Annual report FOM programme nr. 157 'Two-dimensional semiconductor crystals' Foundation for Fundamental Research on Matter

Size: px
Start display at page:

Download "Annual report FOM programme nr. 157 'Two-dimensional semiconductor crystals' Foundation for Fundamental Research on Matter"

Transcription

1 FOM Annual report 2015 FOM programme nr. 157 'Two-dimensional semiconductor crystals' Foundation for Fundamental Research on Matter Scanning tunneling microcopy image (4 nm x 4 nm) of germanene (the germanium analogue of graphene). The honeycomb lattice, which is composed of two interpenetrating triangular sub-lattices, is buckled. May 2016

2 Content 1. Scientific results Added value of the programme Personnel Publications TWOD01/14TWOD03/14TWOD TWOD Valorisation and outreach Vacancies... 4 Fact sheet as of 1 January Historical overview of input and output... 7 PhD defences... 7 Patents (new/changes)... 7 Overview of projects and personnel... 8 Workgroup FOM-D Workgroup FOM-N

3 1. Scientific results 2015 The FOM programme 'Two-dimensional semiconductor crystals' has been granted in December The programme encompasses four PhD students and four PD positions and as of 1 January 2016 two PhD positions (Nikos Papadopoulos/TUD and Rik van Bremen/UT) and one PD position (Jaap Kroes/RU) are filled, whereas a third PhD student (Michal Ochapski/UT) has agreed to start in March The first PD (RU, Jaap Kroes) started with first-principles calculations on the energetics, barriers and vibrational spectra of partially and fully hydrogenated hexagonal boron-nitride. During his PhD project at the EPFL in Lausanne he has obtained ample experience with density functional theory calculations. His first paper within the framework of the 2D FOM programme on partially and fully hydrogenated hexagonal boron-nitride has recently been submitted to Phys. Chem. Chem. Phys. The TUD PhD student (Nikos Papadopoulos) started his project on the fabrication and characterization of molybdenum disulfide layers in June Meanwhile he has become familiar with the chemical vapor deposition growth of molybdenum disulfide layers as well as various techniques to study the physical properties of this material. In addition, using chemical doping molybdenum disulfide was converted to its metallic poly-type (1T) phase and by exposure to laser radiation molybdenum disulfide could locally be transformed back to its semiconducting phase. This method allows to define a semiconducting molybdenum disulfide channel within a metallic polytype 1T host phase. Molybdenum disulfide devices and flakes have been characterized by several techniques, including Raman, photoluminescence and atomic force microscopy. The semiconducting to metallic phase transition of molybdenum disulfide has been studied with transport measurements and Raman spectroscopy. The next step will be to fabricate encapsulated singlelayer molybdenum disulfide (MoS 2) devices with 1T-sidecontacts as well as to try to observe superconductivity in 1T-LiMoS 2. In Twente four students (Lijie Zhang, Pantelis Bampoulis, Adil Acun and Caspar Walhout) have synthesized germanene (the germanium analogue of graphene) on Ge 2Pt crystals as well as molybdenum disulfide substrates. Scanning tunneling microscopy and spectroscopy experiments have been performed in order to determine the structural and electronic of germanene. Germanene layers grown on Ge 2Pt crystals exhibit a buckled honeycomb lattice, which is composed of two hexagonal sub-lattices that are displaced vertically by 0.2 Å. The nearest-neighbor distance of the atoms in the honeycomb lattice is 2.5±0.1 Å, i.e. very close to the predicted nearest-neighbor distance for germanene. The density of states of the germanene layers exhibits a well-defined V- shape, which is the hallmark of a two-dimensional Dirac system. Similar results are found for germanene layers synthesized on a molybdenum disulfide substrate. The official kick-off meeting of the programme will be held on 4 March 2016 with two renowned invited speakers from abroad: Dr. Patrick Vogt (Berlin) and Dr. Raphael Roldan (Madrid).The scientific programme is completed with several contributions from participants of 2D FOM programme. In 2015 two papers have appeared: a topical review on germanene and a letter on the Dirac nature of germanene. The topical review is a joint effort of the principal investigators of Radboud University (Prof. Katsnelson & Dr. Rudenko) and the University of Twente (Dr. Brocks and Prof. Zandvliet). Several papers are currently under review: a paper from RU (on hexagonal boron nitride, a paper on the temperature dependence of the density of states of germanene (UT) and a joint manuscript (RU/UT) on the synthesis and characterization of germanene on molybdenum disulfide. Finally, the groups of Van der Zant and Steele (TUD) are currently preparing a manuscript for submission

4 2. Added value of the programme As described in section 1 the programme has already resulted in two joint manuscript (one publicshed and a second one in the pipeline). We envisage that the projected collaborations will be further strengthen in the coming years. 3. Personnel The programme originally encompasses five PhD students and three PD positions, but one of the PhD positions (RU Katsnelson) has been converted to a PD position. As of 1 January 2016 two PhD positions and one PD position are filled, whereas a third PhD student has agreed to start in March We hope to fill the fourth (and last) PhD position soon. We anticipate that one of the three PD positions (RU) will be filled in 2016, whereas the other two PD positions (RUG and UT) are scheduled for Publications 14TWOD01/14TWOD03/14TWOD07 - Topical review (open access) A. Acun, L. Zhang, P. Bampoulis, M. Farmanbar, M. Lingenfelder, A. van Houselt, A.N. Rudenko, G. Brocks, B. Poelsema, M.I. Katsnelson and H.J.W. Zandvliet, Germanene: the germanium analogue of graphene, Journal Physics Condensed Matter 27, (2015). 14TWOD07 - L. Zhang, P. Bampoulis, A. van Houselt and H.J.W. Zandvliet, Two-dimensional Dirac signature of germanene, Applied Physics Letters 107, (2015). 5. Valorisation and outreach Not applicable. 6. Vacancies One PhD position (Brocks/Kelly, UT). We are also seeking a suitable candidate for the second RU PD position (Katsnelson/Fasolino). The remaining two PD positions (RUG and UT) are scheduled for

