ENVIRONMENTAL ISOTOPES HYDROLOGICAL CYCLE

Size: px
Start display at page:

Download "ENVIRONMENTAL ISOTOPES HYDROLOGICAL CYCLE"

Transcription

1 ENVIRONMENTAL ISOTOPES in the HYDROLOGICAL CYCLE Principles and Applications W. G. Mook editor VOLUME I INTRODUCTION THEORY METHODS REVIEW by Willem G Mook Centre for Isotope Research Groningen

2 The designations employed and the presentation of material throughout the publication do not imply the expression of any opinion whatsoever on the part of UNESCO and/or IAEA concerning the legal status of any country, territory, city, or its authorities, or concerning the delimitation of its frontiers or boundaries. SC-2000/WS/58

3 UNESCO/IAEA Series on Environmental Isotopes in the Hydrological Cycle Principles and Applications Volume I Volume II Volume III Volume IV Volume V Volume VI Introduction: Theory, Methods, Review Atmospheric Water Surface Water Groundwater: Saturated and Unsaturated Zone Man's Impact on Groundwater Systems Modelling Ar H He C Kr C ENVIRONMENTAL ISOTOPES in the HYDROLOGICAL CYCLE H O C N S He Ar Contributing Author J.J.de Vries, Free University, Amsterdam

4 PREFACE The availability of freshwater is one of the great issues facing mankind today - in some ways the greatest, because problems associated with it affect the lives of many millions of people. It has consequently attracted a wide scale international attention of UN Agencies and related international/regional governmental and non-governmental organisations. The rapid growth of population coupled to steady increase in water requirements for agricultural and industrial development have imposed severe stress on the available freshwater resources in terms of both the quantity and quality, requiring consistent and careful assessment and management of water resources for their sustainable development. More and better water can not be acquired without the continuation and extension of hydrological research. In this respect has the development and practical implementation of isotope methodologies in water resources assessment and management been part of the IAEA s programme in nuclear applications over the last four decades. Isotope studies applied to a wide spectrum of hydrological problems related to both surface and groundwater resources as well as environmental studies in hydro-ecological systems are presently an established scientific discipline, often referred to as Isotope Hydrology. The IAEA contributed to this development through direct support to research and training, and to the verification of isotope methodologies through field projects implemented in Member States. The world-wide programme of the International Hydrological Decade ( ) and the subsequent long-term International Hydrological Programme (IHP) of UNESCO have been an essential part of the well recognised international frameworks for scientific research, education and training in the field of hydrology. The International Atomic Energy Agency (IAEA) and UNESCO have established a close co-operation within the framework of both the earlier IHD and the ongoing IHP in the specific aspects of scientific and methodological developments related to water resources that are of mutual interest to the programmes of both organisations. The first benchmark publication on isotope hydrology entitled Guidebook on Nuclear Techniques in Hydrology was realised in 1983 through the activity of the joint IAEA/UNESCO Working Group on Nuclear Techniques established within the framework of IHP, and it has been widely used as practical guidance material in this specific field. In view of the fact that the IHP s objectives include also a multi-disciplinary approach to the assessment and rational management of water resources and taking note of the advances made in isotope hydrology, the IAEA and UNESCO have initiated a joint activity in

5 preparation of a series of six up-to-date textbooks, covering the entire field of hydrological applications of natural isotopes (environmental isotopes) to the overall domain of water resources and related environmental studies. The main aim of this series is to provide a comprehensive review of basic theoretical concepts and principles of isotope hydrology methodologies and their practical applications with some illustrative examples. The volumes are designed to be self-sufficient reference material for scientists and engineers involved in research and/or practical applications of isotope hydrology as an integral part of the investigations related to water resources assessment, development and management. Furthermore, they are also expected to serve as Teaching Material or text books to be used in universities and teaching institutions for incorporating the study of "isotopes in water" in general into the curriculum of the earth sciences. Additionally the contents can fulfil the need for basic knowledge in other disciplines of the Earth Sciences dealing with water in general. These six volumes have been prepared through efforts and contributions of a number of scientists involved in this specific field as cited in each volume, under the guidance and coordination of the main author/co-ordinating editor designated for each volume. W.G.Mook (Netherlands), J.Gat (Israel), K.Rozanski (Poland), W.Stichler (Germany), M.Geyh (Germany), K.P.Seiler (Germany) and Y.Yurtsever (IAEA, Vienna) were involved as the main author/co-ordinating editors in preparation of these six volumes, respectively. Final editorial work on all volumes aiming to achieve consistency in the contents and layout throughout the whole series was undertaken by W.G.Mook (Netherlands). Mr.Y. Yurtsever, Staff Member of the Isotope Hydrology Section of the IAEA; and Ms. A. Aureli, Programme Specialist, Division of Water Sciences of UNESCO, were the Scientific Officers in charge of co-ordination and providing scientific secretariat to the various meetings and activities that were undertaken throughout the preparation of these publications. The IAEA and UNESCO thank all those who have contributed to the preparation of these volumes and fully acknowledge the efforts and achievements of the main authors and coordinating editors. It is hoped that these six volumes will contribute to wider scale applications of isotope methodologies for improved assessment and management of water resources, facilitate incorporation of isotope hydrology into the curricula of teaching and education in water sciences and also foster further developments in this specific field. Paris / Vienna, March 2000

6 PREFACE TO VOLUME I The first volume in the series of textbooks on the environmental isotopes in the hydrological cycle is the result of a re-orientation and in part extension of the lecture notes I used during the years I was teaching the hydrology students of the Free University of Amsterdam an annual course in Isotope Hydrology. During these years my colleague and friend, Joe Pearson, and I set ourselves to publish the lecture notes, but did not find the time for the accomplishment of this task. Now I have come to realise how much he taught me and I gratefully acknowledge those days. The need for international agreement on definitions and the use of symbols can not be sufficiently emphasised. In this introductory volume I have aimed at consistency as well as mathematical and physical correctness. However, it is unavoidable that, for historical reasons, the same consistency could not be continued in all subsequent volumes. The second important aim of this volume has been to present no equations dealing with isotopes without the proper and understandable mathematical derivation. After an introductory chapter on the hydrological cycle, this volume contains the principles of radioactivity and of the isotope effects for stable isotopes. The elements of hydrogen, carbon and oxygen are being treated in detail, as they form the "heart" of isotopic applications in the water cycle. The contribution of the other isotopes is discussed less extensively in this volume. Concrete isotopic applications in hydrology, here only touched at in an illustrative manner, have become greatly expanded by my colleagues in the next volumes. We felt that it is preferable that subjects of more general interest to the other volumes, such as the aqueous chemistry of inorganic carbon, the treatment of water samples in the field and in the laboratory, the techniques of isotopic analyses, the statistical treatment of data, should be treated in the first volume. This series of 6 volumes are meant to be textbooks. This leads to certain requirements different from the existing handbooks. Especially in this introductory volume I have kept the number of references to literature minimal, in favour of the readability of the text.

