Lecture January 18, This course. Getting to know you/me/those who will help you and expectations.

Size: px
Start display at page:

Download "Lecture January 18, This course. Getting to know you/me/those who will help you and expectations."

Transcription

1 Lecture January 18, 2017 This course. Getting to know you/me/those who will help you and expectations. Handouts: 1) How I best learn. 2) Some information and poster preference. 3) Syllabus 4) Schedule 5) Project #1

2 CHEM 362 Prof. Marcetta Darensbourg, Rm Phone # Descriptive Inorganic Chemistry Spring 2017 ² MWF 10:20-11:10 AM ² 255 Chemistry Website: Office hours: Immediately following class on W or F, or by appointment TEACHING ASSISTANTS: ~~Xuemei Yang <xuemeiyang@tamu.edu>; 418 Chemistry; Phone # Office hours: Tuesdays 4-5 pm. ~~Pokhraj Ghosh <pokhraj.ghosh@chem.tamu>; 420 Chemistry; Phone # Office hours: Fridays 5-6 pm. UNDERGRADUATE MENTORS: PEER LED TEAM LEARNING (PLTL) LEADERS ZACHARY MARTINEZ MAGY MAURICE MANUEL QUIROZ YICHENG TONG ADMINISTRATIVE ASSISTANT: (All Grade Records and special appointments) Abbey Kunkle darensbourg_asst@chem.tamu.edu; 407 Chemistry; Phone # Office hours: Monday-Friday 8am-5pm WEBPAGE: TEXT: "Inorganic Chemistry", 6th Edition, Shriver & Atkins, W.H. Freeman and Company (ISBN-10: ISBN-13: )

3 CHEM 362 Prof. Marcetta Darensbourg, Rm Phone # Descriptive Inorganic Chemistry Spring 2017 ² MWF 10:20-11:10 AM ² 255 Chemistry COURSE GRADING: SCHEDULE HOUR EXAM 1 15% FEBRUARY 15 HOUR EXAM 2 15% MARCH 29 HOUR EXAM 3 15% APRIL 19 FINAL EXAM 25% MAY 8 PROJECTS 15% QUIZZES: 15% POSTER DAY 1 APRIL 10 POSTER DAY 2 APRIL 12 Projects and the PLTL program: We are participating in the Peer Led Team Learning program. You will have available to you times when you can work on projects (especially the Posters) and also homework/review questions with a former 362 student as PLTL leader. You may choose your outside class time with one of the following: Manuel Quiroz, Zach Martinez, Magy Mekhail, Yicheng Tong. Their scheduled times are Monday Sunday at 5 p.m. The day, the room, and student leader are to be announced. You are expected to select one leader within the team and stick with that team throughout the semester. The main project is the Poster, and each of these Leaders are expert in poster preparation. They will guide you through the process.

4 By way of introducing the applications of Inorganic Chemistry, we will begin today s lecture with two major topics from which the poster projects will be chosen and developed..

5

6 Metals in Medicine Orvig, Science 300, May 9, 2003

7 The Scope of Inorganic Chemistry Medicine MRI X-ray contrast imaging drugs (arthri6s, cancer, Biochemistry/Biology metalloproteins metalloenzymes O 2 binding catalysis ion transport Organic Chemistry organometallics metal compounds in synthesis/catalysis INORGANIC CHEMISTRY new compounds geometrical and electronic structures reactivity Materials Science electrical and magnetic properties of solids solid state structures semiconductors superconductors (high T c ) Geology/Geochemistry synthesis and structure of minerals stellar evolution astrochemistry Organometallic Chemistry new compounds structures catalysis

8 If some universal catastrophe were to engulf the world, and humankind Could retain one scientific concept in order to rebuild civilization, what would that one concept be? Response for physicists (Richard Feynman in Six Easy Pieces ): The modern idea of atoms. Response for chemists: The periodic table The periodic table encapsulates the concept of elements, organizes physical and chemical trends of substances, and compares the structure of the different atoms All in a very small space. Inorganic Chemists think they own the Periodic Table. So, How did it all start?

9 Well, Our whole universe was in a hot, dense state Then nearly fourteen billion years ago expansion started, wait The earth began to cool, the autotrophs began to drool Neanderthals developed tools We built a wall (we built the pyramids) Math, science, history, unraveling the mysteries That all started with the big bang! Hey! Since the dawn of man is really not that long As every galaxy was formed in less time than it takes to sing this song A fraction of a second and the elements were made The bipeds stood up straight, the dinosaurs all met their fate They tried to leap but they were late And they all died (they froze their asses off) The oceans and Pangea, see ya wouldn't wanna be ya Set in motion by the same big bang! It all started with the big bang!

10 The first project: The Elements Stable vs.unstable Isotopes Distribution of Stable Isotopes and Atomic Mass Detection by Mass Spectrometry

11 6 3 Li H 2 4 2He + Energy 8 4 Be with t 1/2 of ca sec

12 Stable vs. Unstable or Fissionable Nuclei Project no. 1. Nuclear Reactions; Web Elements; Mass Spectrometry

13 WebElements TM Periodic Table Group Period 1 1 H 2 He 2 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne 3 11 Na 12 Mg 13 Al 14 Si 15 P 16 S 17 Cl 18 Ar 4 19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr 5 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 54 Xe 6 55 Cs 56 Ba * 71 Lu 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 85 At 86 Rn 7 87 Fr 88 Ra * * 103 Lr 104 Rf 105 Db 106 Sg 107 Bh 108 Hs 109 Mt 110 Ds 111 Rg 112 Uub 113 Uut 114 Uuq 115 Uup 116 Uuh 117 Uus 118 Uuo *Lanthanoids * 57 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 68 Er 69 Tm 70 Yb **Actinoids * * 89 Ac 90 Th 91 Pa 92 U 93 Np 94 Pu 95 Am 96 Cm 97 Bk 98 Cf 99 Es 100 Fm 101 Md 102 No

14 Mass Spectra computer:

15 Dimitri Mendeleev A Z E Z = No. protons in nucleus, Atomic number A = Mass number; no. of protons + neutrons in nucleus

16 Copyright 2014 Pearson Education, Inc.

17

18 Lecture January 20, 2017 Paradigm Shift: Development of Current Atomic Theory Spectroscopy and Energy Levels in Atoms OR, Show me the Electrons!