5 Fact sheet as of 1 January 2016 FOM /1 datum: APPROVED FOM PROGRAMME Number 157. Title (code) Executive organisational unit Programme management Two-dimensional semiconductor crystals (TWOD) BUW Prof.dr.ir. H.J.W. Zandvliet Duration Cost estimate M 1.6 Concise programme description a. Objectives In this programme we aim to synthesize and characterize two-dimensional materials that have a sizeable band gap and appreciable charge carrier mobilities. We will propose, design, characterize and implement elementary field-effect based electronic devices that rely on two-dimensional semiconductors. Particular attention will be paid to (1) the opening/tuning of a band gap, (2) encapsulation, (3) field-effect characteristics, (4) artificial multilayers and (5) magnetic doping. We will focus on silicene, phosphorene and transition-metal (di)chalcogenides (e.g., molybdenum disulfide), and explore in a concerted and coherent way, new fundamental science and applications of these novel two-dimensional semiconductors. b. Background, relevance and implementation In the past decade a new exciting class of materials has been developed, which is not threedimensional, but two-dimensional in nature. Graphene is the most famous example of this new class of materials. It exhibits a wealth of exotic and intriguing properties, which has resulted in a myriad of scientific breakthroughs. However, graphene also suffers from a severe drawback: it is gapless, implying that it cannot take over the leading role that silicon plays in the current microelectronic industry. There are several two-dimensional materials such as silicene, phosphorene and transition-metal (di)chalcogenides that have a band gap (or band gap can be opened up in these materials). Twodimensional semiconductors are very appealing for modern electronics, which is basically twodimensional, as the functionality of devices is dominated by what occurs at the interfaces of semiconductors. Manipulating charge carrier densities and transport is often hindered rather than assisted by having to use bulk semiconductors. Employing two-dimensional semiconductors would enable to enter a new regime and open doors to exciting new physics and applications. We envisage these two-dimensional semiconductor crystals as the gateway to a wealth of novel and exciting phenomena with a strong potential for technological applications. A balanced and well-chosen arsenal of experimental and theoretical techniques that includes transport measurements, scanning tunneling microscopy & spectroscopy, photoemission electron - 5 -

6 spectroscopy, low energy electron microscopy and diffraction, near edge X-ray absorption fine structure, photoluminescence and Raman spectroscopy, density functional theory and quantum many body theory calculations will used to address these tantalizing challenges. In the starting phase of the programme, PhD students will pay visits of about 1-2 weeks to the other research groups. In addition, several experimental PhD and postdoc projects are executed in two research groups, the majority in the host group, but another part at the second location. Network meetings are held every 9-12 months at one of the research groups. The programme leader will organize an international workshop at the start and at the end of the programme in order to give an additional boost to the knowledge level and ambition of the junior scientists (PhD and postdocs) and to cement future networks and collaborations conducive to their further careers. Funding salarispeil cao tot bedragen in k > 2021 Totaal FOM-basisexploitatie FOM-basisinvesteringen Doelsubsidies NWO Doelsubsidies derden Totaal Source documents and progress control a) Original programme proposal: FOM b) Ex ante evaluation: FOM c) Decision Executive Board: FOM Remarks The final evaluation will be based on the self-evaluation report initiated by the programme leader and is foreseen for JM par. HOZB Subgebieden: 50% COMOP, 50% NANO - 6 -

7 Historical overview of input and output personnel (in fte) finances* (in k ) Input WP/V WP/T PhD NWP PhD theses refereed publications other publications & patents Output presentations * After closing the financial year. PhD defences 2015 None. Patents (new/changes) 2015 None

8 Overview of projects and personnel Workgroup FOM-D-44 Leader Organisation Project leader(s) Project (title + number) Prof.dr.ir. H.S.J. van der Zant Delft University of Technology Field-effect devices (14TWOD04) FOM employees on this project Name Position Start date End date N. Papadopoulos PhD 1 June May 2019 Workgroup FOM-N-24 Leader Organisation Project leader(s) Project (title + number) Prof.dr. A. Fasolino Radboud University Nijmegen Structural and thermal properties (14TWOD02) FOM employees on this project Name Position Start date End date J. Kroes WP/T 1 April March

Annual report FOM programme nr. 157 'Two-dimensional semiconductor crystals'

Annual report FOM programme nr. 157 'Two-dimensional semiconductor crystals' NWOI - 17.0111 Annual report 2016 FOM programme nr. 157 'Two-dimensional semiconductor crystals' Laser-induced metallic to semiconducting transition in a MoS2 field-effect transistor May 2017 www.nwo.nl

More information

Annual report FOM programme nr. i26 'Topological quantum computation' Foundation for Fundamental Research on Matter

Annual report FOM programme nr. i26 'Topological quantum computation' Foundation for Fundamental Research on Matter FOM 14.0233 Annual report 2013 FOM programme nr. i26 'Topological quantum computation' Foundation for Fundamental Research on Matter www.fom.nl An electron microscopy image of a nanowire junction on which

More information

Annual report FOM programme nr. 128 'The singular physics of 1D electrons' Foundation for Fundamental Research on Matter

Annual report FOM programme nr. 128 'The singular physics of 1D electrons' Foundation for Fundamental Research on Matter FOM - 14.0213 Annual report 2013 FOM programme nr. 128 '' Foundation for Fundamental Research on Matter www.fom.nl The iridium nanowires on a germanium surface. May 2014 Content 1. Scientific results 2013...

