Chapter 12: Nuclear Reaction

Size: px
Start display at page:

Download "Chapter 12: Nuclear Reaction"

Transcription

1 Chapter 12: Nuclear Reaction A nuclear reaction occurs when a nucleus is unstable or is being bombarded by a nuclear particle. The product of a nuclear reaction is a new nuclide with an emission of a nuclear particle or radiation.

2 Overview Nuclear Reaction Conservation Laws Nuclear Reaction Energy, Q Nuclear Process Conservation of Charge (Z) Conservation of Nucleon Number (A) Nuclear Fission Chain Reaction Nuclear Fusion Nuclear Fusion in the Sun Nuclear Reactor

3 12.1 Nuclear Reaction State conservation of charge (Z) and nucleon number (A) in a nuclear reaction. Write and complete equation of nuclear reaction Calculate energy released in nuclear reaction Learning Objectives

4 Nuclear Reaction A nuclear reaction is defined as a physical process in which there is a change in identity of an atomic nucleus. Nuclear reaction do not obey the normal classical laws of conservation of energy and of mass. In Nuclear Physics: i. Mass and energy are equivalent. ii. Total of mass + energy is conserved

5 Nuclear Reaction If mass of A Missing mass at RHS turned to energy Absorb Energy If mass of A B B C Missing mass at LHS means this interaction needs energy supply for it to happen D mass of A BC D A B mass of Release Energy C C D D

6 Conservation Laws Several conservation laws should be obeyed by every nuclear reaction but primarily conservation of atomic number and of mass number. Conservation of charge (atomic number Z) number Z atomic reaction before atomicnumber after reaction Z Conservation of mass number A (nucleon) mass number A beforereaction mass number A after reaction

7 Reaction Energy Reaction energy is the energy released (liberated) in a nuclear reaction in the form of kinetic energy of the particle emitted, the kinetic energy of the daughter nucleus and the energy of the gamma-ray photon that may accompany the reaction. The reaction energy Q is the energy equivalent to the mass defect m of the reaction, thus 2 Q m c

8 Reaction Energy Mass defect Δm Q 2 Δmc mass of nucleus beforereaction Δm or Q > 0 (positive value) exothermic (exoergic) reaction energy is released reaction occur mass of nucleus products after reaction Δm or Q < 0 (negative value) endothermic (endoergic) reaction energy is required/ absorbed in the form of kinetic energy of the bombardment particle Without external energy, the reaction does not occur K > Q Reaction occur K < Q Reaction does not occur

9 Radioactive Decay Radioactive decay is defined as the phenomenon in which an unstable nucleus disintegrates to acquire a more stable nucleus without absorbs an external energy. The disintegration is spontaneous and most commonly 4 involves the emission of an alpha particle ( OR 2 He), a 0 beta particle ( OR ) and gamma-ray ( ). It also 1e releases an energy Q known as disintegration energy. Po Pb He Q Ni X e Q Example Ti Ti γ

10 Example 1 Radium nucleus decays by alpha emission to radon nucleus can be represented by equation below : Calculate Ra 86 Rn2He Q 226 a. the energy Q released in this decay. b. the wavelength of the gamma-ray produced. (Given mass of Ra-226, m Ra = u; mass of Rn- 222, m Rn = u and mass of particle, m = u)

11 Example 1 Solution

12 Example 1 Solution

13 Bombardment with Energetic Particle Bombardment with energetic particles is defined as an induced nuclear reaction that does not occur spontaneously; it is caused by a collision between a nucleus and energetic particles such as proton, neutron, alpha particle or photon. Consider a bombardment reaction in which a target nucleus X is bombarded by a particle x, resulting in a daughter nucleus Y, an emitted particle y and reaction energy Q: X x Y y Q

14 Bombardment with Energetic Particle Sometimes this reaction is written in the more compact form: Daughter Target (parent) X x, yy nucleus nucleus Bombarding particle Emitted particle 14 7 N 4 2 He Li1H B 1 0 n Li O 1 1 H He Q 4 2 He Q Q OR OR 7 3 OR Li N 17, p O 4 p, He B 2 7 n, Li 3 8 Example

15 Example 2 When lithium 7 Li is bombarded by a proton, two alpha 4 He particles are produced. Calculate the reaction energy. Given 1 1 H mass u 7 3 Li mass 4 2 He mass u u

16 Example 2 Solution

17 Nuclear Fission Nuclear fission is defined as a nuclear reaction in which a heavy nucleus splits into two lighter nuclei. Energy is released by the process because the average binding energy per nucleon of the fission products is greater than that of the parent. The energy released is in the form of increased kinetic energy of the product particles (neutrons) and any radiation emitted (gamma ray). It can be divided into two types: Spontaneous fission & induced fission

18 Nuclear Fission (Example) 235 U is bombarded by a slow neutron: * U0n 92U 35Br 57La n Q Excited state (unstable) * U0n 92U 36Kr 56Ba * U0n 92U 38Sr 54Xe n Q n Q Other possible reactions

19 Graph of Binding Energy per Nucleon Against Nucleon Number

20 Graph of Binding Energy per Nucleon Against Nucleon Number Explanation: An estimate of the energy released in a fission reaction can be obtained by considering the graph in Figure above. From the Figure above, the binding energy per nucleon for uranium is about 7.6 MeV/nucleon, but for fission fragment (Z~100), the average binding Energy per nucleon is about 8.5 MeV/nucleon. Since the fission fragments are tightly bound, they have less mass.