7 I owe much gratitude to the "former" co-workers of "my lab" for their assistance in reading the manuscript, making many corrections, pointing out subjects that were failing and explanations that could not well be understood, in short for their continuing hospitality. To my colleagues co-authors of this series I want to express my appreciation for our highly stimulating and pleasant co-operation. Groningen, 29 February 2000 Willem G Mook

8 CONTENTS 1 THE GLOBAL CYCLE OF WATER Introduction The hydrosphere Origin of water on earth The hydro-tectonic cycle Distribution of water over the various reservoirs The global water budget Components of the hydrological cycle Evaporation Precipitation and atmospheric circulation Discharge from the continents Groundwater Continental water surplus and water use The hydrosphere and global change Climatic change The human factor Irrigation Wetland drainage Ground cover damage Deforestation Interbasin diversion Streamflow management Land use changes Isotopes in the hydrological cycle ATOMIC SYSTEMATICS AND NUCLEAR STRUCTURE Atomic structure and periodic table of the elements Structure of the atomic nucleus Stable and radioactive isotopes Mass and energy ABUNDANCE AND FRACTIONATION OF STABLE ISOTOPES Isotope ratios and concentrations Isotope fractionation Kinetic and equilibrium isotope fractionation Theoretical background of equilibrium fractionation... 39

9 3.5 Fractionation by diffusion Relation between atomic and molecular isotope ratios Relation between fractionations for three isotopic molecules ABUNDANCE VARIATIONS BY NATURAL PROCESSES Use of δ values and isotope references Tracer concentration, amount of tracer Mixing of reservoirs with different isotopic composition Mixing of reservoirs of the same compound Isotopic dilution analysis Mixing of reservoirs of different compounds Isotopic changes in Rayleigh processes Reservoir with one sink Reservoir with two sinks Reservoir with one source and one sink, as a function of time Reservoir with one source and one sink, as a function of mass Reservoir with two sources and sinks, with and without fractionation 64 5 RADIONUCLIDE DECAY AND PRODUCTION Nuclear instability Nuclear decay and radiation Negatron decay Positron decay Electron capture Alpha decay Spontaneous and induced fission, neutron emission Recoil by radioactive decay Nuclear reactions Natural production Anthropogenic releases of radionuclides EQUATIONS OF RADIOACTIVE DECAY AND GROWTH Law of radioactive decay Half-life and mean life Activity, specific activity and radionuclide concentration Mixture of independent radioactivities Branching decay Radioactive decay series Secular equilibrium Transient equilibrium No-equilibrium Accumulation of stable daughter product... 85

10 6.8 Radioactive growth NATURAL ABUNDANCE OF THE STABLE ISOTOPES OF C, O AND H Stable carbon isotopes The natural abundance Carbon isotope fractionations Reporting 13 C variations and the 13 C standard Survey of natural 13 C variations Atmospheric CO Seawater and marine carbonate Vegetation and soil CO Fossil fuel Global carbon cycle Groundwater and riverwater Stable oxygen isotopes The natural abundance Oxygen isotope fractionations Reporting 18 O variations and the 18 O standards Survey of natural 18 O variations Seawater Precipitation Surface water Climatic variations Relation between 13 C and 18 O variations in H 2 O, HCO 3, and CO Stable hydrogen isotopes The natural abundance Hydrogen isotope fractionations Reporting 2 H variations and the 2 H standard Survey of natural 2 H variations Relation between 2 H and 18 O variations in water NATURAL ABUNDANCE OF RADIOACTIVE ISOTOPES The radioactive carbon isotope Origin of 14 C, decay and half-life Reporting 14 C variations and the 14 C standard Survey of natural 14 C variations Atmospheric CO Vegetation and soils Seawater and marine carbonate Groundwater C age determination Dating groundwater Dating groundwater with DIC

11 The origin of 14 C in DIC The chemical/isotopic mass balance Isotopic exchange in an open system Dating groundwater with DOC Relation between 13 C and 14 C variations The radioactive hydrogen isotope Origin of 3 H, decay and half-life Reporting 3 H activities and the 3 H standard Survey of natural 3 H variations Comparison of 3 H and 14 C variations Relation between 3 H and 14 C in the atmosphere Relation between 3 H and 14 C in groundwater CHEMISTRY OF CARBONIC ACID IN WATER Introduction Carbonic acid equilibria The equilibrium constants Ideal solutions Seawater Brackish water Carbonic acid concentrations Examples for closed and open systems Comparison of freshwater and seawater exposed to the atmosphere For freshwater For seawater System open for CO 2 escape and CaCO 3 formation Starting conditions Escape of CO Precipitation of CaCO System exposed to CO 2 in the presence of CaCO Closed system, mixing of freshwater and seawater WATER SAMPLING AND LABORATORY TREATMENT Water sampling and storage Sampling bottles General field practice Precipitation Surface water Unsaturated zone water Groundwater Geothermal water Laboratory treatment of water samples The 18 O/ 16 O analysis of water