More information

Annual report FOM programme nr. 129 'Fundamental aspects of friction' Foundation for Fundamental Research on Matter

Annual report FOM programme nr. 129 'Fundamental aspects of friction' Foundation for Fundamental Research on Matter FOM - 15.0299 Annual report 2014 FOM programme nr. 129 '' Foundation for Fundamental Research on Matter www.fom.nl Molecular dynamics simulations show that wear between diamond surfaces is inhibited if

More information

Annual report FOM programme nr. 130 'Next generation organic photovoltaics' Foundation for Fundamental Research on Matter

Annual report FOM programme nr. 130 'Next generation organic photovoltaics' Foundation for Fundamental Research on Matter FOM - 14.0215 Annual report 2013 FOM programme nr. 130 'Next generation organic photovoltaics' Foundation for Fundamental Research on Matter www.fom.nl A current-voltage characterisation of an organic

More information

Annual report FOM programme nr. i26 'Topological quantum computation' Foundation for Fundamental Research on Matter

Annual report FOM programme nr. i26 'Topological quantum computation' Foundation for Fundamental Research on Matter FOM 15.0320 Annual report 2014 FOM programme nr. i26 'Topological quantum computation' Foundation for Fundamental Research on Matter www.fom.nl Cooperpair Box with band gap engineering of the superconducting

More information

Annual report Foundation for Fundamental Research on Matter FOM

Annual report Foundation for Fundamental Research on Matter  FOM FOM - 16.0191 Annual report 2015 FOM programme nr. i40 'Rock-on-a-Chip: Salt-controlled wettability alteration in oil-watersolid systems for applications in enhanced oil recovery' Foundation for Fundamental

More information

Two-dimensional Dirac signature of germanene

Two-dimensional Dirac signature of germanene Two-dimensional Dirac signature of germanene L. Zhang, P. Bampoulis, A. van Houselt and H.J.W. Zandvliet Physics of Interfaces and Nanomaterials group, MESA+ Institute for Nanotechnology and University

More information

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e) (a) (b) Supplementary Figure 1. (a) An AFM image of the device after the formation of the contact electrodes and the top gate dielectric Al 2 O 3. (b) A line scan performed along the white dashed line

More information

Annual report FOM programme nr. 152 'Designing Dirac carriers in semiconductor honeycomb superlattices'

Annual report FOM programme nr. 152 'Designing Dirac carriers in semiconductor honeycomb superlattices' FOM - 16.0176 Annual report 2015 FOM programme nr. 152 'Designing Dirac carriers in semiconductor honeycomb superlattices' Foundation for Fundamental Research on Matter www.fom.nl The calculated band structure

More information

2D Materials for Gas Sensing

2D Materials for Gas Sensing 2D Materials for Gas Sensing S. Guo, A. Rani, and M.E. Zaghloul Department of Electrical and Computer Engineering The George Washington University, Washington DC 20052 Outline Background Structures of

More information

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm.

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm. PL (normalized) Intensity (arb. u.) 1 1 8 7L-MoS 1L-MoS 6 4 37 38 39 4 41 4 Raman shift (cm -1 ) Supplementary Figure 1 Raman spectra of the Figure 1B at the 1L-MoS area (black line) and 7L-MoS area (red

More information

Annual report FOM programme nr. 134 'Topological insulators' Foundation for Fundamental Research on Matter

Annual report FOM programme nr. 134 'Topological insulators' Foundation for Fundamental Research on Matter FOM - 14.0217 Annual report 2013 FOM programme nr. 134 '' Foundation for Fundamental Research on Matter www.fom.nl In a topological insulator the wave functions of the electrons form a complex knot that

More information

PHYSICS (PHYS) Physics (PHYS) 1. PHYS 5880 Astrophysics Laboratory

PHYSICS (PHYS) Physics (PHYS) 1. PHYS 5880 Astrophysics Laboratory Physics (PHYS) 1 PHYSICS (PHYS) PHYS 5210 Theoretical Mechanics Kinematics and dynamics of particles and rigid bodies. Lagrangian and Hamiltonian equations of motion. PHYS 5230 Classical Electricity And

More information

Name; Kazuyuki Sakamoto Birth; December 5, 1966 (Kyoto, Japan) Sex; male Family; wife and 2 children Citizenship; Japan

Name; Kazuyuki Sakamoto Birth; December 5, 1966 (Kyoto, Japan) Sex; male Family; wife and 2 children Citizenship; Japan April 1, 2015 Curriculum Vitae Name; Kazuyuki Sakamoto Birth; December 5, 1966 (Kyoto, Japan) Sex; male Family; wife and 2 children Citizenship; Japan Job Status; Professor, Department of Nanomaterials

More information

2D-BLACK PHOSPHORUS FUNCTIONALIZED WITH METAL NANOPARTICLES: FULL CHARACTERIZATION AND CATALYTIC ACTIVITY ON HYDROGENATION REACTIONS

2D-BLACK PHOSPHORUS FUNCTIONALIZED WITH METAL NANOPARTICLES: FULL CHARACTERIZATION AND CATALYTIC ACTIVITY ON HYDROGENATION REACTIONS 2D-BLACK PHOSPHORUS FUNCTIONALIZED WITH METAL NANOPARTICLES: FULL CHARACTERIZATION AND CATALYTIC ACTIVITY ON HYDROGENATION REACTIONS EWPC-13 Freie Universität Berlin Salvatore Interlandi CNR-ICCOM Sesto