21 Graph of Binding Energy per Nucleon Against Nucleon Number The difference in mass (or energy) between the original uranium nucleus and the fission fragments is about = 0.9 MeV per nucleon. Since there are 236 nucleons involved in each fission, the total energy released is 0.9 MeV 1nucleon 236nucleons 200MeV

22 Example 3 Calculate the energy released when 10 kg of uranium-235 undergoes fission according to U0n35Br 57La n Q Given: 92U mass n mass Br mass 235.1u 1.01 u 84.9 u 57 La mass u 148

23 Example 3 Solution U0n35Br 57La n Q The mass defect of the fission reaction is Δm m m m m 3m 0.20 u U n Ba Kr n The energy released is Q m MeV Q MeV For 1 nuclei

24 Example 3 Solution kg of uranium-235 contains atoms Molar mass in gram (g) is same as atomic mass in amu (u) For 1 mol 10 kg of urainum-235 contains 10 kg atoms atoms kg Therefore energy released by 10 kg of urainum MeV

25 Chain Reaction Chain reaction is defined as a nuclear reaction that is selfsustaining as a result of the products of one fission reaction initiating a subsequent fission reaction.

26 Chain Reaction

27 Chain Reaction From figure, one neutron initially causes one fission of a uranium-235 nucleus, the two or three neutrons released can go on to cause additional fissions, so the process multiples. Conditions to achieve chain reaction in a nuclear reactor: Slow neutrons are better at causing fission. The fissile material must more than a critical size. (The critical size/mass is defined as the minimum mass of fissile/fission material required to produce a sustained chain reaction.)

28 Nuclear Reactor

29 Nuclear Reactor A nuclear reactor consists of fuel rods (fission material, eg U-235), movable control rods and a moderator (water). Nuclear reactors use a combination of U-235 and U-238 (3-5% 235 U). The U-235 will undergo the fission reaction, while the U-238 (more stable) merely absorbs neutrons (slow neutrons). In a nuclear reactor, the chain reaction is controlled so that only one of the secondary neutrons from the fission of a U-235 nucleus is allowed to continue the fission reaction. In this manner, energy is released at a constant rate.

30 Nuclear Reactor Then the emitting neutrons with high energy are slowed down by collisions with nuclei in the surrounding material, called moderator, so that they can cause further fissions and produce more energy. In order to release energy at a steady rate, the rate of the reaction is controlled by inserting or withdrawing control rods made of elements (often cadmium) whose nuclei absorb neutrons without undergoing any additional reaction. Water circulating in the core of the reactor acts as coolant. The heated water flows to a heat exchanger where steam is produced. The steam then rotates a turbine that generates electricity.

31

32 Nuclear Fusion Nuclear fusion is defined as a type of nuclear reaction in which two light nuclei fuse to form a heavier nucleus with the release of large amounts of energy. The energy released in this reaction is called thermonuclear energy. 2 1 H 3 1 H 4 2 He 1 0 n Q

33 Graph of Binding Energy per Nucleon Against Nucleon Number

34 Graph of Binding Energy per Nucleon Against Nucleon Number From figure above, the binding energy per nucleon for the lighter nuclei ( 2 H) is small compared to the heavier nuclei. The energy released per nucleon in the fusion process is given by the difference between two values of binding energy per nucleon. And it is found that the energy released per nucleon by this process is greater than the energy released per nucleon by fission process.

35 Example 4 A fusion reaction is represented by the equation below: 2 1 H 2 1 H 3 1 H 1 1 H Q Calculate: a. The energy in MeV released from this fusion reaction. b. The energy released from fusion of 1.0 kg deuterium. (Given mass of proton = u, mass of tritium = u and mass of deuterium = )

36 Example 4 Solution

37 Example 4 Solution

38 Nuclear Fusion in the Sun The sun is a small star which generates energy on its own by means of nuclear fusion in its interior. The fuel of fusion reaction comes from the protons available in the sun. The protons undergo a set of fusion reactions, producing isotopes of hydrogen and also isotopes of helium. However, the helium nuclei themselves undergo nuclear reactions which produce protons again. This means that the protons go through a cycle which is then repeated. Because of this proton-proton cycle, nuclear fusion in the sun can be self-sustaining.

39 Nuclear Fusion in the Sun The set of fusion reactions in the proton-proton cycle are given The amount of energy released per cycle is about 25 MeV. Nuclear fusion occurs in the interior of the sun because the temperature of the sun is very high (approximately 1.5 x 10 7 K).

40 Nuclear Fusion in the Sun

41 Comparison between Fission and Fusion Table below shows the differences between fission and fusion reaction. Fission Heavy to light nucleus Neutron to bombard Produce more than 1 nucleus Easy to handle & control Fusion Light to heavy nucleus High temperature Produce 1 nucleus Difficult to handle & control The similarity between the fission and fusion reactions is: Both reactions produce energy. Mass is reduced after reaction. New product is produced.