19 Color Red Yellow Metal Flame Colors Carmine: Lithium compounds. Masked by barium or sodium. Scarlet or Crimson: Strontium compounds. Masked by barium. Yellow-Red: Calcium compounds. Masked by barium. Sodium compounds, even in trace amounts. A yellow flame is not indicative of sodium unless it persists and is not intensified by addition of 1% NaCl to the dry compound. White White-Green: Zinc Green Blue Violet Emerald: Copper compounds, other than halides. Thallium. Blue-Green: Phosphates, when moistened with H 2 SO 4 or B 2 O 3. Faint Green: Antimony and NH 4 compounds. Yellow-Green: Barium, molybdenum. Azure: Lead, selenium, bismuth, CuCl 2 and other copper compounds moistened with hydrochloric acid. Light Blue: Arsenic and come of its compounds. Greenish Blue: CuBr 2, antimony Potassium compounds other than borates, phosphates, and silicates. Masked by sodium or lithium. Purple-Red: Potassium, rubudium, and/or cesium in the presence of sodium when viewed through a blue glass.

20 Electromagnetic Radiation Spectrum E = hν = h(c/λ)

21 Atomic Emission (Spectroscopy) An emission spectrum requires first the addition of energy to a material. The addition of energy promotes electrons of that material from the ground state to an excited state. As the electrons fall from the excited state to the ground state, they emit the energy they absorbed in the form of electromagnetic radiation (heat, light, etc.) Applications Atomic emission is used in street lamps, fluorescent lights, and neon signs. Two common street lamps using this are the mercury lamp and the sodium lamp. Neon signs frequently implement the emission spectra of other gases such as argon and krypton. Very sophisticated instrumental techniques such as flame photometry and atomic absorption are broadly based on the principles of atomic emission.

22 Continuous and Line Spectra Dark Side of the Moon Pink Floyd

23 In the news: January 20, 2016: Infer what we cannot see...

24 Sun Emission Spectra Hydrogen Helium Mercury Uranium 700 nm 600 nm 500 nm 400 nm

25 What does it all mean? A Bit of History A Z E Z = No. protons in nucleus, Atomic number A = Mass number; no. of protons + neutrons in nucleus Copyright 2014 Pearson Education, Inc.

26 Marie Curie

27 So how to connect the physical properties of elements to the Periodic Table? Physicists! The current model of the atom belongs to Physicists! Hund DeBroglie Planck Schrodinger Einstein Heisenberg Bohr Pauli

28 Niels Bohr and wife Margrethe around 1930 Taken from John L. Heilbron s History: The Path to the quantum Atom, Nature 498, 27-30, (06 June 2013)

29 Taken from John L. Heilbron s History: The Path to the quantum Atom, Nature 498, 27-30, (06 June 2013) To develop his model, Bohr followed an analogy to the radiation theory of Max Planck (right).... Bohr had developed a doctrine of multiple partial truths, each of which contained some bit of reality, and all of which together might exhaust it. There exist so many different truths I can almost call it my religion that I think that everything that is of value is true.

30 Uranium Mercury Helium Hydrogen Sun 700nm 600nm 500nm 400nm Emission Spectra Niels Bohr and Albert Einstein, 1925 Taken from John L. Heilbron s History: The Path to the quantum Atom, Nature 498, 27-30, (06 June 2013)

31 The Bohr Atom: electrons in concentric rings The Balmer formula expresses the frequencies of some lines in the spectrum of hydrogen in simple algebra: ν n = R(1/2 2 1/n 2 ) where ν n is the nth Balmer line and R is the universal Rydberg constant for frequency, named in honour of the Swedish spectroscopist Johannes Rydberg, who generalized Balmer s formula to apply to elements beyond hydrogen. Taken from John L. Heilbron s History: The Path to the quantum Atom, Nature 498, 27-30, (06 June 2013) Each level can accommodate 2 n 2 electron: Periodic Table Rows

32 The Hydrogen Atom Spectrum and Energy Levels Energy 0-1/16 R H -1/9 R H -1/4 R H Paschen Series (IR) Balmer Series (visible transitions shown) Quantum Number n Lyman Series (UV) ν n = R(1/n final 2 1/n initial2 ) Niels Bohr s view of the atom Circular motion (classic physics) used to explain behavior of electron Hydrogen -R H

33 Energy 0-1/16 R H -1/9 R H -1/4 R H Quantum Number n 5 4 Paschen Series (IR) 3 Balmer Series (visible transitions shown) 2 For Hydrogen: E = -R H n 2 Rydberg constant for hydrogen,r H R H = m e e 4 = 2.179x10-18 J 8 ε o2 h 2 = 13.6 ev Lyman Series (UV) General equation for Rydberg constant for any element R = -m Z 2 e 4 8 ε o 2 h 2 -R H 1 Note: The predicted emission spectra using the Rydberg constant was only successful for simple elements such as H and failed for heavier atoms due to the limitations of the Bohr view of the atom. This led to the foundations of quantum mechanics.

34 Inorganic Chemistry Chapter 1: Figure 1.5 Properties of waves: Addition for reinforcement or cancellation 2009 W.H. Freeman

35 Properties of waves: Squared = amplitude Boundaries => Restrictions on values a node Time-independent Schrödinger equation (general one dimension) Copyright 2014 Pearson Education, Inc. E ψ = H ψ

36 Inorganic Chemistry Chapter 1: Figure 1.4 Time-independent Schrödinger equation (general one dimension) E ψ = H ψ a node Need both radial and angular functions 2009 W.H. Freeman

37 Need both radial and angular functions Both radial and angular functions have nodes

38 Nodes, (not toads) Summary: Total # Nodes = n - 1 # Radial Nodes = n - l - 1 # Angular Nodes = l Where n = principal quantum number; l = angular momentum quantum number

39 Summarizing: Solutions Required Quantum Numbers

40 Quantum Numbers n is the principal quantum number, indicates the size of the orbital, has all positive integer values of 1 to (infinity) l is the angular momentum quantum number, represents the shape of the orbital, has integer values of (n 1) to 0; l = no. angular nodes m l is the magnetic quantum number, represents the spatial direction of the orbital, can have integer values of -l to 0 to l m s is the spin quantum number, has little connection to directionality, can have values of either +1/2 or -1/2 l (angular momentum) orbital 0 s 1 p 2 d 3 f Other terms: electron configuration, noble gas configuration, valence shell Pauli Exclusion principle: no two electrons can have all four of the same quantum numbers in the same atom (Every electron has a unique set.) Hund s Rule: when electrons are placed in a set of degenerate orbitals, the ground state has as many electrons as possible in different orbitals, and with parallel spin. Aufbau (Building Up) Principle: the ground state electron configuration of an atom can be found by putting electrons in orbitals, starting with the lowest energy and moving progressively to higher energy.