12 Equilibration with CO 2 for mass spectrometric analysis Other methods The 2 H/ 1 H analysis of water Reduction of H 2 O to H 2 for mass spectrometric analysis Other methods The 3 H analysis of water Water purification H enrichment Preparation of gas for PGC of 3 H The 14 C analysis of dissolved inorganic carbon In the field In the laboratory The 13 C/ 12 C analysis of dissolved inorganic carbon MEASURING TECHNIQUES Mass spectrometry for stable isotopes Physical principle Reporting stable isotope abundance ratios Measurement of 2 H/ 1 H in H Measurement of 15 N/ 14 N in N Measurement of 13 C/ 12 C and 18 O/ 16 O in CO Comparison with machine reference Calibration Isotopic corrections O correction for water CO 2 equilibration Normalisation Measurement of 18 O/ 16 O and 17 O/ 16 O in O Radiometry for radioactive isotopes Gas counters Ionisation chamber Proportional counter Geiger Müller counter Counter operation Liquid scintillation spectrometer Physical principle Counter operation Mass spectrometry for low-abundance isotopes Principle and application of AMS Reporting 14 C activities and concentrations The choice of variables The standardisation The question of isotope fractionation The question of radioactive decay

13 Definition of the 14 C standard activity Final definitions Special cases Hydrology Oceanography and atmospheric research Geochemistry Enhanced 14 C radioactivity C ages Summary NATURAL ISOTOPES OF ELEMENTS OTHER THAN H, C, O Helium Origin and characteristics Experimental and technical aspects Sources of 3 He Natural abundance Applications Principle of 3 H/ 3 He dating Mass spectrometric measurement of 3 H through 3 He Lithium Natural abundance Experimental and technical aspects Applications Beryllium Origin and characteristics Experimental and technical aspects Natural abundance Applications Boron Natural abundance Experimental and technical aspects Applications Nitrogen Experimental and technical aspects Natural abundance and isotope fractionation Applications O/ 16 O in nitrate Aluminium Origin and characteristics Experimental and technical aspects Natural abundance Applications Silicon Origin and characteristics

14 Natural abundance Experimental and technical aspects Applications Sulphur Experimental and technical aspects Natural abundance Applications Chlorine Radioactive 36 Cl Origin and characteristics Experimental and technical aspects Abundance in nature Applications Dating old water Infiltration of young water Stable 35 Cl and 37 Cl Natural abundance and applications Experimental and technical aspects Argon Origin and characteristics Experimental and technical aspects Natural abundance Applications Krypton Origin and characteristics Experimental and technical aspects Natural abundance Applications Iodine Origin and characteristics Experimental and technical aspects Natural abundance Applications Decay series The uranium series U/ 234 U Th 234 U dating Ra and 222 Rn Pb Experimental and technical aspects The actinium series The thorium series

15 13 ERRORS, MEANS AND FITS Errors Precision and accuracy Definitions Significant figures and digits Uncertainties Instrumental uncertainties Mean values Distribution of data Standard deviation Precision of data Precision of the mean Statistical uncertainties Error propagation Standard deviation Weighted mean Least-squares fit Fit to a straight line Fit to non-linear curves Chi-square test REFERENCES 257 LITERATURE 263 IAEA PUBLICATIONS 265 CONSTANTS 268 SYMBOLS AND UNITS 269 SUBJECT INDEX 271

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY student version www.toppr.com Contents (a) Types of Radiation (b) Properties of Radiation (c) Dangers of Radiation (d) Rates of radioactive decay (e) Nuclear

More information

5 Stable and radioactive isotopes

5 Stable and radioactive isotopes 5 Stable and radioactive isotopes Outline 1 Stable isotopes Measuring stable isotopic abundances Equilibrium isotope effects Kinetic isotope effects Rayleigh distillation Isotopes: a mainstay of chemical

More information

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY teacher version www.toppr.com Contents (a) Types of Radiation (b) Properties of Radiation (c) Dangers of Radiation (d) Rates of radioactive decay (e) Nuclear

More information

Activity # 2. Name. Date due. Assignment on Atomic Structure

Activity # 2. Name. Date due. Assignment on Atomic Structure Activity # 2 10 Name Date Date due Assignment on Atomic Structure NOTE: This assignment is based on material on the Power Point called Atomic Structure, as well as pages 167-173 in the Science Probe textbook.

More information

Atomic Notation (or Nuclear Symbol): Shorthand for keeping track of protons and neutrons in the nucleus

Atomic Notation (or Nuclear Symbol): Shorthand for keeping track of protons and neutrons in the nucleus Name Section CHM52LL: Nuclear Chemistry: Radioactivity, Decay, Dating, and Other Hazards There is no prelab assignment this week I. Radioactive Isotopes and Nuclear Equations Atoms are composed of three

More information

turbine (a) (i) Which part of the power station provides thermal (heat) energy from a chain reaction?

turbine (a) (i) Which part of the power station provides thermal (heat) energy from a chain reaction? Nuclear fission and radiation 1 The diagram shows parts of a nuclear power station. control rods boiler steam generator electricity out turbine condenser nuclear reactor (a) (i) Which part of the power

More information

1 BASIC CONCEPTS AND MODELS

1 BASIC CONCEPTS AND MODELS 1 BASIC CONCEPTS AND ODELS 1.1 INTRODUCTION This Volume III in the series of textbooks is focused on applications of environmental isotopes in surface water hydrology. The term environmental means that

More information

RADIOACTIVITY: spontaneous disintegration of the nucleus of certain atoms accompanied by the emission (release) of particles and/or energy

RADIOACTIVITY: spontaneous disintegration of the nucleus of certain atoms accompanied by the emission (release) of particles and/or energy RADIOACTIVITY: spontaneous disintegration of the nucleus of certain atoms accompanied by the emission (release) of particles and/or energy ~ TRANSMUTATION: the change of one element into another due to

More information

Populating nucleon states. From the Last Time. Other(less stable) helium isotopes. Radioactivity. Radioactive nuclei. Stability of nuclei.

Populating nucleon states. From the Last Time. Other(less stable) helium isotopes. Radioactivity. Radioactive nuclei. Stability of nuclei. Nucleus: From the Last Time System of and neutrons bound by the strong force Proton number determines the element. Different isotopes have different # neutrons. Stable isotopes generally have similar number

More information

Atomic Concepts and Nuclear Chemistry Regents Review

Atomic Concepts and Nuclear Chemistry Regents Review 1. In the late 1800s, experiments using cathode ray tubes led to the discovery of the 10.Compared to an atom of phosphorus-31, an atom of sulfur-32 contains A) electron B) neutron C) positron D) proton

More information

Teacher Workbooks. Science and Nature Series. Atomic Structure, Electron Configuration, Classifying Matter and Nuclear Chemistry, Vol.