42 Comparison between Fission and Fusion

43

Nuclear Physics and Nuclear Reactions

Nuclear Physics and Nuclear Reactions Slide 1 / 33 Nuclear Physics and Nuclear Reactions The Nucleus Slide 2 / 33 Proton: The charge on a proton is +1.6x10-19 C. The mass of a proton is 1.6726x10-27 kg. Neutron: The neutron is neutral. The

More information

Multiple Choice Questions

Multiple Choice Questions Nuclear Physics & Nuclear Reactions Practice Problems PSI AP Physics B 1. The atomic nucleus consists of: (A) Electrons (B) Protons (C)Protons and electrons (D) Protons and neutrons (E) Neutrons and electrons

More information

NJCTL.org 2015 AP Physics 2 Nuclear Physics

NJCTL.org 2015 AP Physics 2 Nuclear Physics AP Physics 2 Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

NUCLEI. Atomic mass unit

NUCLEI. Atomic mass unit 13 NUCLEI Atomic mass unit It is a unit used to express the mass of atoms and particles inside it. One atomic mass unit is the mass of atom. 1u = 1.660539 10. Chadwick discovered neutron. The sum of number

More information

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of?

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? Nuclear Physics Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions Preview Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions Section 1 The Nucleus Lesson Starter Nuclear reactions result in much larger energy

More information

Chapter 22 - Nuclear Chemistry

Chapter 22 - Nuclear Chemistry Chapter - Nuclear Chemistry - The Nucleus I. Introduction A. Nucleons. Neutrons and protons B. Nuclides. Atoms identified by the number of protons and neutrons in the nucleus 8 a. radium-8 or 88 Ra II.

More information

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2

More information

NUCLEI, RADIOACTIVITY AND NUCLEAR REACTIONS

NUCLEI, RADIOACTIVITY AND NUCLEAR REACTIONS NUCLEI, RADIOACTIVITY AND NUCLEAR REACTIONS VERY SHORT ANSWER QUESTIONS Q-1. Which of the two is bigger 1 kwh or 1 MeV? Q-2. What should be the approximate minimum energy of a gamma ray photon for pair

More information

UNIT 13: NUCLEAR CHEMISTRY

UNIT 13: NUCLEAR CHEMISTRY UNIT 13: NUCLEAR CHEMISTRY REVIEW: ISOTOPE NOTATION An isotope notation is written as Z A X, where X is the element, A is the mass number (sum of protons and neutrons), and Z is the atomic number. For

More information

CHAPTER 19 THE ATOMIC NUCLEUS NUCLEAR STRUCTURE The nucleus consists of protons and neutrons. A protonis a positively charged particle having mass 1.6726 x 10(-27) kg and charge 1.6 x 10(-19) coulomb.

More information

[2] State in what form the energy is released in such a reaction.... [1]

[2] State in what form the energy is released in such a reaction.... [1] (a) The following nuclear reaction occurs when a slow-moving neutron is absorbed by an isotope of uranium-35. 0n + 35 9 U 4 56 Ba + 9 36Kr + 3 0 n Explain how this reaction is able to produce energy....

More information

Slide 1 / 57. Nuclear Physics & Nuclear Reactions Practice Problems

Slide 1 / 57. Nuclear Physics & Nuclear Reactions Practice Problems Slide 1 / 57 Nuclear Physics & Nuclear Reactions Practice Problems Slide 2 / 57 Multiple Choice Slide 3 / 57 1 The atomic nucleus consists of: A B C D E Electrons Protons Protons and electrons Protons

More information

turbine (a) (i) Which part of the power station provides thermal (heat) energy from a chain reaction?

turbine (a) (i) Which part of the power station provides thermal (heat) energy from a chain reaction? Nuclear fission and radiation 1 The diagram shows parts of a nuclear power station. control rods boiler steam generator electricity out turbine condenser nuclear reactor (a) (i) Which part of the power

More information

Atomic and Nuclear Physics. Topic 7.3 Nuclear Reactions

Atomic and Nuclear Physics. Topic 7.3 Nuclear Reactions Atomic and Nuclear Physics Topic 7.3 Nuclear Reactions Nuclear Reactions Rutherford conducted experiments bombarding nitrogen gas with alpha particles from bismuth-214. He discovered that fast-moving particles

More information

NUCLEI 1. The nuclei having the same atomic number (Z), but different mass numbers (A) are called isotopes.

NUCLEI 1. The nuclei having the same atomic number (Z), but different mass numbers (A) are called isotopes. UCLEI Important Points: 1. The nuclei having the same atomic number (Z), but different mass numbers (A) are called isotopes. Ex: 1 H, 2 H, 3 1 1 1H are the isotopes of hydrogen atom. 2. The nuclei having

More information

= : K A

= : K A Atoms and Nuclei. State two limitations of JJ Thomson s model of atom. 2. Write the SI unit for activity of a radioactive substance. 3. What observations led JJ Thomson to conclusion that all atoms have

More information

Fission and Fusion Book pg cgrahamphysics.com 2016

Fission and Fusion Book pg cgrahamphysics.com 2016 Fission and Fusion Book pg 286-287 cgrahamphysics.com 2016 Review BE is the energy that holds a nucleus together. This is equal to the mass defect of the nucleus. Also called separation energy. The energy

More information

Unit 1 Atomic Structure

Unit 1 Atomic Structure Unit 1 Atomic Structure Defining the Atom I. Atomic Theory A. Modern Atomic Theory 1. All matter is made up of very tiny particles called atoms 2. Atoms of the same element are chemically alike 3. Individual

More information

1. This question is about the Rutherford model of the atom.

1. This question is about the Rutherford model of the atom. 1. This question is about the Rutherford model of the atom. (a) Most alpha particles used to bombard a thin gold foil pass through the foil without a significant change in direction. A few alpha particles

More information

Matter and Energy. Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law.