41 Where are the Electrons?? Assignments In atoms are guided by Pauli Exclusion Principle: No two electrons can have the same set of 4 quantum numbers. Hund s Rule: Electrons go into degenerate orbitals with spins aligned until forced to pair up.

42 Inorganic Chemistry Chapter 1: Figure 1.7 Box Diagrams 2009 W.H. Freeman

43 Quantum Numbers n is the principal quantum number, indicates the size of the orbital, has all positive integer values of 1 to (infinity) l is the angular momentum quantum number, represents the shape of the orbital, has integer values of n-1 to 0 m l is the magnetic quantum number, represents the spatial direction of the orbital, can have integer values of -l to 0 to l m s is the spin quantum number, has little physical meaning, can have values of either +1/2 or -1/2 l (angular momentum) orbital 0 s 1 p 2 d 3 f Other terms: electron configuration, noble gas configuration, valence shell Pauli Exclusion principle: no two electrons can have all four of the same quantum numbers in the same atom Hund s Rule: when electrons are placed in a set of degenerate orbitals, the ground state has as many electrons as possible in different orbitals, and with parallel spin. Aufbau (Building Up) Principle: the ground state electron configuration of an atom can be found by putting electrons in orbitals, starting with the lowest energy and moving progressively to higher energy.

44 Radial Wave Functions and Nodes # Radial Nodes = n - l - 1 Copyright 2014 Pearson Education, Inc.

45 Radial Probability Functions and Nodes # Radial Nodes = n - l - 1 Copyright 2014 Pearson Education, Inc.

46 Orbitals and Shapes/Electron Distribution The p-orbitals Each p-orbital has two lobes with positive and negative values (phases) of the wavefunction either side of the nucleus separated by a nodal plane where the wavefunction is zero. The s-orbital

47 # Angular Nodes = l # Radial Nodes = n - l - 1 Summary: # Radial Nodes = n - l - 1 # Angular Nodes = l Total # Nodes = n - 1 Copyright 2014 Miessler Fischer Tarr : Pearson Education, Inc.

48 Where are the nodes in orbitals??? (MFT, Figure 2.8 shows both radial and angular) Cl, 3s C, 2p z Cl, 3p z Ti 3+, 3d z 2 Ti 3+, 3d x 2 -y 2 Ti 3+, 3d x 2 -y 2 Copyright 2014 Pearson Education, Inc. Note the orientation of the viewer: down z or x or y axes

49 Two angular nodes

50 Memorize these shapes and how they are positioned on Cartesian Coordinates! Copyright 2014 Pearson Education, Inc. As pictured in MFT, Figure 2.6

51 The f-orbitals

52 Interpretation of orbital images ψ2px ψ22px

53 Interpretation of orbital images ψ3dz2 ψ23dz2

54 Interpretation of orbital images ψ3pz ψ23pz

55 Quantum Numbers n is the principal quantum number, indicates the size of the orbital, has all positive integer values of 1 to (infinity) l is the angular momentum quantum number, represents the shape of the orbital, has integer values of n-1 to 0 m l is the magnetic quantum number, represents the spatial direction of the orbital, can have integer values of -l to 0 to l m s is the spin quantum number, has little physical meaning, can have values of either +1/2 or -1/2 l (angular momentum) orbital 0 s 1 p 2 d 3 f Other terms: electron configuration, noble gas configuration, valence shell Pauli Exclusion principle: no two electrons can have all four of the same quantum numbers in the same atom Hund s Rule: when electrons are placed in a set of degenerate orbitals, the ground state has as many electrons as possible in different orbitals, and with parallel spin. Aufbau (Building Up) Principle: the ground state electron configuration of an atom can be found by putting electrons in orbitals, starting with the lowest energy and moving progressively to higher energy.

56 I d like to make two points:

57 2p 3p 3d

58 Energy Levels for Electron Configurations The Aufbau Principle The Pauli Exclusion Principle Hund s Rules

59 While n is the principal energy level, the l value also has an effect

60 Screening: The 4s electron penetrates Inner shell electrons more efficiently than does 3d in neutral atoms. Reverses in positive ions.

61 How to handle atoms larger than H? Effective Nuclear Charge or Z eff

62 H-atom Orbital Sizes Increase with n r 2 Ψ 2 Electron probability 1s most probable distance: a 0 = Bohr radius = 53 pm Distance from nucleus

63 How Gravity Works (in the Newtonian sense)

64 How Screening Works Example Li + + e -

65 Slater s Rules for Calculating Z eff 1) Write the electron configuration for the atom as follows: (1s)(2s,2p)(3s,3p) (3d) (4s,4p) (4d) (4f) (5s,5p) 2) Any electrons to the right of the electron of interest contributes no shielding. (Approximately correct statement.) 3) All other electrons in the same group as the electron of interest shield to an extent of 0.35 nuclear charge units 4) If the electron of interest is an s or p electron: All electrons with one less value of the principal quantum number shield to an extent of 0.85 units of nuclear charge. All electrons with two less values of the principal quantum number shield to an extent of 1.00 units. 5) If the electron of interest is an d or f electron: All electrons to the left shield to an extent of 1.00 units of nuclear charge. 6) Sum the shielding amounts from steps 2-5 and subtract from the nuclear charge value to obtain the effective nuclear charge.