Teacher Workbooks. Science and Nature Series. Atomic Structure, Electron Configuration, Classifying Matter and Nuclear Chemistry, Vol. Teacher Workbooks Science and Nature Series Atomic Structure, Electron Configuration, Classifying Matter and Nuclear Chemistry, Vol. 1 Copyright 23 Teachnology Publishing Company A Division of Teachnology,

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 21 REVIEW Nuclear Chemistry SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Based on the information about the three elementary particles in the text, which has

More information

RADIOACTIVITY: spontaneous disintegration of the nucleus of certain atoms accompanied by the emission (release) of particles and/or energy

RADIOACTIVITY: spontaneous disintegration of the nucleus of certain atoms accompanied by the emission (release) of particles and/or energy RADIOACTIVITY: spontaneous disintegration of the nucleus of certain atoms accompanied by the emission (release) of particles and/or energy ~ TRANSMUTATION: the change of one element into another due to

More information

The sources include Am-241 which emits alpha radiation, Sr-90 which emits beta radiation and Co-60 which emits gamma radiation.

The sources include Am-241 which emits alpha radiation, Sr-90 which emits beta radiation and Co-60 which emits gamma radiation. 1 The physics department in a college has a number of radioactive sources which are used to demonstrate the properties of ionising radiations. The sources include Am-241 which emits alpha radiation, Sr-90

More information

Chapter 2 The Chemical Basis of Life

Chapter 2 The Chemical Basis of Life Chapter 2 The Chemical Basis of Life PowerPoint Lectures Campbell Biology: Concepts & Connections, Eighth Edition REECE TAYLOR SIMON DICKEY HOGAN Lecture by Edward J. Zalisko Figure 2.0-1 Warmup: page

More information

1 Radioactivity BEFORE YOU READ. Atomic Energy. National Science Education Standards STUDY TIP

1 Radioactivity BEFORE YOU READ. Atomic Energy. National Science Education Standards STUDY TIP CHAPTER 4 1 Radioactivity SECTION Atomic Energy BEFORE YOU READ After you read this section, you should be able to answer these questions: What are three types of radioactive decay? How does radiation

More information

8 NATURAL ABUNDANCE OF RADIOACTIVE ISOTOPES OF C AND H

8 NATURAL ABUNDANCE OF RADIOACTIVE ISOTOPES OF C AND H 8 NATURAL ABUNDANCE OF RADIOACTIVE ISOTOPES OF C AND H In this chapter the two nuclides, C and 3 H, will be treated that are the most relevant in the hydrological cycle. Chapter 12 contains a survey of

More information

THE USE OF GAMMA RAY DATA TO DEFINE THE NATURAL RADIATION ENVIRONMENT

THE USE OF GAMMA RAY DATA TO DEFINE THE NATURAL RADIATION ENVIRONMENT IAEA-TECDOC-566 THE USE OF GAMMA RAY DATA TO DEFINE THE NATURAL RADIATION ENVIRONMENT A TECHNICAL DOCUMENT ISSUED BY THE INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1990 The SAEA does not normally maintain

More information

Lithosphere: (Rocky Sphere) Solid, rocky, outer layer of the Earth. Includes the crust and part of the upper mantle. Lithosphere

Lithosphere: (Rocky Sphere) Solid, rocky, outer layer of the Earth. Includes the crust and part of the upper mantle. Lithosphere Lithosphere: (Rocky Sphere) Solid, rocky, outer layer of the Earth. Includes the crust and part of the upper mantle. Lithosphere Permafrost Permafrost Ground that is at a temperature of 0 or below for

More information

Chapter 10. Table of Contents. Section 1 What Is Radioactivity? Section 2 Nuclear Fission and Fusion. Section 3 Nuclear Radiation Today

Chapter 10. Table of Contents. Section 1 What Is Radioactivity? Section 2 Nuclear Fission and Fusion. Section 3 Nuclear Radiation Today Nuclear Chemistry Table of Contents Section 1 What Is Radioactivity? Section 2 Nuclear Fission and Fusion Section 3 Nuclear Radiation Today Section 1 What Is Radioactivity? Bellringer Before studying about

More information

Atomic Structure and Radioactivity

Atomic Structure and Radioactivity Atomic Structure and Radioactivity Models of the atom know: Plum pudding model of the atom and Rutherford and Marsden s alpha experiments, being able to explain why the evidence from the scattering experiment

More information

O WILEY- MODERN NUCLEAR CHEMISTRY. WALTER D. LOVELAND Oregon State University. DAVID J. MORRISSEY Michigan State University

O WILEY- MODERN NUCLEAR CHEMISTRY. WALTER D. LOVELAND Oregon State University. DAVID J. MORRISSEY Michigan State University MODERN NUCLEAR CHEMISTRY WALTER D. LOVELAND Oregon State University DAVID J. MORRISSEY Michigan State University GLENN T. SEABORG University of California, Berkeley O WILEY- INTERSCIENCE A JOHN WILEY &

More information

2 Energy from the Nucleus

2 Energy from the Nucleus CHAPTER 4 2 Energy from the Nucleus SECTION Atomic Energy BEFORE YOU READ After you read this section, you should be able to answer these questions: What is nuclear fission? What is nuclear fusion? What

More information

2 Examiner SECTION A. Answer all the questions in the spaces provided.

2 Examiner SECTION A. Answer all the questions in the spaces provided. 2 SECTION A Answer all the questions in the spaces provided. 1. An isotope of magnesium, 27 Mg, is used to detect leaks in water pipes. (a) It decays by β emission with a half life of 9 5 minutes. (i)

More information

Preview. Subatomic Physics Section 1. Section 1 The Nucleus. Section 2 Nuclear Decay. Section 3 Nuclear Reactions. Section 4 Particle Physics

Preview. Subatomic Physics Section 1. Section 1 The Nucleus. Section 2 Nuclear Decay. Section 3 Nuclear Reactions. Section 4 Particle Physics Subatomic Physics Section 1 Preview Section 1 The Nucleus Section 2 Nuclear Decay Section 3 Nuclear Reactions Section 4 Particle Physics Subatomic Physics Section 1 TEKS The student is expected to: 5A

More information

NJCTL.org 2015 AP Physics 2 Nuclear Physics

NJCTL.org 2015 AP Physics 2 Nuclear Physics AP Physics 2 Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

da u g ht er + radiation

da u g ht er + radiation RADIOACTIVITY The discovery of radioactivity can be attributed to several scientists. Wilhelm Roentgen discovered X-rays in 1895 and shortly after that Henri Becquerel observed radioactive behavior while

More information

Name: Date: Atomic Structure 2017 Mrs. Mannion Version 1

Name: Date: Atomic Structure 2017 Mrs. Mannion Version 1 Name: Atomic Structure 2017 1. The mass of a proton is approximately equal to the mass of A) a beta particle B) an electron C) an alpha particle D) a neutron 2. What are the characteristics of a neutron?