Matter and Energy. Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law. Fission & Fusion Matter and Energy Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law. 2 H 2 O 2 H 2 + O 2 We now need to understand

More information

Section 2: Nuclear Fission and Fusion. Preview Key Ideas Bellringer Nuclear Forces Nuclear Fission Chain Reaction Nuclear Fusion

Section 2: Nuclear Fission and Fusion. Preview Key Ideas Bellringer Nuclear Forces Nuclear Fission Chain Reaction Nuclear Fusion : Nuclear Fission and Fusion Preview Key Ideas Bellringer Nuclear Forces Nuclear Fission Chain Reaction Nuclear Fusion Key Ideas What holds the nuclei of atoms together? What is released when the nucleus

More information

Unit 1 Atomic Structure

Unit 1 Atomic Structure Unit 1 Atomic Structure 3-1 The Atom: From Philosophical Idea to Scientific Theory I. Atomic Theory A. Modern Atomic Theory 1. All matter is made up of very tiny particles called atoms 2. Atoms of the

More information

Nuclear Chemistry. The Nucleus. Isotopes. Slide 1 / 43. Slide 2 / 43. Slide 3 / 43

Nuclear Chemistry. The Nucleus. Isotopes. Slide 1 / 43. Slide 2 / 43. Slide 3 / 43 Slide 1 / 43 Nuclear Chemistry The Nucleus Slide 2 / 43 Remember that the nucleus is comprised of the two nucleons, protons and neutrons. The number of protons is the atomic number. The number of protons

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 7-2 NUCLEAR REACTIONS Review Videos-Radioactivity2 Review Videos - Strong and Weak Nuclear Forces Essential Idea: Energy can be released

More information

Alta Chemistry CHAPTER 25. Nuclear Chemistry: Radiation, Radioactivity & its Applications

Alta Chemistry CHAPTER 25. Nuclear Chemistry: Radiation, Radioactivity & its Applications CHAPTER 25 Nuclear Chemistry: Radiation, Radioactivity & its Applications Nuclear Chemistry Nuclear Chemistry deals with changes in the nucleus The nucleus of an atom contains Protons Positively Charged

More information

da u g ht er + radiation

da u g ht er + radiation RADIOACTIVITY The discovery of radioactivity can be attributed to several scientists. Wilhelm Roentgen discovered X-rays in 1895 and shortly after that Henri Becquerel observed radioactive behavior while

More information

Nuclear Chemistry Notes

Nuclear Chemistry Notes Nuclear Chemistry Notes Definitions Nucleons: Subatomic particles in the nucleus : protons and neutrons Radionuclides: Radioactive nuclei. Unstable nuclei that spontaneously emit particles and electromagnetic

More information

Radioactivity & Nuclear. Chemistry. Mr. Matthew Totaro Legacy High School. Chemistry

Radioactivity & Nuclear. Chemistry. Mr. Matthew Totaro Legacy High School. Chemistry Radioactivity & Nuclear Chemistry Mr. Matthew Totaro Legacy High School Chemistry The Discovery of Radioactivity Antoine-Henri Becquerel designed an experiment to determine if phosphorescent minerals also

More information

Chapter 7 Review. Block: Date:

Chapter 7 Review. Block: Date: Science 10 Chapter 7 Review Name: KEY Block: Date: 1. Radioactivity is the release of high-energy particles and rays from a substance as a result of changes in the nuclei of its atoms.. _Natural background

More information

State the main interaction when an alpha particle is scattered by a gold nucleus

State the main interaction when an alpha particle is scattered by a gold nucleus Q1.(a) Scattering experiments are used to investigate the nuclei of gold atoms. In one experiment, alpha particles, all of the same energy (monoenergetic), are incident on a foil made from a single isotope

More information

Lecture 14, 8/9/2017. Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion

Lecture 14, 8/9/2017. Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion Lecture 14, 8/9/2017 Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion Nuclear Reactions and the Transmutation of Elements A nuclear reaction takes place

More information

Physics 3204 UNIT 3 Test Matter Energy Interface

Physics 3204 UNIT 3 Test Matter Energy Interface Physics 3204 UNIT 3 Test Matter Energy Interface 2005 2006 Time: 60 minutes Total Value: 33 Marks Formulae and Constants v = f λ E = hf h f = E k + W 0 E = m c 2 p = h λ 1 A= A T 0 2 t 1 2 E k = ½ mv 2

More information

Chem 481 Lecture Material 1/23/09

Chem 481 Lecture Material 1/23/09 Chem 481 Lecture Material 1/23/09 Nature of Radioactive Decay Radiochemistry Nomenclature nuclide - This refers to a nucleus with a specific number of protons and neutrons. The composition of a nuclide

More information

RADIOACTIVITY. Nature of Radioactive Emissions

RADIOACTIVITY. Nature of Radioactive Emissions 1 RADIOACTIVITY Radioactivity is the spontaneous emissions from the nucleus of certain atoms, of either alpha, beta or gamma radiation. These radiations are emitted when the nuclei of the radioactive substance

More information

Fission & Fusion Movie

Fission & Fusion Movie Fission & Fusion Movie Matter and Energy Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law. 2 H 2 O 2 H 2 + O 2 We now need to

More information

Nuclear Physics. Chapter 43. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman

Nuclear Physics. Chapter 43. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Chapter 43 Nuclear Physics PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 43 To understand some key properties