66 Slater s Rules: Examples Calculate Z eff for a valence electron in fluorine. (1s 2 )(2s 2,2p 5 ) Rule 2 does not apply; therefore, for a valence electron the shielding or screening is (0.35 6) + (0.85 2) = 3.8 Z eff = = 5.2 for a valence electron. Calculate Z eff for a 6s electron in Platinum. (1s 2 )(2s 2,2p 6 )(3s 2,3p 6 ) (3d 10 ) (4s 2,4p 6 ) (4d 10 ) (4f 14 ) (5s 2,5p 6 ) (5d 8 ) (6s 2 ) Rule 2 does not apply, and the shielding is: (0.35 1) + ( ) + ( ) = Z eff = = 4.15 for a valence electron.

67 Inorganic Chemistry Chapter 1: Table W.H. Freeman

68 H-atom Orbital Sizes Increase with n r 2 Ψ 2 Radial distribution probability 1s most probable distance: a 0 = Bohr radius = 53 pm Distance from nucleus Hydrogenic orbitals

69 All the s orbitals of Cs The shell structure of many-e atoms is enormously accentuated by screening. Vertical scale in next plot

70 All the s orbitals of Cs The shell structure of many-e atoms is enormously accentuated by screening. Horizontal scale in previous plot

71 The Periodic Table Special Names Group 1: Alkali Metals Group 2: Alkaline-earth metals Group 16: Chalcogens Group 17: Halogens Group 18: Noble gases watch?v=smwlzwgmmwc

72 Three types of Magnetic Behavior Paramagnetism: atoms, molecules, and solids with unpaired electrons are attracted in a magnetic field Diamagnetic: substances with no unpaired electrons which are weakly repelled in a magnetic field Ferro-magnetism: the unpaired electons are aligned with their neighbors even in the absence of a magnetic field Magnetic domains: the groups of mutually aligned spins in a ferromagnetic substance Ferro-magnet In the absence of a magnetic field Ferro-magnet In the presence of a magnetic field

73 Figure 1.4 The possible sets of quantum numbers for n = 1 and n = 2.

74 Summary of Electronic Energy Scales - The Hierarchical Approach The largest energy level splittings in atoms and molecules are due to principal quantum number changes (and concomitant differences in screening). This underlies our familiar focus on valence vs. core-levels. Energy level splittings between different l levels (e.g., between s, p, d electrons) are often comparable to bonding effects evident in both the concept of hybrid orbitals and in mixed orbital parentage of molecular orbitals. In T.M. complexes, e -e repulsion differences are often comparable to M-L bonding energies. A big part of ligand-field theory deals with the complications that arise from the competition between these energetic effects.

75 Carbon: Atomic Energy Levels Experimental atomic energy levels (cm 1 ). sp 3 s 2 p 2 28,906 Hybridization cost! 5 S 1 S 1 D 10,163 3 P e -e repulsion differences? Where do these energy levels come from?

76 Ti 2+ ion energy levels Again, where are all the energy levels coming from? Hint: They are all [Ar]3d 2, the lowest [Ar]3d 1 4s 1 energy levels are at ~38,000 cm 1

Paradigm Shift: Development of Current Atomic Theory Spectroscopy and Energy Levels in Atoms. OR, Show me the Electrons!

Paradigm Shift: Development of Current Atomic Theory Spectroscopy and Energy Levels in Atoms. OR, Show me the Electrons! Lecture 2 362 January 16, 2019 Paradigm Shift: Development of Current Atomic Theory Spectroscopy and Energy Levels in Atoms OR, Show me the Electrons! Color Red Yellow White Green Blue Violet Metal Flame

More information

MANY ELECTRON ATOMS Chapter 15

MANY ELECTRON ATOMS Chapter 15 MANY ELECTRON ATOMS Chapter 15 Electron-Electron Repulsions (15.5-15.9) The hydrogen atom Schrödinger equation is exactly solvable yielding the wavefunctions and orbitals of chemistry. Howev er, the Schrödinger

More information

Atoms and the Periodic Table

Atoms and the Periodic Table Atoms and the Periodic Table Parts of the Atom Proton Found in the nucleus Number of protons defines the element Charge +1, mass 1 Parts of the Atom Neutron Found in the nucleus Stabilizes the nucleus

More information

6.3 Classifying Elements with the Periodic Table

6.3 Classifying Elements with the Periodic Table 6.3 Classifying Elements with the Periodic Table The Periodic Table was developed by scientists to organize elements in such a way as to make sense of the growing information about their properties. The

More information

Lecture January 18, Quantum Numbers Electronic Configurations Ionization Energies Effective Nuclear Charge Slater s Rules

Lecture January 18, Quantum Numbers Electronic Configurations Ionization Energies Effective Nuclear Charge Slater s Rules Lecture 3 362 January 18, 2019 Quantum Numbers Electronic Configurations Ionization Energies Effective Nuclear Charge Slater s Rules Inorganic Chemistry Chapter 1: Figure 1.4 Time independent Schrödinger

More information

Made the FIRST periodic table

Made the FIRST periodic table Made the FIRST periodic table 1869 Mendeleev organized the periodic table based on the similar properties and relativities of certain elements Later, Henri Moseley organized the elements by increasing

More information

DO NOW: Retrieve your projects. We will be reviewing them again today. Textbook pg 23, answer questions 1-3. Use the section 1.2 to help you.

DO NOW: Retrieve your projects. We will be reviewing them again today. Textbook pg 23, answer questions 1-3. Use the section 1.2 to help you. DO NOW: Retrieve your projects. We will be reviewing them again today. Textbook pg, answer questions. Use the section. to help you. Chapter test is FRIDAY. The Periodic Table of Elements 8 Uuo Uus Uuh

More information

The Periodic Table of Elements

The Periodic Table of Elements The Periodic Table of Elements 8 Uuo Uus Uuh (9) Uup (88) Uuq (89) Uut (8) Uub (8) Rg () 0 Ds (9) 09 Mt (8) 08 Hs (9) 0 h () 0 Sg () 0 Db () 0 Rf () 0 Lr () 88 Ra () 8 Fr () 8 Rn () 8 At (0) 8 Po (09)

More information

The Periodic Table of the Elements

The Periodic Table of the Elements The Periodic Table of the Elements All matter is composed of elements. All of the elements are composed of atoms. An atom is the smallest part of an element which still retains the properties of that element.