More information

Radioactive Clocks or Radiometric Dating

Radioactive Clocks or Radiometric Dating Radioactive Clocks or Radiometric Dating The time span of relevant events varies from a few centuries to billions of years historians archeologists, anthropologists, geologists, astrophysicists Radioactive

More information

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes St Ninian s High School Chemistry Department National 5 Chemistry Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes Name Learning Outcomes After completing this topic you should be able to :

More information

Stable isotope. Relative atomic mass. Mole fraction. Chlorine isotopes in Earth/planetary science

Stable isotope. Relative atomic mass. Mole fraction. Chlorine isotopes in Earth/planetary science Stable isotope Relative atomic mass Mole fraction 35 Cl 34.968 8527 0.7576 37 Cl 36.965 9026 0.2424 / Chlorine isotopes in Earth/planetary science Because molecules, atoms, and ions of the stable isotopes

More information

Nuclear Chemistry CHAPTER

Nuclear Chemistry CHAPTER Reviewing Vocabulary Use each of the terms below just once to complete the following sentences. alpha particle gray nuclear reactor beta particle half-life radioactivity deuterium nuclear fission sievert

More information

4.4.1 Atoms and isotopes The structure of an atom Mass number, atomic number and isotopes. Content

4.4.1 Atoms and isotopes The structure of an atom Mass number, atomic number and isotopes. Content 4.4 Atomic structure Ionising radiation is hazardous but can be very useful. Although radioactivity was discovered over a century ago, it took many nuclear physicists several decades to understand the

More information

38 Which statement explains the meaning of the half-life of a radioactive substance? 10 mm of aluminium

38 Which statement explains the meaning of the half-life of a radioactive substance? 10 mm of aluminium 38 Which statement explains the meaning of the half-life of a radioactive substance? half the time taken for half the substance to decay half the time taken for the substance to decay completely the time

More information

5 Atomic Physics. 1 of the isotope remains. 1 minute, 4. Atomic Physics. 1. Radioactivity 2. The nuclear atom

5 Atomic Physics. 1 of the isotope remains. 1 minute, 4. Atomic Physics. 1. Radioactivity 2. The nuclear atom 5 Atomic Physics 1. Radioactivity 2. The nuclear atom 1. In a fission reactor, which particle causes a Uranium-235 nucleus to split? A. alpha-particle B. gamma ray C. neutron D. proton 2. A radioactive

More information

Chemistry 19 Prep Test - Nuclear Processes

Chemistry 19 Prep Test - Nuclear Processes Chapter 9 Prep-Test Chemistry 9 Prep Test - Nuclear Processes Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.. Which of the illustrations above

More information

Chemistry 52 Chapter 11 ATOMIC STRUCTURE. The general designation for an atom is shown below:

Chemistry 52 Chapter 11 ATOMIC STRUCTURE. The general designation for an atom is shown below: ATOMIC STRUCTURE An atom is composed of a positive nucleus surrounded by negatively charged electrons. The nucleus is composed of protons and neutrons. The protons and neutrons in a nucleus are referred

More information

21/11/ /11/2017 Atomic Structure AQA Physics topic 4

21/11/ /11/2017 Atomic Structure AQA Physics topic 4 Atomic Structure AQA Physics topic 4 4.1 Atoms and Isotopes The structure of the atom ELECTRON negative, mass nearly nothing The nucleus is around 10,000 times smaller then the atom! NEUTRON neutral, same

More information

HOMEWORK 22-1 (pp )

HOMEWORK 22-1 (pp ) CHAPTER 22 HOMEWORK 22-1 (pp. 701 702) Define. 1. nucleons 2. nuclide 3. mass defect 4. nuclear binding energy Solve. Use masses of 1.0087 amu for the neutron, 1.00728 amu for the proton, and 5.486 x 10

More information

Atomic Structure Atoms are very small ~ metres All atoms are made up of three sub-atomic particles: protons, neutrons and electrons

Atomic Structure Atoms are very small ~ metres All atoms are made up of three sub-atomic particles: protons, neutrons and electrons IB Chemistry (unit ) ATOMIC THEORY Atomic Structure - Recap Questions Define the following words: Atom Element Molecule Compound Atomic Structure Atoms are very small ~ - metres All atoms are made up of

More information

Nuclear Chemistry. Nuclear Terminology

Nuclear Chemistry. Nuclear Terminology Nuclear Chemistry Up to now, we have been concerned mainly with the electrons in the elements the nucleus has just been a positively charged things that attracts electrons The nucleus may also undergo

More information

Experiment Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado

Experiment Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Experiment 10 1 Introduction Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Some radioactive isotopes formed billions of years ago have half- lives so long

More information

Radioactivity is the spontaneous disintegration of nuclei. The first radioactive. elements discovered were the heavy atoms thorium and uranium.