More information

Chapter 13 Nuclear physics

Chapter 13 Nuclear physics OCR (A) specifications: 5.4.11i,j,k,l Chapter 13 Nuclear physics Worksheet Worked examples Practical: Simulation (applet) websites nuclear physics End-of-chapter test Marking scheme: Worksheet Marking

More information

Friday, 05/06/16 6) HW QUIZ MONDAY Learning Target (NEW)

Friday, 05/06/16 6) HW QUIZ MONDAY Learning Target (NEW) Friday, 05/06/16 1) Warm-up: If you start with 100g of a radioactive substance, how much will be left after 3 half-lives? 2) Review HW & Nuclear Notes 3) Complete Modeling Energy Investigation 4) Complete:

More information

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions. 1 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

Chapter 18 Nuclear Chemistry

Chapter 18 Nuclear Chemistry Chapter 8 Nuclear Chemistry 8. Discovery of radioactivity 895 Roentgen discovery of radioactivity X-ray X-ray could penetrate other bodies and affect photographic plates led to the development of X-ray

More information

Atoms and Nuclei 1. The radioactivity of a sample is X at a time t 1 and Y at a time t 2. If the mean life time of the specimen isτ, the number of atoms that have disintegrated in the time interval (t

More information

u d Fig. 6.1 (i) Identify the anti-proton from the table of particles shown in Fig [1]

u d Fig. 6.1 (i) Identify the anti-proton from the table of particles shown in Fig [1] 1 (a) Fig. 6.1 shows the quark composition of some particles. proton neutron A B u u d u d d u d u u u u d Fig. 6.1 (i) Identify the anti-proton from the table of particles shown in Fig. 6.1. (ii) State

More information

Chapter 37. Nuclear Chemistry. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved.

Chapter 37. Nuclear Chemistry. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Chapter 37 Nuclear Chemistry Copyright (c) 2 by Michael A. Janusa, PhD. All rights reserved. 37. Radioactivity Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off

More information

Nuclear Chemistry. Nuclear Terminology

Nuclear Chemistry. Nuclear Terminology Nuclear Chemistry Up to now, we have been concerned mainly with the electrons in the elements the nucleus has just been a positively charged things that attracts electrons The nucleus may also undergo

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 37 Modern Physics Nuclear Physics Radioactivity Nuclear reactions http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 29 1 Lightning Review Last lecture: 1. Nuclear

More information

Chapter 21

Chapter 21 Chapter 21 http://youtu.be/kwasz59f8ga Nuclear reactions involve the nucleus The nucleus opens, and protons and neutrons are rearranged. The opening of the nucleus releases a tremendous amount of energy

More information

Preview. Subatomic Physics Section 1. Section 1 The Nucleus. Section 2 Nuclear Decay. Section 3 Nuclear Reactions. Section 4 Particle Physics

Preview. Subatomic Physics Section 1. Section 1 The Nucleus. Section 2 Nuclear Decay. Section 3 Nuclear Reactions. Section 4 Particle Physics Subatomic Physics Section 1 Preview Section 1 The Nucleus Section 2 Nuclear Decay Section 3 Nuclear Reactions Section 4 Particle Physics Subatomic Physics Section 1 TEKS The student is expected to: 5A

More information

Chapter 18. Nuclear Chemistry

Chapter 18. Nuclear Chemistry Chapter 18 Nuclear Chemistry The energy of the sun comes from nuclear reactions. Solar flares are an indication of fusion reactions occurring at a temperature of millions of degrees. Introduction to General,

More information

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes St Ninian s High School Chemistry Department National 5 Chemistry Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes Name Learning Outcomes After completing this topic you should be able to :

More information

MockTime.com. Ans: (b) Q6. Curie is a unit of [1989] (a) energy of gamma-rays (b) half-life (c) radioactivity (d) intensity of gamma-rays Ans: (c)

MockTime.com. Ans: (b) Q6. Curie is a unit of [1989] (a) energy of gamma-rays (b) half-life (c) radioactivity (d) intensity of gamma-rays Ans: (c) Chapter Nuclei Q1. A radioactive sample with a half life of 1 month has the label: Activity = 2 micro curies on 1 8 1991. What would be its activity two months earlier? [1988] 1.0 micro curie 0.5 micro

More information

Nuclear Physics and Radioactivity

Nuclear Physics and Radioactivity Nuclear Physics and Radioactivity Structure and Properties of the Nucleus Nucleus is made of protons and neutrons Proton has positive charge: Neutron is electrically neutral: Neutrons and protons are collectively

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 6-3 NUCLEAR REACTIONS Review Videos-Radioactivity2 Review Videos - Strong and Weak Nuclear Forces IB Assessment Statements, Topic 7.3

More information

Isotopes Atoms of an element (same # p+) that differ in their number of neutrons

Isotopes Atoms of an element (same # p+) that differ in their number of neutrons Isotopes Atoms of an element (same # p+) that differ in their number of neutrons Radio-isotopes Isotope of an element that is UNSTABLE. They spontaneously emit particles (energy) in order to achieve a

More information

ABC Math Student Copy

ABC Math Student Copy Page 1 of 17 Physics Week 16(Sem. ) Name The Nuclear Chapter Summary Nuclear Structure Atoms consist of electrons in orbit about a central nucleus. The electron orbits are quantum mechanical in nature.

