemistry7E, Copyright 015 John Wiley & Sons, Inc. All Rights Reserved

More information

Transition Pack for A Level Chemistry

Transition Pack for A Level Chemistry Transition Pack for A Level Chemistry A guide to help you get ready for A-level Chemistry. You will be tested on this material in the week beginning 12 th September 2016 1 This booklet contains background

More information

Unit 4 ~ Learning Guide Name:

Unit 4 ~ Learning Guide Name: Unit 4 ~ Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is eplained in the lessons. You are required to have this

More information

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations. Lecture Presentation

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations. Lecture Presentation Lecture Presentation Chapter 3 : Calculations with Chemical Formulas and Equations John D. Bookstaver St. Charles Community College Cottleville, MO Law of Conservation of Mass We may lay it down as an

More information

Topic 7: The Mole Concept Relating Mass to Numbers of Atoms

Topic 7: The Mole Concept Relating Mass to Numbers of Atoms Topic 7: The Mole Concept Relating Mass to Numbers of Atoms (Chapter 3 in Modern Chemistry beginning on p.82) In order to understand the quantitative parts of chemistry, there are three very important

More information

Contents. Content Guidance. Questions & Answers. Getting the most from this book... 4 About this book... 5

Contents. Content Guidance. Questions & Answers. Getting the most from this book... 4 About this book... 5 Contents Getting the most from this book... 4 About this book.... 5 Content Guidance Atomic structure......................................... 6 Amount of substance....................................

More information

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations. Stoichiometry

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations. Stoichiometry Chapter 3 : Calculations with Chemical Formulas and Equations Anatomy of a Chemical Equation CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2 H 2 O (g) Anatomy of a Chemical Equation CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

Question #1: Wednesday January AGENDA YOYO Practice Test Review. AIM Midterm Review

Question #1: Wednesday January AGENDA YOYO Practice Test Review. AIM Midterm Review Wednesday January 15 2019 AIM Midterm Review YOYO Take YOYO sheet and start working on it Take out practice test and note the questions you want to go over today AGENDA YOYO Practice Test Review HOMEWORK

More information

IGCSE Double Award Extended Coordinated Science

IGCSE Double Award Extended Coordinated Science IGCSE Double Award Extended Coordinated Science Chemistry 4.1 - The Mole Concept The Atomic Mass Unit You need to know the atomic mass unit and the relative atomic mass. In Unit C3.3, 1 atomic mass unit

More information

A Level Chemistry. Ribston Hall High School. Pre Course Holiday Task. Name: School: ii) Maths:

A Level Chemistry. Ribston Hall High School. Pre Course Holiday Task. Name: School: ii) Maths: A Level Chemistry Ribston Hall High School Pre Course Holiday Task Name: School: GCSE Grades in i) Chemistry or Science: ii) Maths: 1 The following are a series of questions on topics you have covered

More information

1) Write the reaction for Calcium and nitrogen reacting. 3) What element on the periodic table is the largest? 3)Name these. a) H2S (aq) b) HNO 3 (aq)

1) Write the reaction for Calcium and nitrogen reacting. 3) What element on the periodic table is the largest? 3)Name these. a) H2S (aq) b) HNO 3 (aq) 1) Write the reaction for Calcium and nitrogen reacting 3) What element on the periodic table is the largest? 3)Name these a) H2S (aq) b) HNO 3 (aq) Stoichiometry: mathematical relationships in formulas

More information