Radioactivity is the spontaneous disintegration of nuclei. The first radioactive. elements discovered were the heavy atoms thorium and uranium. Chapter 16 What is radioactivity? Radioactivity is the spontaneous disintegration of nuclei. The first radioactive elements discovered were the heavy atoms thorium and uranium. These heavy atoms and others

More information

Unit 1 Test A Atomic Theory & Nuclear Decay 1. Which of these BEST describes any two atoms of the same element? a. same number of protons

Unit 1 Test A Atomic Theory & Nuclear Decay 1. Which of these BEST describes any two atoms of the same element? a. same number of protons 1. Which of these BEST describes any two atoms of the same element? same number of protons same number of chemical bonds same number of neutrons same number of particles in the nucleus Self Assessment

More information

Minnesota Science Olympiad Division C University of Minnesota Regional Saturday, February 3, 2007

Minnesota Science Olympiad Division C University of Minnesota Regional Saturday, February 3, 2007 Minnesota Science Olympiad Division C University of Minnesota Regional Saturday, February 3, 2007 Chemistry Lab General information: 1. No reference material is allowed. 2. Calculators will be provided

More information

3 Types of Nuclear Decay Processes

3 Types of Nuclear Decay Processes 3 Types of Nuclear Decay Processes Radioactivity is the spontaneous decay of an unstable nucleus The radioactive decay of a nucleus may result from the emission of some particle from the nucleus. The emitted

More information

Environmental Isotopes in Hydrogeology. land. Clark and Peter Fritz

Environmental Isotopes in Hydrogeology. land. Clark and Peter Fritz Environmental Isotopes in Hydrogeology land. Clark and Peter Fritz www. science.uottawa. ca/~eih LEWIS PUBLISHERS Boca Raton New York CONTENTS CHAPTER 1: THE ENVIRONMENTAL ISOTOPES 1 Environmental Isotopes

More information

Ch05. Radiation. Energy and matter that comes from the nucleus of an atom. version 1.6

Ch05. Radiation. Energy and matter that comes from the nucleus of an atom. version 1.6 Ch05 Radiation Energy and matter that comes from the nucleus of an atom. version 1.6 Nick DeMello, PhD. 2007-2016 Ch05 Radiation The Discovery of Radioactivity Phosphorescence Radioactive history Antoine

More information

Chem 1A Chapter 5 and 21 Practice Test Grosser ( )

Chem 1A Chapter 5 and 21 Practice Test Grosser ( ) Class: Date: Chem A Chapter 5 and 2 Practice Test Grosser (203-204) Multiple Choice Identify the choice that best completes the statement or answers the question.. The periodic law states that the properties

More information

c) O-16 d) Pu An unstable nucleus emits. a) Atoms b) Electricity c) Plasma d) Radiation 3. Many of uranium are radioactive. a) Ions b) Isomers

c) O-16 d) Pu An unstable nucleus emits. a) Atoms b) Electricity c) Plasma d) Radiation 3. Many of uranium are radioactive. a) Ions b) Isomers Physical Science Domain 1 Nuclear Decay Review 1. Which nucleus would be MOST likely to be radioactive? a) C-12 b) Ca-40 c) O-16 d) Pu-241 2. An unstable nucleus emits. a) Atoms b) Electricity 3. Many

More information

Half Lives and Measuring Ages (read before coming to the Lab session)

Half Lives and Measuring Ages (read before coming to the Lab session) Astronomy 170B1 Due: December 1 Worth 40 points Radioactivity and Age Determinations: How do we know that the Solar System is 4.5 billion years old? During this lab session you are going to witness how

More information

Chemistry 19 Prep Test - Nuclear Processes

Chemistry 19 Prep Test - Nuclear Processes Chapter 9 Prep-Test Chemistry 9 Prep Test - Nuclear Processes Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.. Which of the illustrations above

More information

RADIOACTIVITY & HALF-LIFE Part 3

RADIOACTIVITY & HALF-LIFE Part 3 RADIOACTIVITY & HALF-LIFE Part 3 Half-Life Half-life: is the rate of decay for a radioactive isotope. is the time required for half of an original quantity of an element to decay. is constant and independent

More information

D) g. 2. In which pair do the particles have approximately the same mass?

D) g. 2. In which pair do the particles have approximately the same mass? 1. A student constructs a model for comparing the masses of subatomic particles. The student selects a small, metal sphere with a mass of gram to represent an electron. A sphere with which mass would be

More information

Differentiating Chemical Reactions from Nuclear Reactions

Differentiating Chemical Reactions from Nuclear Reactions Differentiating Chemical Reactions from Nuclear Reactions 1 CHEMICAL Occurs when bonds are broken or formed. Atoms remained unchanged, though may be rearranged. Involves valence electrons Small energy

More information

Chapter IV: Radioactive decay

Chapter IV: Radioactive decay Chapter IV: Radioactive decay 1 Summary 1. Law of radioactive decay 2. Decay chain/radioactive filiation 3. Quantum description 4. Types of radioactive decay 2 History Radioactivity was discover in 1896

More information

Teacher: Mr. gerraputa. Name: Base your answer to the question on the information below. Given the electron dot diagram:

Teacher: Mr. gerraputa. Name: Base your answer to the question on the information below. Given the electron dot diagram: Teacher: Mr. gerraputa Print Close Name: 1. Given the electron dot diagram: The valence electrons represented by the electron dot diagram could be those of atoms in Group 1. 13 3. 3 2. 15 4. 16 2. Which

More information

Karlsruhe Nuclide Chart

Karlsruhe Nuclide Chart Karlsruhe uclide Chart The ew Edition in 2015 s. Sóti 1, J. Magill 2 1 European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe, Germany https://ec.europa.eu/jrc/

More information

Environmental Isotopes in Hydrology. Woocay substituting for Walton

Environmental Isotopes in Hydrology. Woocay substituting for Walton Environmental Isotopes in Hydrology Oct 7, 2010 1 What is an Isotope? An element is defined by the number of protons (Z) in the nucleus The number of neutrons (N) defines the isotope(s) of that element

More information

Radioactivity. General Physics II PHYS 111. King Saud University College of Applied Studies and Community Service Department of Natural Sciences

Radioactivity. General Physics II PHYS 111. King Saud University College of Applied Studies and Community Service Department of Natural Sciences King Saud University College of Applied Studies and Community Service Department of Natural Sciences Radioactivity General Physics II PHYS 111 Nouf Alkathran nalkathran@ksu.edu.sa Outline Radioactive Decay

More information

Chemical Oceanography Spring 2000 Final Exam (Use the back of the pages if necessary)(more than one answer may be correct.)