More information

Nucleus. Electron Cloud

Nucleus. Electron Cloud Atomic Structure I. Picture of an Atom Nucleus Electron Cloud II. Subatomic particles Particle Symbol Charge Relative Mass (amu) protons p + +1 1.0073 neutrons n 0 1.0087 electrons e - -1 0.00054858 Compare

More information

Using the Periodic Table

Using the Periodic Table MATH SKILLS TRANSPARENCY WORKSHEET Using the Periodic Table 6 Use with Chapter 6, Section 6.2 1. Identify the number of valence electrons in each of the following elements. a. Ne e. O b. K f. Cl c. B g.

More information

Why all the repeating Why all the repeating Why all the repeating Why all the repeating

Why all the repeating Why all the repeating Why all the repeating Why all the repeating Why all the repeating Why all the repeating Why all the repeating Why all the repeating Patterns What Patterns have you observed in your life? Where to Get Help If you don t understand concepts in chapter

More information

נושא מס' 8: המבנה האלקטרוני של אטומים. Electronic Structure of Atoms. 1 Prof. Zvi C. Koren

נושא מס' 8: המבנה האלקטרוני של אטומים. Electronic Structure of Atoms. 1 Prof. Zvi C. Koren נושא מס' 8: המבנה האלקטרוני של אטומים Electronic Structure of Atoms 1 Prof. Zvi C. Koren 19.07.10 The Electron Spin From further experiments, it was evident that the e had additional magnetic properties

More information

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism Periodic Properties Atomic & Ionic Radius Energy Electron Affinity We want to understand the variations in these properties in terms of electron configurations. The Periodic Table Elements in a column

More information

Atomic Emission Spectra. and. Flame Tests. Burlingame High School Chemistry

Atomic Emission Spectra. and. Flame Tests. Burlingame High School Chemistry Atomic Structure Atomic Emission Spectra and Flame Tests Flame Tests Sodium potassium lithium When electrons are excited they bump up to a higher energy level. As they bounce back down they release energy

More information

Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1

Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1 Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1 The development of the periodic table brought a system of order to what was otherwise an collection of thousands of pieces of information.

More information

Advanced Chemistry. Mrs. Klingaman. Chapter 5: Name:

Advanced Chemistry. Mrs. Klingaman. Chapter 5: Name: Advanced Chemistry Mrs. Klingaman Chapter 5: The Periodic Law Name: _ Mods: Chapter 5: The Periodic Law Reading Guide 5.1 History of the Periodic Table (pgs. 125-129) 1) What did Dimitri Mendeleev notice

More information

Radiometric Dating (tap anywhere)

Radiometric Dating (tap anywhere) Radiometric Dating (tap anywhere) Protons Neutrons Electrons Elements on the periodic table are STABLE Elements can have radioactive versions of itself called ISOTOPES!! Page 1 in your ESRT has your list!

More information

Essential Chemistry for Biology

Essential Chemistry for Biology 1 Chapter 2 Essential Chemistry for Biology Biology and Society: More Precious than Gold A drought is a period of abnormally dry weather that changes the environment and one of the most devastating disasters.

More information

Chapter 12 The Atom & Periodic Table- part 2

Chapter 12 The Atom & Periodic Table- part 2 Chapter 12 The Atom & Periodic Table- part 2 Electrons found outside the nucleus; negatively charged Protons found in the nucleus; positive charge equal in magnitude to the electron s negative charge Neutrons

More information

CHEM 10113, Quiz 5 October 26, 2011

CHEM 10113, Quiz 5 October 26, 2011 CHEM 10113, Quiz 5 October 26, 2011 Name (please print) All equations must be balanced and show phases for full credit. Significant figures count, show charges as appropriate, and please box your answers!

More information

Guide to the Extended Step-Pyramid Periodic Table

Guide to the Extended Step-Pyramid Periodic Table Guide to the Extended Step-Pyramid Periodic Table William B. Jensen Department of Chemistry University of Cincinnati Cincinnati, OH 452201-0172 The extended step-pyramid table recognizes that elements

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

Name Unit 4: Periodic Table Period. Unit 4 Vocabulary.Due Test Day

Name Unit 4: Periodic Table Period. Unit 4 Vocabulary.Due Test Day Name Unit 4: Periodic Table Period 1. History and Language of the Periodic Table 2. Identifying PROPERTIES OF METALS, METALLOIDS, & NONMETALS 3. Identifying GROUP PROPERTIES 4. Classifying elements 5.

More information

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start. Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

- Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions).

- Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions). 170 LIGHT wavelength Diffraction frequency = wavelengths / time = - Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions). - Einstein noted that viewing light as a particle

More information

CHEM 130 Exp. 8: Molecular Models

CHEM 130 Exp. 8: Molecular Models CHEM 130 Exp. 8: Molecular Models In this lab, we will learn and practice predicting molecular structures from molecular formulas. The Periodic Table of the Elements IA 1 H IIA IIIA IVA VA VIA VIIA 3 5

More information

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58. Physical Chemistry II Test Name: KEY CHEM 464 Spring 18 Chapters 7-11 Average = 1. / 16 6 questions worth a total of 16 points Planck's constant h = 6.63 1-34 J s Speed of light c = 3. 1 8 m/s ħ = h π

More information

What is the periodic table?