More information

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

TRANSVERSE SPIN TRANSPORT IN GRAPHENE International Journal of Modern Physics B Vol. 23, Nos. 12 & 13 (2009) 2641 2646 World Scientific Publishing Company TRANSVERSE SPIN TRANSPORT IN GRAPHENE TARIQ M. G. MOHIUDDIN, A. A. ZHUKOV, D. C. ELIAS,

More information

City University of Hong Kong. Course Syllabus. offered by Department of Physics and Materials Science with effect from Semester A 2016 / 17

City University of Hong Kong. Course Syllabus. offered by Department of Physics and Materials Science with effect from Semester A 2016 / 17 City University of Hong Kong offered by Department of Physics and Materials Science with effect from Semester A 2016 / 17 Part I Course Overview Course Title: Nanostructures and Nanotechnology Course Code:

More information

TABLE OF CONTENTS 1 RESEARCH METHODOLOGY Investment analysis Market impediment analysis EXECUTIVE SUMMARY...

TABLE OF CONTENTS 1 RESEARCH METHODOLOGY Investment analysis Market impediment analysis EXECUTIVE SUMMARY... TABLE OF CONTENTS 1 RESEARCH METHODOLOGY... 22 1.1 Investment analysis...... 22 1.2 Market impediment analysis... 24 2 EXECUTIVE SUMMARY... 27 2.1 Products...... 27 2.2 Production in 2017...... 29 2.3

More information

Black phosphorus: A new bandgap tuning knob

Black phosphorus: A new bandgap tuning knob Black phosphorus: A new bandgap tuning knob Rafael Roldán and Andres Castellanos-Gomez Modern electronics rely on devices whose functionality can be adjusted by the end-user with an external knob. A new

More information

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc.

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc. 9702 Gayton Road, Suite 320, Richmond, VA 23238, USA Phone: +1 (804) 709-6696 info@nitride-crystals.com www.nitride-crystals.com Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals,

More information

SYLLABUS FINDING NANO Syllabus NanoSCI DISCOVERING NANOTECHNOLOGY AND CULTURE IN GERMANY

SYLLABUS FINDING NANO Syllabus NanoSCI DISCOVERING NANOTECHNOLOGY AND CULTURE IN GERMANY 1. Syllabus NanoSCI Course title: NanoSCI - Electronic Properties of Nanoengineered Materials Catalog description: Physics and technology of nanoengineered materials and devices. Semiconductor nanostructures.

More information

Annual report FOM programme nr. 130 'Next generation organic photovoltaics' Foundation for Fundamental Research on Matter

Annual report FOM programme nr. 130 'Next generation organic photovoltaics' Foundation for Fundamental Research on Matter FOM - 16.0161 Annual report 2015 FOM programme nr. 130 'Next generation organic photovoltaics' Foundation for Fundamental Research on Matter www.fom.nl (top left) Hybrid perovskite solar cell. Cross section

More information

Solid Surfaces, Interfaces and Thin Films

Solid Surfaces, Interfaces and Thin Films Hans Lüth Solid Surfaces, Interfaces and Thin Films Fifth Edition With 427 Figures.2e Springer Contents 1 Surface and Interface Physics: Its Definition and Importance... 1 Panel I: Ultrahigh Vacuum (UHV)

More information

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield 2D MBE Activities in Sheffield I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield Outline Motivation Van der Waals crystals The Transition Metal Di-Chalcogenides

More information

2D Materials Research Activities at the NEST lab in Pisa, Italy. Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy

2D Materials Research Activities at the NEST lab in Pisa, Italy. Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy 2D Materials Research Activities at the NEST lab in Pisa, Italy Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy 2D Materials Research Activities at the NEST lab in

More information

Surface Transfer Doping of Diamond by Organic Molecules

Surface Transfer Doping of Diamond by Organic Molecules Surface Transfer Doping of Diamond by Organic Molecules Qi Dongchen Department of Physics National University of Singapore Supervisor: Prof. Andrew T. S. Wee Dr. Gao Xingyu Scope of presentation Overview

More information

This manuscript was submitted first in a reputed journal on Apri1 16 th Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin

This manuscript was submitted first in a reputed journal on Apri1 16 th Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin This manuscript was submitted first in a reputed journal on Apri1 16 th 2015 Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin Sumit Saxena 1, Raghvendra Pratap Choudhary, and Shobha Shukla

More information

Graphene Novel Material for Nanoelectronics

Graphene Novel Material for Nanoelectronics Graphene Novel Material for Nanoelectronics Shintaro Sato Naoki Harada Daiyu Kondo Mari Ohfuchi (Manuscript received May 12, 2009) Graphene is a flat monolayer of carbon atoms with a two-dimensional honeycomb

More information

Supplementary Figure 1: MoS2 crystals on WSe2-EG and EG and WSe2 crystals on MoSe2-EG and EG.

Supplementary Figure 1: MoS2 crystals on WSe2-EG and EG and WSe2 crystals on MoSe2-EG and EG. Supplementary Figure 1: MoS2 crystals on WSe2-EG and EG and WSe2 crystals on MoSe2-EG and EG. (a) The MoS2 crystals cover both of EG and WSe2/EG after the CVD growth (Scar bar: 400 nm) (b) shows TEM profiles

More information

Monolayer Semiconductors

Monolayer Semiconductors Monolayer Semiconductors Gilbert Arias California State University San Bernardino University of Washington INT REU, 2013 Advisor: Xiaodong Xu (Dated: August 24, 2013) Abstract Silicon may be unable to

More information

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties 2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties Artem Pulkin California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole

More information

The Workshop on Recent Progress in Theoretical and Computational Studies of 2D Materials Program