Chemical Oceanography Spring 2000 Final Exam (Use the back of the pages if necessary)(more than one answer may be correct.) Ocean 421 Your Name Chemical Oceanography Spring 2000 Final Exam (Use the back of the pages if necessary)(more than one answer may be correct.) 1. Due to the water molecule's (H 2 O) great abundance in

More information

Dating of ground water

Dating of ground water PART 16 Dating of ground water Introduction Why date? - to determine when recharge occurred - to determine groundwater velocities - to reconstruct regional flow patterns How to do this? - decay of radioactive

More information

Key Question: What role did the study of radioactivity play in learning more about atoms?

Key Question: What role did the study of radioactivity play in learning more about atoms? Name Chemistry Essential question: How were the parts of the atom determined? Key Question: What role did the study of radioactivity play in learning more about atoms? Vocabulary: alpha particle fusion

More information

Draw one line from each type of radiation to what the radiation consists of.

Draw one line from each type of radiation to what the radiation consists of. ATOMS AND NUCLEAR RADIATION PART I Q1. Alpha, beta and gamma are types of nuclear radiation. (a) Draw one line from each type of radiation to what the radiation consists of. Type of radiation What radiation

More information

Isotopes and Radioactive Decay

Isotopes and Radioactive Decay NAME PERIOD DATE CHAPTER 4 NOTES: ISOTOPES Isotopes and Radioactive Decay ISOTOPES: Atoms that contain the same number of protons but a different number of neutrons. Isotopes containing more neutrons have

More information

NORArAN INTERNATIONAL PROJECT IN REACTOR PHYSICS

NORArAN INTERNATIONAL PROJECT IN REACTOR PHYSICS NORArAN INTERNATIONAL PROJECT IN REACTOR PHYSICS By Viking Olver Eriksen, Kjeller, Norway The NORA project has been in existence for about five years and one may ask what has been the experience so far

More information

TITLE OF COURSE: INORGANIC CHEMISTRY

TITLE OF COURSE: INORGANIC CHEMISTRY GENERAL CHARACTERISTICS* Type: DESCRIPTION Basic training, Compulsory elective, Optional Final degree project, Practicum Duration: Annual Semester/s: 3 rd and 4 th Number of credits ECTS: 12 Language/s:

More information

Sample Questions Chem 22 Student Chapters Page 1 of 5 Spring 2016

Sample Questions Chem 22 Student Chapters Page 1 of 5 Spring 2016 Sample Questions Chem 22 Student Chapters 13-18 Page 1 of 5 1. The vapor pressure of a liquid is the pressure, at equilibrium, of the a) solid above its liquid. b) liquid above its solid. c) gas above

More information

Nuclear Physics. AP Physics B

Nuclear Physics. AP Physics B Nuclear Physics AP Physics B Nuclear Physics - Radioactivity Before we begin to discuss the specifics of radioactive decay we need to be certain you understand the proper NOTATION that is used. To the

More information

Chapter. Nuclear Chemistry

Chapter. Nuclear Chemistry Chapter Nuclear Chemistry Nuclear Reactions 01 Chapter 22 Slide 2 Chapter 22 Slide 3 Alpha Decay: Loss of an α-particle (a helium nucleus) 4 2 He 238 92 U 234 4 U He 90 + 2 Chapter 22 Slide 4 Beta Decay:

More information

Part 12- Physics Paper 1 Atomic Structure Application Questions Triple Science

Part 12- Physics Paper 1 Atomic Structure Application Questions Triple Science Part 12- Physics Paper 1 Atomic Structure Application Questions Triple Science Internal energy and energy transfers Internal energy and energy transfers Changes of state and the particle model Particle

More information

Chapter 10. Section 10.1 What is Radioactivity?

Chapter 10. Section 10.1 What is Radioactivity? Chapter 10 Section 10.1 What is Radioactivity? What happens when an element undergoes radioactive decay? How does radiation affect the nucleus of an unstable isotope? How do scientists predict when an

More information

What do the nuclei of different molybdenum isotopes have in common?

What do the nuclei of different molybdenum isotopes have in common? Q1.(a) There are many isotopes of the element molybdenum (Mo). What do the nuclei of different molybdenum isotopes have in common? The isotope molybdenum-99 is produced inside some nuclear power stations

More information

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of?

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? Nuclear Physics Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Radioactive Materials

Radioactive Materials Radioactive Materials (OCR) The structure of the atom ELECTRON negative, mass nearly nothing NEUTRON neutral, same mass as proton ( 1 ) PROTON positive, same mass as neutron ( 1 ) Isotopes An isotope is

More information

The detector and counter are used in an experiment to show that a radioactive source gives out alpha and beta radiation only.

The detector and counter are used in an experiment to show that a radioactive source gives out alpha and beta radiation only. ATOMS AND NUCLEAR RADIATION PART II Q1. The detector and counter are used in an experiment to show that a radioactive source gives out alpha and beta radiation only. Two different types of absorber are

More information

Evolution of Earth Environments Bio-Geo-Chemical Cycling

Evolution of Earth Environments Bio-Geo-Chemical Cycling Evolution of Earth Environments Bio-Geo-Chemical Cycling Evolution of the Earliest Atmospheres of Mars and Earth Volcanic Outgassing Evolving to Equilibrium Atmosphere To Atmosphere Lost to space (Abundant)

More information

Form 6 Chemistry Notes Section 1 1/7 Section 1 Atoms, Molecules and Stoichiometry

Form 6 Chemistry Notes Section 1 1/7 Section 1 Atoms, Molecules and Stoichiometry Section 1 1/7 Section 1 Atoms, Molecules and Stoichiometry 1.1 Atomic structure Pre-knowledge 1. Explain each of the following terms (a) element (b) atom (c) ion (d) relative atomic mass (e) mole (f) the

More information

How many protons are there in the nucleus of the atom?... What is the mass number of the atom?... (Total 2 marks)

How many protons are there in the nucleus of the atom?... What is the mass number of the atom?... (Total 2 marks) Q1. The diagram shows an atom. How many protons are there in the nucleus of the atom?... What is the mass number of the atom?... (Total 2 marks) Page 1 of 53 Q2. The picture shows a man at work in a factory

More information

Name Date Class NUCLEAR CHEMISTRY. Standard Curriculum Core content Extension topics