More information

Nuclear Chemistry. Radioactivity. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. Radioactivity. In this chapter we will look at two types of nuclear reactions. 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

Nuclear Chemistry. Decay Reactions The most common form of nuclear decay reactions are the following:

Nuclear Chemistry. Decay Reactions The most common form of nuclear decay reactions are the following: Nuclear Chemistry Nuclear reactions are transmutation of the one element into another. We can describe nuclear reactions in a similar manner as regular chemical reactions using ideas of stoichiometry,

More information

Nuclear Chemistry. Chapter 24

Nuclear Chemistry. Chapter 24 Nuclear Chemistry Chapter 24 Radioactivity Radioisotopes are isotopes that have an unstable nucleus. They emit radiation to attain more stable atomic configurations in a process called radioactive decay.

More information

By Tim, John, Shane, Owen

By Tim, John, Shane, Owen By Tim, John, Shane, Owen A few refreshers Atoms of the same element, which always have an identical number of protons, that have different numbers of neutrons, is an isotope. Protons and neutrons are

More information

Nuclear Physics. Radioactivity. # protons = # neutrons. Strong Nuclear Force. Checkpoint 4/17/2013. A Z Nucleus = Protons+ Neutrons

Nuclear Physics. Radioactivity. # protons = # neutrons. Strong Nuclear Force. Checkpoint 4/17/2013. A Z Nucleus = Protons+ Neutrons Marie Curie 1867-1934 Radioactivity Spontaneous emission of radiation from the nucleus of an unstable isotope. Antoine Henri Becquerel 1852-1908 Wilhelm Roentgen 1845-1923 Nuclear Physics A Z Nucleus =

More information

Question 13.1: Two stable isotopes of lithium and have respective abundances of 7.5% and 92.5%. These isotopes have masses 6.01512 u and 7.01600 u, respectively. Find the atomic mass of lithium. Boron

More information

Chapter 25. Nuclear Chemistry. Types of Radiation

Chapter 25. Nuclear Chemistry. Types of Radiation Chapter 25 Nuclear Chemistry Chemical Reactions 1. Bonds are broken and formed 2. Atoms may rearrange, but remain unchanged 3. Involve only valence electrons 4. Small energy changes 5. Reaction rate is

More information

SOURCES of RADIOACTIVITY

SOURCES of RADIOACTIVITY Section 9: SOURCES of RADIOACTIVITY This section briefly describes various sources of radioactive nuclei, both naturally occurring and those produced artificially (man-made) in, for example, reactors or

More information

A. Incorrect! Do not confuse Nucleus, Neutron and Nucleon. B. Incorrect! Nucleon is the name given to the two particles that make up the nucleus.

A. Incorrect! Do not confuse Nucleus, Neutron and Nucleon. B. Incorrect! Nucleon is the name given to the two particles that make up the nucleus. AP Physics - Problem Drill 24: Nuclear Physics 1. Identify what is being described in each of these statements. Question 01 (1) It is held together by the extremely short range Strong force. (2) The magnitude

More information

Nuclear Physics (13 th lecture)

Nuclear Physics (13 th lecture) uclear Physics ( th lecture) Cross sections of special neutron-induced reactions UCLR FISSIO Mechanism and characteristics of nuclear fission. o The fission process o Mass distribution of the fragments

More information

Name Date Class NUCLEAR RADIATION. alpha particle beta particle gamma ray

Name Date Class NUCLEAR RADIATION. alpha particle beta particle gamma ray 25.1 NUCLEAR RADIATION Section Review Objectives Explain how an unstable nucleus releases energy Describe the three main types of nuclear radiation Vocabulary radioisotopes radioactivity radiation alpha

More information

SHAWNEE ENVIRONMENTAL SERVICES, INC Identify the definitions of the following terms: a. Nucleon b. Nuclide c. Isotope

SHAWNEE ENVIRONMENTAL SERVICES, INC Identify the definitions of the following terms: a. Nucleon b. Nuclide c. Isotope Course Title: Radiological Control Technician Module Title: uclear Physics Module umber: 1.04 Objectives: 1.04.01 Identify the definitions of the following terms: a. ucleon b. uclide c. Isotope 1.04.02

More information

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 21, Inc. James F. Kirby Quinnipiac University Hamden, CT Energy: Chemical vs. Chemical energy is associated with making and breaking chemical bonds. energy is enormous in comparison.

More information

Chemistry: The Central Science. Chapter 21: Nuclear Chemistry

Chemistry: The Central Science. Chapter 21: Nuclear Chemistry Chemistry: The Central Science Chapter 21: Nuclear Chemistry A nuclear reaction involves changes in the nucleus of an atom Nuclear chemistry the study of nuclear reactions, with an emphasis in their uses

More information

The number of protons in the nucleus is known as the atomic number Z, and determines the chemical properties of the element.