The Workshop on Recent Progress in Theoretical and Computational Studies of 2D Materials Program The Workshop on Recent Progress in Theoretical and Computational Program December 26-27, 2015 Beijing, China December 26-27, 2015, Beijing, China The Workshop on Recent Progress in Theoretical and Computational

More information

Project Periodic Report

Project Periodic Report Project Periodic Report Publishable Summary Grant Agreement n. 256959 Project title Nanoscale energy management for powering ICT devices Project acronym NANOPOWER Call identifier FP7-ICT-2009-5 Funding

More information

CURRICULUM VITAE HUAMIN LI UPDATED: DECEMBER 1, 2015 MAIN RESEARCH INTERESTS EDUCATION

CURRICULUM VITAE HUAMIN LI UPDATED: DECEMBER 1, 2015 MAIN RESEARCH INTERESTS EDUCATION CURRICULUM VITAE HUAMIN LI UPDATED: DECEMBER 1, 2015 Postdoctoral Research Associate Center for Low Energy Systems Technology (LEAST), Department of Electrical Engineering University of Notre Dame, B20

More information

1. Nanotechnology & nanomaterials -- Functional nanomaterials enabled by nanotechnologies.

1. Nanotechnology & nanomaterials -- Functional nanomaterials enabled by nanotechnologies. Novel Nano-Engineered Semiconductors for Possible Photon Sources and Detectors NAI-CHANG YEH Department of Physics, California Institute of Technology 1. Nanotechnology & nanomaterials -- Functional nanomaterials

More information

EE143 Fall 2016 Microfabrication Technologies. Evolution of Devices

EE143 Fall 2016 Microfabrication Technologies. Evolution of Devices EE143 Fall 2016 Microfabrication Technologies Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1-1 Evolution of Devices Yesterday s Transistor (1947) Today s Transistor (2006) 1-2 1 Why

More information

EXPERIENCES FROM THE FIRST YEARS. Jari Kinaret Chalmers University of Technology Sweden

EXPERIENCES FROM THE FIRST YEARS. Jari Kinaret Chalmers University of Technology Sweden EXPERIENCES FROM THE FIRST YEARS Jari Kinaret Chalmers University of Technology Sweden FET Flagships FET Flagships are ambitious large-scale, science-driven, research initiatives that aim to achieve a

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

Overview. Carbon in all its forms. Background & Discovery Fabrication. Important properties. Summary & References. Overview of current research

Overview. Carbon in all its forms. Background & Discovery Fabrication. Important properties. Summary & References. Overview of current research Graphene Prepared for Solid State Physics II Pr Dagotto Spring 2009 Laurene Tetard 03/23/09 Overview Carbon in all its forms Background & Discovery Fabrication Important properties Overview of current

More information

Tunable Band Gap of Silicene on Monolayer Gallium Phosphide Substrate

Tunable Band Gap of Silicene on Monolayer Gallium Phosphide Substrate 2017 International Conference on Energy Development and Environmental Protection (EDEP 2017) ISBN: 978-1-60595-482-0 Tunable Band Gap of Silicene on Monolayer Gallium Phosphide Substrate Miao-Juan REN

More information

Topological 1T -phases patterned onto few-layer semiconducting-phase MoS2 by laser beam irradiation

Topological 1T -phases patterned onto few-layer semiconducting-phase MoS2 by laser beam irradiation Topological 1T -phases patterned onto few-layer semiconducting-phase MoS2 by laser beam irradiation H. Mine 1, A. Kobayashi 1, T. Nakamura 2, T. Inoue 3, J. J. Palacios 4, E. Z. Marin 4, S. Maruyama 3,

More information

Graphene. Tianyu Ye November 30th, 2011

Graphene. Tianyu Ye November 30th, 2011 Graphene Tianyu Ye November 30th, 2011 Outline What is graphene? How to make graphene? (Exfoliation, Epitaxial, CVD) Is it graphene? (Identification methods) Transport properties; Other properties; Applications;

More information

An Introduction to Quantum Dots: Confinement, Synthesis, Artificial Atoms and Applications

An Introduction to Quantum Dots: Confinement, Synthesis, Artificial Atoms and Applications An Introduction to Quantum Dots: Confinement, Synthesis, Artificial Atoms and Applications John Sinclair Univeristy of Tennessee Solid State II Instructer: Dr. Dagotto April 9, 2009 Abstract This paper

More information

Graphene Fundamentals and Emergent Applications

Graphene Fundamentals and Emergent Applications Graphene Fundamentals and Emergent Applications Jamie H. Warner Department of Materials University of Oxford Oxford, UK Franziska Schaffel Department of Materials University of Oxford Oxford, UK Alicja

More information

ESF EXCHANGE GRANT REPORT PROJECT WORK:

ESF EXCHANGE GRANT REPORT PROJECT WORK: ESF EXCHANGE GRANT REPORT PROJECT WORK: Studies of biomolecular cluster formation in the presence of ionising electrons Researcher: Dr. Samuel Eden, Open University, UK Exchange grant reference: 1783 ESF

More information

Nanoscale Surface Physics PHY 5XXX

Nanoscale Surface Physics PHY 5XXX SYLLABUS Nanoscale Surface Physics PHY 5XXX Spring Semester, 2006 Instructor: Dr. Beatriz Roldán-Cuenya Time: Tuesday and Thursday 4:00 to 5:45 pm Location: Theory: MAP 306, Laboratory: MAP 148 Office

More information

Initial Stages of Growth of Organic Semiconductors on Graphene

Initial Stages of Growth of Organic Semiconductors on Graphene Initial Stages of Growth of Organic Semiconductors on Graphene Presented by: Manisha Chhikara Supervisor: Prof. Dr. Gvido Bratina University of Nova Gorica Outline Introduction to Graphene Fabrication