What is the periodic table? The periodic table of the elements represents one of the greatest discoveries in the history of science that certain elements, the basic chemical substances from which all matter is made, resemble each

More information

K. 27 Co. 28 Ni. 29 Cu Rb. 46 Pd. 45 Rh. 47 Ag Cs Ir. 78 Pt.

K. 27 Co. 28 Ni. 29 Cu Rb. 46 Pd. 45 Rh. 47 Ag Cs Ir. 78 Pt. 1 IA 1 H Hydrogen 1.01 Atomic number Element symbol Element name Atomic mass VIIIA 1 H 1.01 IIA IIIA IVA VA VIA VIIA 2 He 4.00 Metalloids 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 O 16.00 9 F

More information

PERIODIC TABLE OF THE ELEMENTS

PERIODIC TABLE OF THE ELEMENTS Useful Constants and equations: K = o C + 273 Avogadro's number = 6.022 x 10 23 d = density = mass/volume R H = 2.178 x 10-18 J c = E = h = hc/ h = 6.626 x 10-34 J s c = 2.998 x 10 8 m/s E n = -R H Z 2

More information

CHEMISTRY. Chapter 8 The Quantum Mechanical Atom. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION

CHEMISTRY. Chapter 8 The Quantum Mechanical Atom. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION CHEMISTRY The Molecular Nature of Matter SIXTH EDITION Jespersen Brady Hyslop Chapter 8 The Quantum Mechanical Atom Copyright 2012 by John Wiley & Sons, Inc. The nature of Light Electromagnetic Radiation

More information

8. Relax and do well.

8. Relax and do well. CHEM 1314 3;30 pm Theory Exam III John III. Gelder November 13, 2002 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 8 different pages. The last page include a periodic

More information

1 Genesis 1:1. Chapter 10 Matter. Lesson. Genesis 1:1 In the beginning God created the heavens and the earth. (NKJV)

1 Genesis 1:1. Chapter 10 Matter. Lesson. Genesis 1:1 In the beginning God created the heavens and the earth. (NKJV) 1 Genesis 1:1 Genesis 1:1 In the beginning God created the heavens and the earth. (NKJV) 1 Vocabulary Saturated having all the solute that can be dissolved at that temperature Neutron a particle with no

More information

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start. Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

Chemistry 431 Practice Final Exam Fall Hours

Chemistry 431 Practice Final Exam Fall Hours Chemistry 431 Practice Final Exam Fall 2018 3 Hours R =8.3144 J mol 1 K 1 R=.0821 L atm mol 1 K 1 R=.08314 L bar mol 1 K 1 k=1.381 10 23 J molecule 1 K 1 h=6.626 10 34 Js N A = 6.022 10 23 molecules mol

More information

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start. Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

-"l" also contributes ENERGY. Higher values for "l" mean the electron has higher energy.

-l also contributes ENERGY. Higher values for l mean the electron has higher energy. 170 - Giving the four parameters will uniquely identify an electron around an atom. No two electrons in the same atom can share all four. These parameters are called QUANTUM NUMBERS. PRINCIPAL QUANTUM

More information

Secondary Support Pack. be introduced to some of the different elements within the periodic table;

Secondary Support Pack. be introduced to some of the different elements within the periodic table; Secondary Support Pack INTRODUCTION The periodic table of the elements is central to chemistry as we know it today and the study of it is a key part of every student s chemical education. By playing the

More information

CHEM 172 EXAMINATION 1. January 15, 2009

CHEM 172 EXAMINATION 1. January 15, 2009 CHEM 17 EXAMINATION 1 January 15, 009 Dr. Kimberly M. Broekemeier NAME: Circle lecture time: 9:00 11:00 Constants: c = 3.00 X 10 8 m/s h = 6.63 X 10-34 J x s J = kg x m /s Rydberg Constant = 1.096776 x

More information

9/20/2017. Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom)

9/20/2017. Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom) CAPTER 6: TE PERIODIC TABLE Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom) The Periodic Table (Mendeleev) In 1872, Dmitri

More information

- Why are phase labels required? Because phase changes either absorb or release energy. ... what does this mean?

- Why are phase labels required? Because phase changes either absorb or release energy. ... what does this mean? 157 SINCE the enthalpy change does NOT depend on path, this means that we can use standard values for enthalpy to predict the heat change in reactions that we have not tested in a calorimeter. THERMOCHEMICAL

More information

lectures accompanying the book: Solid State Physics: An Introduction, by Philip ofmann (2nd edition 2015, ISBN-10: 3527412824, ISBN-13: 978-3527412822, Wiley-VC Berlin. www.philiphofmann.net 1 Bonds between

More information

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

ORBITAL DIAGRAM - A graphical representation of the quantum number map of electrons around an atom. 160 ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom. 4p 3d 4s 3p 3s 2p 2s 1s Each blank represents an ORBITAL, and can hold two electrons. The 4s subshell

More information

CHEM 107 (Spring-2005) Exam 3 (100 pts)

CHEM 107 (Spring-2005) Exam 3 (100 pts) CHEM 107 (Spring-2005) Exam 3 (100 pts) Name: ------------------------------------------------------------------------, Clid # ------------------------------ LAST NAME, First (Circle the alphabet segment

More information

8. Which of the following could be an isotope of chlorine? (A) 37 Cl 17 (B) 17 Cl 17 (C) 37 Cl 17 (D) 17 Cl 37.5 (E) 17 Cl 37

8. Which of the following could be an isotope of chlorine? (A) 37 Cl 17 (B) 17 Cl 17 (C) 37 Cl 17 (D) 17 Cl 37.5 (E) 17 Cl 37 Electronic Structure Worksheet 1 Given the following list of atomic and ionic species, find the appropriate match for questions 1-4. (A) Fe 2+ (B) Cl (C) K + (D) Cs (E) Hg + 1. Has the electron configuration:

More information

-"l" also contributes ENERGY. Higher values for "l" mean the electron has higher energy.