The number of protons in the nucleus is known as the atomic number Z, and determines the chemical properties of the element. I. NUCLEAR PHYSICS I.1 Atomic Nucleus Very briefly, an atom is formed by a nucleus made up of nucleons (neutrons and protons) and electrons in external orbits. The number of electrons and protons is equal

More information

Nuclear Powe. Bronze Buddha at Hiroshima

Nuclear Powe. Bronze Buddha at Hiroshima Nuclear Powe Bronze Buddha at Hiroshima Nuclear Weapons Nuclear Power Is it Green & Safe? Nuclear Waste 250,000 tons of Spent Fuel 10,000 tons made per year Health Effects of Ionizing Radiation Radiocarbon

More information

Nuclear Chemistry Lecture Notes: I Radioactive Decay A. Type of decay: See table. B. Predicting Atomic Stability

Nuclear Chemistry Lecture Notes: I Radioactive Decay A. Type of decay: See table. B. Predicting Atomic Stability Nuclear Chemistry Lecture Notes: I Radioactive Decay A. Type of decay: See table Type Symbol Charge Mass (AMU) Effect on Atomic # Alpha α +2 4 decrease by 2 Beta β- -1 0 increase electron by 1 Beta β+

More information

Thursday, April 23, 15. Nuclear Physics

Thursday, April 23, 15. Nuclear Physics Nuclear Physics Some Properties of Nuclei! All nuclei are composed of protons and neutrons! Exception is ordinary hydrogen with just a proton! The atomic number, Z, equals the number of protons in the

More information

Term 3 Week 2 Nuclear Fusion & Nuclear Fission

Term 3 Week 2 Nuclear Fusion & Nuclear Fission Term 3 Week 2 Nuclear Fusion & Nuclear Fission Tuesday, November 04, 2014 Nuclear Fusion To understand nuclear fusion & fission Nuclear Fusion Why do stars shine? Stars release energy as a result of fusing

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. Describe briefly one scattering experiment to investigate the size of the nucleus of the atom. Include a description of the properties of the incident radiation which makes

More information

Unit 12: Nuclear Chemistry

Unit 12: Nuclear Chemistry Unit 12: Nuclear Chemistry 1. Stability of isotopes is based on the ratio of neutrons and protons in its nucleus. Although most nuclei are stable, some are unstable and spontaneously decay, emitting radiation.

More information

Journal 14. What is so dangerous about nuclear energy?

Journal 14. What is so dangerous about nuclear energy? Journal 14 What is so dangerous about nuclear energy? Nuclear Chemistry Nuclear Chemistry Bravo 15,000 kilotons Discovery of Radiation Wilhelm Conrad Roentgen had discovered X rays Pierre & Marie Curie

More information

D) g. 2. In which pair do the particles have approximately the same mass?

D) g. 2. In which pair do the particles have approximately the same mass? 1. A student constructs a model for comparing the masses of subatomic particles. The student selects a small, metal sphere with a mass of gram to represent an electron. A sphere with which mass would be

More information

Chemistry 52 Chapter 11 ATOMIC STRUCTURE. The general designation for an atom is shown below:

Chemistry 52 Chapter 11 ATOMIC STRUCTURE. The general designation for an atom is shown below: ATOMIC STRUCTURE An atom is composed of a positive nucleus surrounded by negatively charged electrons. The nucleus is composed of protons and neutrons. The protons and neutrons in a nucleus are referred

More information

Absorber Alpha emission Alpha particle Atom. Atomic line spectra Atomic mass unit Atomic number Atomic structure. Background radiation

Absorber Alpha emission Alpha particle Atom. Atomic line spectra Atomic mass unit Atomic number Atomic structure. Background radiation Material that prevent radioactive emission from passing through it Release of alpha particle from unstable nucleus(a 2+ helium ion or a helium nucleus) The nucleus of a helium atom (two protons and two

More information

: When electrons bombarded surface of certain materials, invisible rays were emitted

: When electrons bombarded surface of certain materials, invisible rays were emitted Nuclear Chemistry Nuclear Reactions 1. Occur when nuclei emit particles and/or rays. 2. Atoms are often converted into atoms of another element. 3. May involve protons, neutrons, and electrons 4. Associated

More information

Radioactivity. Nuclear Physics. # neutrons vs# protons Where does the energy released in the nuclear 11/29/2010 A=N+Z. Nuclear Binding, Radioactivity

Radioactivity. Nuclear Physics. # neutrons vs# protons Where does the energy released in the nuclear 11/29/2010 A=N+Z. Nuclear Binding, Radioactivity Physics 1161: Lecture 25 Nuclear Binding, Radioactivity Sections 32-1 32-9 Marie Curie 1867-1934 Radioactivity Spontaneous emission of radiation from the nucleus of an unstable isotope. Antoine Henri Becquerel

More information

1. Explain the significance of negative energy of electron in an orbit. askiitians

1. Explain the significance of negative energy of electron in an orbit. askiitians Class: 12 Subject: Physics Topic: Atoms and Nuclei No. of Questions: 30 1. Explain the significance of negative energy of electron in an orbit. The energy of an electron in the orbits of an atom is negative.

More information

Chapter 10 - Nuclear Physics

Chapter 10 - Nuclear Physics The release of atomic energy has not created a new problem. It has merely made more urgent the necessity of solving an existing one. -Albert Einstein David J. Starling Penn State Hazleton PHYS 214 Ernest

More information

Chapter 21. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 21. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten , The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 21 John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall, Inc. The

More information

Unit 1 Test A Atomic Theory & Nuclear Decay 1. Which of these BEST describes any two atoms of the same element? a. same number of protons

Unit 1 Test A Atomic Theory & Nuclear Decay 1. Which of these BEST describes any two atoms of the same element? a. same number of protons 1. Which of these BEST describes any two atoms of the same element? same number of protons same number of chemical bonds same number of neutrons same number of particles in the nucleus Self Assessment

More information

Nuclear Fission and Fusion A. Nuclear Fission. The process of splitting up of the nucleus of a heavy atom into two nuclei more or less of equal fragments when bombarded with neutron simultaneously releasing

More information

[1] (c) Some fruits, such as bananas, are naturally radioactive because they contain the unstable isotope of potassium-40 ( K.