More information

Surface atoms/molecules of a material act as an interface to its surrounding environment;

Surface atoms/molecules of a material act as an interface to its surrounding environment; 1 Chapter 1 Thesis Overview Surface atoms/molecules of a material act as an interface to its surrounding environment; their properties are often complicated by external adsorbates/species on the surface

More information

Raman Imaging and Electronic Properties of Graphene

Raman Imaging and Electronic Properties of Graphene Raman Imaging and Electronic Properties of Graphene F. Molitor, D. Graf, C. Stampfer, T. Ihn, and K. Ensslin Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland ensslin@phys.ethz.ch

More information

arxiv: v2 [cond-mat.mtrl-sci] 24 Dec 2014

arxiv: v2 [cond-mat.mtrl-sci] 24 Dec 2014 Defect in Phosphorene arxiv:1411.6986v2 [cond-mat.mtrl-sci] 24 Dec 2014 Wei Hu 1, 2, 3, and Jinlong Yang 1 Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

More information

Semiconductor Optoelectronics Prof. M. R. Shenoy Department of Physics Indian Institute of Technology, Delhi

Semiconductor Optoelectronics Prof. M. R. Shenoy Department of Physics Indian Institute of Technology, Delhi Semiconductor Optoelectronics Prof. M. R. Shenoy Department of Physics Indian Institute of Technology, Delhi Lecture - 1 Context and Scope of the Course (Refer Slide Time: 00:44) Welcome to this course

More information

Table of Contents. Table of Contents Opening a band gap in silicene and bilayer graphene with an electric field

Table of Contents. Table of Contents Opening a band gap in silicene and bilayer graphene with an electric field Table of Contents Table of Contents Opening a band gap in silicene and bilayer graphene with an electric field Bilayer graphene Building a bilayer graphene structure Calculation and analysis Silicene Optimizing

More information

Physical Properties of Mono-layer of

Physical Properties of Mono-layer of Chapter 3 Physical Properties of Mono-layer of Silicene The fascinating physical properties[ 6] associated with graphene have motivated many researchers to search for new graphene-like two-dimensional

More information

Supplementary Information for Atomically Phase-Matched Second-Harmonic Generation. in a 2D Crystal

Supplementary Information for Atomically Phase-Matched Second-Harmonic Generation. in a 2D Crystal Supplementary Information for Atomically Phase-Matched Second-Harmonic Generation in a 2D Crystal Mervin Zhao 1, 2, Ziliang Ye 1, 2, Ryuji Suzuki 3, 4, Yu Ye 1, 2, Hanyu Zhu 1, Jun Xiao 1, Yuan Wang 1,

More information

3-month progress Report

3-month progress Report 3-month progress Report Graphene Devices and Circuits Supervisor Dr. P.A Childs Table of Content Abstract... 1 1. Introduction... 1 1.1 Graphene gold rush... 1 1.2 Properties of graphene... 3 1.3 Semiconductor

More information

Semiconductor Devices and Circuits Fall Midterm Exam. Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering. Name: Mat. -Nr.

Semiconductor Devices and Circuits Fall Midterm Exam. Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering. Name: Mat. -Nr. Semiconductor Devices and Circuits Fall 2003 Midterm Exam Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering Name: Mat. -Nr.: Guidelines: Duration of the Midterm: 1 hour The exam is a closed

More information

Optical Characterization of Self-Assembled Si/SiGe Nano-Structures

Optical Characterization of Self-Assembled Si/SiGe Nano-Structures Optical Characterization of Self-Assembled Si/SiGe Nano-Structures T. Fromherz, W. Mac, G. Bauer Institut für Festkörper- u. Halbleiterphysik, Johannes Kepler Universität Linz, Altenbergerstraße 69, A-

More information

GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL

GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL 1. INTRODUCTION Silicon Carbide (SiC) is a wide band gap semiconductor that exists in different polytypes. The substrate used for the fabrication

More information

Resistance (R) Temperature (T)

Resistance (R) Temperature (T) CHAPTER 1 Physical Properties of Elements and Semiconductors 1.1 Introduction Semiconductors constitute a large class of substances which have resistivities lying between those of insulators and conductors.

More information

Processing of Semiconducting Materials Prof. Pallab Banerji Department of Material Science Indian Institute of Technology, Kharagpur

Processing of Semiconducting Materials Prof. Pallab Banerji Department of Material Science Indian Institute of Technology, Kharagpur Processing of Semiconducting Materials Prof. Pallab Banerji Department of Material Science Indian Institute of Technology, Kharagpur Lecture - 4 Doping in Semiconductors Good morning. Let us start with

More information

Scaling up Chemical Vapor Deposition Graphene to 300 mm Si substrates

Scaling up Chemical Vapor Deposition Graphene to 300 mm Si substrates Scaling up Chemical Vapor Deposition Graphene to 300 mm Si substrates Co- Authors Aixtron Alex Jouvray Simon Buttress Gavin Dodge Ken Teo The work shown here has received partial funding from the European

More information

GRAPHENE CONNECT. New Materials and Devices

GRAPHENE CONNECT. New Materials and Devices GRAPHENE CONNECT New Materials and Devices Thursday, 28 September 2017, 14:00-19:00 taking place during Graphene Week 2017 Divani Caravel Hotel, Room Horizon, Floor R.G. Athens, Greece Funded by the European

More information

Infrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices

Infrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices Infrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices J. B. Herzog, A. M. Mintairov, K. Sun, Y. Cao, D. Jena, J. L. Merz. University of Notre Dame, Dept. of Electrical