-l also contributes ENERGY. Higher values for l mean the electron has higher energy. 175 - Giving the four parameters will uniquely identify an electron around an atom. No two electrons in the same atom can share all four. These parameters are called QUANTUM NUMBERS. PRINCIPAL QUANTUM

More information

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Chapter 10: Modern Atomic Theory and the Periodic Table How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Electromagnetic (EM) radiation is a form of energy that exhibits

More information

Periodicity & Many-Electron Atoms

Periodicity & Many-Electron Atoms Chap. 8 ELECTRON CONFIGURAT N & CEMICAL PERIODICITY 8.1-8.2 Periodicity & Many-Electron Atoms Understand the correlation of electron configuration and the periodic character of atomic properties such as

More information

Contour Plots Electron assignments and Configurations Screening by inner and common electrons Effective Nuclear Charge Slater s Rules

Contour Plots Electron assignments and Configurations Screening by inner and common electrons Effective Nuclear Charge Slater s Rules Lecture 4 362 January 23, 2019 Contour Plots Electron assignments and Configurations Screening by inner and common electrons Effective Nuclear Charge Slater s Rules How to handle atoms larger than H? Effective

More information

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Review: Comparison of ionic and molecular compounds Molecular compounds Ionic

More information

25 Mn Ni Co Rh Fe Ru Os Uns (262) Une (266) 195.

25 Mn Ni Co Rh Fe Ru Os Uns (262) Une (266) 195. 1 Chem 64 Solutions to Problem Set #1, REVIEW 1. AO n l m 1s 1 0 0 2s 2 0 0 2p 2 1 1,0,1 3d 3 2 2, 1,0,1,2 4d 4 2 2, 1,0,1,2 4f 4 3 3, 2, 1,0,1,2,3 2. Penetration relates to the radial probability distribution

More information

Marks for each question are as indicated in [] brackets.

Marks for each question are as indicated in [] brackets. Name Student Number CHEMISTRY 140 FINAL EXAM December 10, 2002 Numerical answers must be given with appropriate units and significant figures. Please place all answers in the space provided for the question.

More information

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

ORBITAL DIAGRAM - A graphical representation of the quantum number map of electrons around an atom. 178 (MAGNETIC) SPIN QUANTUM NUMBER: "spin down" or "spin up" - An ORBITAL (region with fixed "n", "l" and "ml" values) can hold TWO electrons. ORBITAL DIAGRAM - A graphical representation of the quantum

More information

CHM 101 PRACTICE TEST 1 Page 1 of 4

CHM 101 PRACTICE TEST 1 Page 1 of 4 CHM 101 PRACTICE TEST 1 Page 1 of 4 Please show calculations (stuffed equations) on all mathematical problems!! On the actual test, "naked answers, with no work shown, will receive no credit even if correct.

More information

If anything confuses you or is not clear, raise your hand and ask!

If anything confuses you or is not clear, raise your hand and ask! CHM 1045 Dr. Light s Section December 10, 2002 FINAL EXAM Name (please print) Recitation Section Meeting Time This exam consists of six pages. Make sure you have one of each. Print your name at the top

More information

Atomic Structure & Interatomic Bonding

Atomic Structure & Interatomic Bonding Atomic Structure & Interatomic Bonding Chapter Outline Review of Atomic Structure Atomic Bonding Atomic Structure Atoms are the smallest structural units of all solids, liquids & gases. Atom: The smallest

More information

BROOKLYN COLLEGE Department of Chemistry. Chemistry 1 Second Lecture Exam Nov. 27, Name Page 1 of 5

BROOKLYN COLLEGE Department of Chemistry. Chemistry 1 Second Lecture Exam Nov. 27, Name Page 1 of 5 BROOKLYN COLLEGE Department of Chemistry Chemistry 1 Second Lecture Exam Nov. 27, 2002 Name Page 1 of 5 Circle the name of your lab instructor Kobrak, Zhou, Girotto, Hussey, Du Before you begin the exam,

More information

Solutions and Ions. Pure Substances

Solutions and Ions. Pure Substances Class #4 Solutions and Ions CHEM 107 L.S. Brown Texas A&M University Pure Substances Pure substance: described completely by a single chemical formula Fixed composition 1 Mixtures Combination of 2 or more

More information

Journal of Theoretics

Journal of Theoretics Journal of Theoretics Journal Home Page Atlas of Atomic Nuclear Structures According to the Basic Structures of Matter Theory S. Sarg sarg@helical-structures.org Abstract The Atlas of Atomic Nuclear Structures

More information

SCIENCE 1206 UNIT 2 CHEMISTRY. September 2017 November 2017

SCIENCE 1206 UNIT 2 CHEMISTRY. September 2017 November 2017 SCIENCE 1206 UNIT 2 CHEMISTRY September 2017 November 2017 UNIT OUTLINE 1. Review of Grade 9 Terms & the Periodic Table Bohr diagrams Evidence for chemical reactions Chemical Tests 2. Naming & writing

More information

A little history. When and How? Sir William Ramsey. ü 12/5/13. ü 1. Who put together the first useable Periodic Table?

A little history. When and How? Sir William Ramsey. ü 12/5/13. ü 1. Who put together the first useable Periodic Table? ü // A little history Johahann Dobereiner (80-89) o Triads John Newlands (8-898) o Law of Octaves Who put together the first useable ic Table? Mendeleev you remember him right? When and How? You know it

More information

Chapter 2 Atoms and the Periodic Table

Chapter 2 Atoms and the Periodic Table Chapter 2 1 Chapter 2 Atoms and the Periodic Table Solutions to In-Chapter Problems 2.1 Each element is identified by a one- or two-letter symbol. Use the periodic table to find the symbol for each element.

More information

Fall 2011 CHEM Test 4, Form A

Fall 2011 CHEM Test 4, Form A Fall 2011 CHEM 1110.40413 Test 4, Form A Part I. Multiple Choice: Clearly circle the best answer. (60 pts) Name: 1. The common constituent in all acid solutions is A) H 2 SO 4 B) H 2 C) H + D) OH 2. Which

More information

Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies &

Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies & Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies & electronegativity The Periodic Table What is the periodic

More information

CHEMISTRY 102 Fall 2014 HOUR EXAM I Page 1

CHEMISTRY 102 Fall 2014 HOUR EXAM I Page 1 OUR EXAM I Page 1 1. Draw the Lewis structure for ICl5. ow many of the following four statements (I-IV) is/are true regarding ICl5? I. The central atom in ICl5 has one lone pair of electrons. II. Some

More information

FINAL EXAM April 26, 2004

FINAL EXAM April 26, 2004 CM 1045 (11:15 am Lecture) Dr. Light FINAL EXAM April 26, 2004 Name (please print) Check your recitation section: Sec. 21 5:30-6:20 pm (Popovic) Sec. 24 3:30-4:20 pm (Giunta) Sec. 22 6:30-7:20 pm (Popovic)