[1] (c) Some fruits, such as bananas, are naturally radioactive because they contain the unstable isotope of potassium-40 ( K. (a) State, with a reason, whether or not protons and neutrons are fundamental particles....... [] (b) State two fundamental particles that can be classified as leptons.... [] (c) Some fruits, such as bananas,

More information

Nice Try. Introduction: Development of Nuclear Physics 20/08/2010. Nuclear Binding, Radioactivity. SPH4UI Physics

Nice Try. Introduction: Development of Nuclear Physics 20/08/2010. Nuclear Binding, Radioactivity. SPH4UI Physics SPH4UI Physics Modern understanding: the ``onion picture Nuclear Binding, Radioactivity Nucleus Protons tom and neutrons Let s see what s inside! 3 Nice Try Introduction: Development of Nuclear Physics

More information

Chapter 22. Preview. Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem. Section 1 The Nucleus

Chapter 22. Preview. Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem. Section 1 The Nucleus Section 1 The Nucleus Preview Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem Section 1 The Nucleus Objectives Identify the properties of the nucleus of an atom. Explain

More information

Step 2: Calculate the total amount of U-238 present at time=0. Step 4: Calculate the rate constant for the decay process.

Step 2: Calculate the total amount of U-238 present at time=0. Step 4: Calculate the rate constant for the decay process. LP#9. A meteor contains 0.556 g of Pb-206 to every 1.00g U-238. Determine the age of the meteor. Step 1: Calculate the moles of each nuclide present. 0.566g Pb-206 x 1.00g U-238 x Step 2: Calculate the

More information

Class XII Chapter 13 - Nuclei Physics

Class XII Chapter 13 - Nuclei Physics Question 13.1: (a) Two stable isotopes of lithium and have respective abundances of 7.5% and 92.5%. These isotopes have masses 6.01512 u and 7.01600 u, respectively. Find the atomic mass of lithium. (b)

More information

Nuclear Chemistry. Mass Defect. E=mc 2. Radioactivity. Types of Radiation. Other Nuclear Particles. Nuclear Reactions vs. Normal Chemical Changes

Nuclear Chemistry. Mass Defect. E=mc 2. Radioactivity. Types of Radiation. Other Nuclear Particles. Nuclear Reactions vs. Normal Chemical Changes 1 Nuclear Chemistry Mass Defect 4 Some of the mass can be converted into energy Shown by a very famous equation! E=mc 2 Energy Mass Speed of light Radioactivity 2 Types of Radiation 5 One of the pieces

More information

FUSION NEUTRON DEUTERIUM HELIUM TRITIUM.

FUSION NEUTRON DEUTERIUM HELIUM TRITIUM. FUSION AND FISSION THE SUN Nuclear Fusion Nuclear fusion is the process by which multiple nuclei join together to form a heavier nucleus. It is accompanied by the release or absorption of energy depending

More information

Nuclear Energy. Nuclear Structure and Radioactivity

Nuclear Energy. Nuclear Structure and Radioactivity Nuclear Energy Nuclear Structure and Radioactivity I. Review - Periodic Table A. Atomic Number: The number of protons in the nucleus of an atom B. Atomic Mass: The sum of the mass of protons, neutrons

More information

Chemistry 132 NT. Nuclear Chemistry. Review. You can t escape death and taxes. But, at least, death doesn t get worse. Will Rogers

Chemistry 132 NT. Nuclear Chemistry. Review. You can t escape death and taxes. But, at least, death doesn t get worse. Will Rogers Chemistry 3 NT You can t escape death and taxes. But, at least, death doesn t get worse. Will Rogers Chem 3 NT Nuclear Chemistry Module 3 Energy and Nuclear Reactions The core of a nuclear reactor used

More information

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart?

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? Question 32.1 The Nucleus There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? a) Coulomb repulsive force doesn t act inside the nucleus b) gravity overpowers the Coulomb repulsive

More information

Nuclear Chemistry. The nuclei of some unstable isotopes change by releasing energy and particles, collectively known as radiation

Nuclear Chemistry. The nuclei of some unstable isotopes change by releasing energy and particles, collectively known as radiation Nuclear Chemistry The nuclei of some unstable isotopes change by releasing energy and particles, collectively known as radiation Spontaneous nuclear reactions - five kinds: ) Emission of α-particles: 4

More information

Write down the nuclear equation that represents the decay of neptunium 239 into plutonium 239.

Write down the nuclear equation that represents the decay of neptunium 239 into plutonium 239. Q1.A rod made from uranium 238 ( U) is placed in the core of a nuclear reactor where it absorbs free neutrons. When a nucleus of uranium 238 absorbs a neutron it becomes unstable and decays to neptunium

More information

Lecture 31 Chapter 22, Sections 3-5 Nuclear Reactions. Nuclear Decay Kinetics Fission Reactions Fusion Reactions

Lecture 31 Chapter 22, Sections 3-5 Nuclear Reactions. Nuclear Decay Kinetics Fission Reactions Fusion Reactions Lecture Chapter, Sections -5 Nuclear Reactions Nuclear Decay Kinetics Fission Reactions Fusion Reactions Gamma Radiation Electromagnetic photons of very high energy Very penetrating can pass through the

More information