More information

KATIHAL FİZİĞİ MNT-510

KATIHAL FİZİĞİ MNT-510 KATIHAL FİZİĞİ MNT-510 YARIİLETKENLER Kaynaklar: Katıhal Fiziği, Prof. Dr. Mustafa Dikici, Seçkin Yayıncılık Katıhal Fiziği, Şakir Aydoğan, Nobel Yayıncılık, Physics for Computer Science Students: With

More information

Research Projects. Dr Martin Paul Vaughan. Research Background

Research Projects. Dr Martin Paul Vaughan. Research Background Research Projects Dr Martin Paul Vaughan Research Background Research Background Transport theory Scattering in highly mismatched alloys Density functional calculations First principles approach to alloy

More information

Abstract. Introduction

Abstract. Introduction Two Dimensional Maps of Photoluminescence and Second Harmonic Generation Tara Boland University of North Dakota University of Washington INT REU, 2014 Advisor: Xiaodong Xu (Dated: August 31, 2014) Abstract

More information

Supplementary Information: Supplementary Figure 1. Resistance dependence on pressure in the semiconducting region.

Supplementary Information: Supplementary Figure 1. Resistance dependence on pressure in the semiconducting region. Supplementary Information: Supplementary Figure 1. Resistance dependence on pressure in the semiconducting region. The pressure activated carrier transport model shows good agreement with the experimental

More information

EECS143 Microfabrication Technology

EECS143 Microfabrication Technology EECS143 Microfabrication Technology Professor Ali Javey Introduction to Materials Lecture 1 Evolution of Devices Yesterday s Transistor (1947) Today s Transistor (2006) Why Semiconductors? Conductors e.g

More information

Supporting information for. Direct imaging of kinetic pathways of atomic diffusion in. monolayer molybdenum disulfide

Supporting information for. Direct imaging of kinetic pathways of atomic diffusion in. monolayer molybdenum disulfide Supporting information for Direct imaging of kinetic pathways of atomic diffusion in monolayer molybdenum disulfide Jinhua Hong,, Yuhao Pan,, Zhixin Hu, Danhui Lv, Chuanhong Jin, *, Wei Ji, *, Jun Yuan,,*,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters X. Lin 1,, J. C. Lu 1,, Y. Shao 1,, Y. Y. Zhang

More information

Fermi Level Pinning at Electrical Metal Contacts. of Monolayer Molybdenum Dichalcogenides

Fermi Level Pinning at Electrical Metal Contacts. of Monolayer Molybdenum Dichalcogenides Supporting information Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides Changsik Kim 1,, Inyong Moon 1,, Daeyeong Lee 1, Min Sup Choi 1, Faisal Ahmed 1,2, Seunggeol

More information

Preamble: Emphasis: Material = Device? MTSE 719 PHYSICAL PRINCIPLES OF CHARACTERIZATION OF SOLIDS

Preamble: Emphasis: Material = Device? MTSE 719 PHYSICAL PRINCIPLES OF CHARACTERIZATION OF SOLIDS MTSE 719 PHYSICAL PRINCIPLES OF CHARACTERIZATION OF SOLIDS MTSE 719 - PHYSCL PRIN CHARACTIZTN SOLIDS Section # Call # Days / Times 001 96175 -View Book Info - F:100PM - 355PM - TIER114 Preamble: Core course

More information

The Use of Synchrotron Radiation in Modern Research

The Use of Synchrotron Radiation in Modern Research The Use of Synchrotron Radiation in Modern Research Physics Chemistry Structural Biology Materials Science Geochemical and Environmental Science Atoms, molecules, liquids, solids. Electronic and geometric

More information

arxiv: v1 [cond-mat.mes-hall] 15 Aug 2014

arxiv: v1 [cond-mat.mes-hall] 15 Aug 2014 The potential applications of phosphorene as anode arxiv:1408.3488v1 [cond-mat.mes-hall] 15 Aug 2014 materials in Li-ion batteries Shijun Zhao,, and Wei Kang, HEDPS, Center for Applied Physics and Technology,

More information

Seeing the Invisible Mentors: Profs. Yu Lin, Kaijun Liu, and Joe Perez

Seeing the Invisible Mentors: Profs. Yu Lin, Kaijun Liu, and Joe Perez Overview: The solar wind containing both protons and electrons along with magnetic fields impinges on the Earth creating what is called the magnetosphere. An artist s conception is shown in the figure

More information

3C3 Analogue Circuits

3C3 Analogue Circuits Department of Electronic & Electrical Engineering Trinity College Dublin, 2014 3C3 Analogue Circuits Prof J K Vij jvij@tcd.ie Lecture 1: Introduction/ Semiconductors & Doping 1 Course Outline (subject

More information

Supporting Information Available:

Supporting Information Available: Supporting Information Available: Photoresponsive and Gas Sensing Field-Effect Transistors based on Multilayer WS 2 Nanoflakes Nengjie Huo 1, Shengxue Yang 1, Zhongming Wei 2, Shu-Shen Li 1, Jian-Bai Xia

More information

EE301 Electronics I , Fall

EE301 Electronics I , Fall EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

More information

Bridging the Gap: Black Phosphorus for Electronics and Photonics

Bridging the Gap: Black Phosphorus for Electronics and Photonics IBM Thomas J. Watson Research Center Bridging the Gap: Black Phosphorus for Electronics and Photonics Fengnian Xia Department of Electrical Engineering Yale University, New Haven CT 06511 Email: fengnian.ia@yale.edu

More information

Physics in two dimensions in the lab

Physics in two dimensions in the lab Physics in two dimensions in the lab Nanodevice Physics Lab David Cobden PAB 308 Collaborators at UW Oscar Vilches (Low Temperature Lab) Xiaodong Xu (Nanoscale Optoelectronics Lab) Jiun Haw Chu (Quantum

More information

Deliverable 1.1.1: Job Advertisement for Recruitment of SERs

Deliverable 1.1.1: Job Advertisement for Recruitment of SERs Deliverable 1.1.1: Job Advertisement for Recruitment of SERs The CCQCN Project is funded in the framework of the EC's SEVENTH FRAMEWORK PROGRAMME (FP7-REGPOT-2012-2013-1) under Grant Agreement n 316165

More information

Ph.D. students, postdocs, and young researchers, which need to absorb a lot of new knowledge, not taught at universities, in a rather short time.