Name Date Class NUCLEAR CHEMISTRY. Standard Curriculum Core content Extension topics 28 NUCLEAR CHEMISTRY Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

More information

Regents review Nuclear Chemistry

Regents review Nuclear Chemistry 2011-2012 1. Given the nuclear equation: 14 7N + X 16 8O + 2 1H What is particle X? A) an alpha particle B) a beta particle C) a deuteron D) a triton 2. The nucleus of a radium-226 atom is unstable, which

More information

Chapter 2. Atomic Structure

Chapter 2. Atomic Structure Atomic Structure Chapter 2 What particles compose the substances around us? When you use the term particle to explain the different properties of a solid, liquid or gas, you are referring to the simplest,

More information

Chemistry 201: General Chemistry II - Lecture

Chemistry 201: General Chemistry II - Lecture Chemistry 201: General Chemistry II - Lecture Dr. Namphol Sinkaset Chapter 21 Study Guide Concepts 1. There are several modes of radioactive decay: (1) alpha (α) decay, (2) beta (β) decay, (3) gamma (γ)

More information

ABC Math Student Copy

ABC Math Student Copy Page 1 of 17 Physics Week 16(Sem. ) Name The Nuclear Chapter Summary Nuclear Structure Atoms consist of electrons in orbit about a central nucleus. The electron orbits are quantum mechanical in nature.

More information

1. This question is about the Rutherford model of the atom.

1. This question is about the Rutherford model of the atom. 1. This question is about the Rutherford model of the atom. (a) Most alpha particles used to bombard a thin gold foil pass through the foil without a significant change in direction. A few alpha particles

More information

Chapter 12: Nuclear Reaction

Chapter 12: Nuclear Reaction Chapter 12: Nuclear Reaction A nuclear reaction occurs when a nucleus is unstable or is being bombarded by a nuclear particle. The product of a nuclear reaction is a new nuclide with an emission of a nuclear

More information

Chapter 2. The Chemical Context of Life

Chapter 2. The Chemical Context of Life Chapter 2 The Chemical Context of Life 1 Matter Takes up space and has mass Exists as elements (pure form) and in chemical combinations called compounds 2 Elements Can t be broken down into simpler substances

More information

Radiochemistry and Nuclear Methods of Analysis

Radiochemistry and Nuclear Methods of Analysis Radiochemistry and Nuclear Methods of Analysis WILLIAM D. EHMANN Professor, Department of Chemistry University of Kentucky Lexington, Kentucky DIANE E. VANCE Staff Development Scientist Analytical Services

More information

10/4/2016. Matter, Energy, and Life

10/4/2016. Matter, Energy, and Life DISCLAIMER: Principles and concepts on atomic structure, the Periodic Table, atoms, ions, ionic and covalent compounds, metals, and nonmetals will not be covered in this course. You are expected to know

More information

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions Preview Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions Section 1 The Nucleus Lesson Starter Nuclear reactions result in much larger energy

More information

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions. 1 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

Radioactivity and Balancing Nuclear Reactions: Balancing Nuclear Reactions and Understanding which Particles are Involves

Radioactivity and Balancing Nuclear Reactions: Balancing Nuclear Reactions and Understanding which Particles are Involves General Chemistry II Jasperse Nuclear Chemistry. Extra Practice Problems Radioactivity and Balancing Nuclear Reactions: Balancing Nuclear Reactions and Understanding which Particles are Involved he Stability

More information

Particle Physics. Question Paper 1. Save My Exams! The Home of Revision. International A Level. Exam Board Particle & Nuclear Physics

Particle Physics. Question Paper 1. Save My Exams! The Home of Revision. International A Level. Exam Board Particle & Nuclear Physics For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ Particle Physics Question Paper 1 Level International Level Subject Physics Exam oard IE Topic Particle & Nuclear Physics Sub

More information

Lecture Outlines Chapter 32. Physics, 3 rd Edition James S. Walker

Lecture Outlines Chapter 32. Physics, 3 rd Edition James S. Walker Lecture Outlines Chapter 32 Physics, 3 rd Edition James S. Walker 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in

More information

The previous images display some of our hopes and fears associated with nuclear radiation. We know the images, and some of the uses, but what is Nuclear Radiation and where does it come from? Nuclide In

More information

y loo Physics Essentials Workbook Stage 2 Physics Exercises

y loo Physics Essentials Workbook Stage 2 Physics Exercises 238 Physics Essentials Workbook Stage 2 Physics 15.1 2 Exercises P Explain why stable nuclei of high mass have a higher proportion of neutrons than stable nuclei of low mass. 2 Name four types of spontaneous

More information

Lecture 5. Introduction to Stable Isotopes

Lecture 5. Introduction to Stable Isotopes Lecture 5 Introduction to Stable Isotopes Stable Isotope Geochemistry Primarily concerned with the isotope ratios of H, C, N, O, and S Si and B often included and new instrumentation has opened up others

More information

It s better to have a half-life than no life! Radioactive Decay Alpha, Beta, and Gamma Decay

It s better to have a half-life than no life! Radioactive Decay Alpha, Beta, and Gamma Decay It s better to have a half-life than no life! Radioactive Decay Alpha, Beta, and Gamma Decay What does it mean to be radioactive? Some atoms have nuclei that are unstable. These atoms spontaneously decompose

More information

We completed our discussion of nuclear modeling with a discussion of the liquid drop and shell models We began discussing radioactivity

We completed our discussion of nuclear modeling with a discussion of the liquid drop and shell models We began discussing radioactivity Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Nuclear Physics: Fission and Fusion (11.7) SteveSekula, 19 April 010 (created 1 April 010) Review no tags We completed our

More information

Nuclear Chemistry. Technology Strategies for Success PO Box 1485 East Northport, NY (631) NYS-PREP

Nuclear Chemistry. Technology Strategies for Success PO Box 1485 East Northport, NY (631) NYS-PREP Nuclear Chemistry Technology Strategies for Success PO Box 1485 East Northport, NY 11725 (631)734-0115 1-888-NYS-PREP techstrategies@gmail.com Nuclear Chemistry Table of Contents 1.0 Nuclear Chemistry...3

More information