Ph.D. students, postdocs, and young researchers, which need to absorb a lot of new knowledge, not taught at universities, in a rather short time. We have started to work in the area of graphene at the end of 2006, discovering that the fascinating Dirac equations could drive to new discoveries in solid-state physics. At that time, although the Dirac

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. fabrication. A schematic of the experimental setup used for graphene Supplementary Figure 2. Emission spectrum of the plasma: Negative peaks indicate an

More information

Supplementary information

Supplementary information Supplementary information Supplementary Figure S1STM images of four GNBs and their corresponding STS spectra. a-d, STM images of four GNBs are shown in the left side. The experimental STS data with respective

More information

Optimizing Graphene Morphology on SiC(0001)

Optimizing Graphene Morphology on SiC(0001) Optimizing Graphene Morphology on SiC(0001) James B. Hannon Rudolf M. Tromp Graphene sheets Graphene sheets can be formed into 0D,1D, 2D, and 3D structures Chemically inert Intrinsically high carrier mobility

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2013 Lecture 02 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 2: outline 2 Introduction to Nanophotonics Theoretical

More information

Concepts in Surface Physics

Concepts in Surface Physics M.-C. Desjonqueres D. Spanjaard Concepts in Surface Physics Second Edition With 257 Figures Springer 1. Introduction................................. 1 2. Thermodynamical and Statistical Properties of

More information

Nanoelectronics. Topics

Nanoelectronics. Topics Nanoelectronics Topics Moore s Law Inorganic nanoelectronic devices Resonant tunneling Quantum dots Single electron transistors Motivation for molecular electronics The review article Overview of Nanoelectronic

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Section 5.2.1 Nature of the Carbon Bond

More information

Spin-orbit effects in graphene and graphene-like materials. Józef Barnaś

Spin-orbit effects in graphene and graphene-like materials. Józef Barnaś Spin-orbit effects in graphene and graphene-like materials Józef Barnaś Faculty of Physics, Adam Mickiewicz University, Poznań & Institute of Molecular Physics PAN, Poznań In collaboration with: A. Dyrdał,

More information

QS School Summary

QS School Summary 2018 NSF/DOE/AFOSR Quantum Science Summer School June 22, 2018 QS 3 2018 School Summary Kyle Shen (Cornell) Some Thank yous! A Big Thanks to Caroline Brockner!!! Also to our fantastic speakers! Kavli Institute

More information

The First Awarding of The Heinrich Rohrer Medals

The First Awarding of The Heinrich Rohrer Medals The First Awarding of The Heinrich Rohrer Medals June 2014, The Surface Science Society of Japan Masaharu Oshima, President It is our great pleasure to announce the winners of the first awarding of The

More information

II.1.4 Nanoengineering of Hybrid Carbon Nanotube-Metal Nanocluster Composite Materials for Hydrogen Storage

II.1.4 Nanoengineering of Hybrid Carbon Nanotube-Metal Nanocluster Composite Materials for Hydrogen Storage II.1.4 Nanoengineering of Hybrid Carbon Nanotube-Metal Nanocluster Composite Materials for Hydrogen Storage Investigators Kyeongjae (KJ) Cho, Assistant Professor of Mechanical Engineering; Bruce Clemens,

More information

Academic Appointments Graduate Student, Chemistry Department, Temple University Academic advisor: Professor Eric Borguet

Academic Appointments Graduate Student, Chemistry Department, Temple University Academic advisor: Professor Eric Borguet Department of Chemistry 130 Beury Hall Temple University 1901 N. 13 th Street Philadelphia, Pennsylvania 19122 Phone: 215-204-2368 (office) 215-204-9704 (lab) e-mail: isaienko@temple.edu Academic Appointments

More information

Reviewers' comments: Reviewer #1 (Remarks to the Author):

Reviewers' comments: Reviewer #1 (Remarks to the Author): Reviewers' comments: Reviewer #1 (Remarks to the Author): The work is very interesting as it presents a way to reduce the ohmic losses in the metals in the finite range of frequencies. In this the work

More information

Review of Semiconductor Physics. Lecture 3 4 Dr. Tayab Din Memon

Review of Semiconductor Physics. Lecture 3 4 Dr. Tayab Din Memon Review of Semiconductor Physics Lecture 3 4 Dr. Tayab Din Memon 1 Electronic Materials The goal of electronic materials is to generate and control the flow of an electrical current. Electronic materials

More information

The Graphene Flagship: Status and Next Steps -Greek Participation-

The Graphene Flagship: Status and Next Steps -Greek Participation- The Graphene Flagship: Status and Next Steps -Greek Participation- Future and Emerging Technologies Flagships are Ambitious large-scale, science-driven, research initiatives. Visionary goal. Scientific

More information

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour Supplementary Figure 1 Raman spectrum of monolayer MoS 2 grown by chemical vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour deposition (S-CVD) are peak which is at 385 cm

More information

Mechanical Quantum Systems

Mechanical Quantum Systems Mechanical Quantum Systems Matt LaHaye Syracuse University 09 Nov. 2013 Outline My field: Mechanical Quantum Systems - What are these systems? - Why are they interesting? What are some of the experimental

More information