More information

Chem Exam 1. September 26, Dr. Susan E. Bates. Name 9:00 OR 10:00

Chem Exam 1. September 26, Dr. Susan E. Bates. Name 9:00 OR 10:00 Chem 1711 Exam 1 September 26, 2013 Dr. Susan E. Bates Name 9:00 OR 10:00 N A = 6.022 x 10 23 mol 1 I A II A III B IV B V B VI B VII B VIII I B II B III A IV A V A VI A VII A inert gases 1 H 1.008 3 Li

More information

CHEM 167 FINAL EXAM MONDAY, MAY 2 9:45 11:45 A.M GILMAN HALL

CHEM 167 FINAL EXAM MONDAY, MAY 2 9:45 11:45 A.M GILMAN HALL PROF. JOHN VERKADE SPRING 2005 THIS EXAM CONSISTS OF 12 QUESTIONS ON 9 PAGES CHEM 167 HOUR EXAM IV APRIL 20, 2005 SEAT NO. NAME RECIT. INSTR. RECIT. SECT. GRADING PAGE Page 2 Page 3 Page 4 Page 5 Page

More information

NAME: FIRST EXAMINATION

NAME: FIRST EXAMINATION 1 Chemistry 64 Winter 1994 NAME: FIRST EXAMINATION THIS EXAMINATION IS WORTH 100 POINTS AND CONTAINS 4 (FOUR) QUESTIONS THEY ARE NOT EQUALLY WEIGHTED! YOU SHOULD ATTEMPT ALL QUESTIONS AND ALLOCATE YOUR

More information

How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas?

How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas? EXAMPLE PROBLEM: How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas? 1 - Convert 2545 grams of chlorine to moles chlorine using formula weight 2 - Convert moles

More information

(please print) (1) (18) H IIA IIIA IVA VA VIA VIIA He (2) (13) (14) (15) (16) (17)

(please print) (1) (18) H IIA IIIA IVA VA VIA VIIA He (2) (13) (14) (15) (16) (17) CHEM 10113, Quiz 3 September 28, 2011 Name (please print) All equations must be balanced and show phases for full credit. Significant figures count, show charges as appropriate, and please box your answers!

More information

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1 CLASS TEST GRADE PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials MARKS: 45 TIME: hour INSTRUCTIONS AND INFORMATION. Answer ALL the questions. 2. You may use non-programmable calculators. 3. You

More information

(C) Pavel Sedach and Prep101 1

(C) Pavel Sedach and Prep101 1 (C) Pavel Sedach and Prep101 1 (C) Pavel Sedach and Prep101 1 (C) Pavel Sedach and Prep101 2 (C) Pavel Sedach and Prep101 2 (C) Pavel Sedach and Prep101 3 (C) Pavel Sedach and Prep101 3 (C) Pavel Sedach

More information

7. Relax and do well.

7. Relax and do well. CHEM 1014 Exam III John III. Gelder November 18, 1999 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 7 different pages. The last page includes a periodic table and

More information

Instructions. 1. Do not open the exam until you are told to start.

Instructions. 1. Do not open the exam until you are told to start. Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

Chem 6 Sample exam 2 (150 points total) NAME:

Chem 6 Sample exam 2 (150 points total) NAME: hem 6 Sample exam 2 (150 points total) @ This is a closed book exam to which the onor Principle applies. @ The last page contains equations and physical constants; you can detach it for easy reference.

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

7. Relax and do well.

7. Relax and do well. CHEM 1215 Exam II John II. Gelder October 7, 1998 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 5 different pages. The last page includes a periodic table and a solubility

More information

Element Cube Project (x2)

Element Cube Project (x2) Element Cube Project (x2) Background: As a class, we will construct a three dimensional periodic table by each student selecting two elements in which you will need to create an element cube. Helpful Links

More information

- Atomic line spectra are UNIQUE to each element. They're like atomic "fingerprints".

- Atomic line spectra are UNIQUE to each element. They're like atomic fingerprints. - Atomic line spectra are UNIQUE to each element. They're like atomic "fingerprints". - Problem was that the current model of the atom completely failed to explain why atoms emitted these lines. An orbit

More information

B. X : in phase; Y: out of phase C. X : out of phase; Y: in phase D. X : out of phase; Y: out of phase

B. X : in phase; Y: out of phase C. X : out of phase; Y: in phase D. X : out of phase; Y: out of phase 2015 April 24 Exam 3 Physics 106 Circle the letter of the single best answer. Each question is worth 1 point Physical Constants: proton charge = e = 1.60 10 19 C proton mass = m p = 1.67 10 27 kg electron

More information

1 Electrons and Chemical Bonding

1 Electrons and Chemical Bonding CHAPTER 13 1 Electrons and Chemical Bonding SECTION Chemical Bonding BEFORE YOU READ After you read this section, you should be able to answer these questions: What is chemical bonding? What are valence

More information

Part 2. Multiple choice (use answer card). 90 pts. total. 3 pts. each.

Part 2. Multiple choice (use answer card). 90 pts. total. 3 pts. each. 1 Exam I CHEM 1303.001 Name (print legibly) Seat no. On my honor, I have neither given nor received unauthorized aid on this exam. Signed Date Part 1. Nomenclature. 10 pts. total. 2 pts. each. Fill in

More information

Chapter 6. Electronic Structure of Atoms. The number & arrangement of e - in an atom is responsible for its chemical behavior.

Chapter 6. Electronic Structure of Atoms. The number & arrangement of e - in an atom is responsible for its chemical behavior. Chapter 6 Electronic Structure of Atoms The number & arrangement of e - in an atom is responsible for its chemical behavior I) The Wave Nature of Light A) Electromagnetic Radiation Radiant Energy light,

More information

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start. Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

Unit 1 Part 2 Atomic Structure and The Periodic Table Introduction to the Periodic Table UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE

Unit 1 Part 2 Atomic Structure and The Periodic Table Introduction to the Periodic Table UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE PART 2 INTRODUCTION TO THE PERIODIC TABLE Contents 1. The Structure of the Periodic Table 2. Trends in the Periodic Table Key words: group, period, block,

More information

Last 4 Digits of USC ID:

Last 4 Digits of USC ID: Chemistry 05 B Practice Exam Dr. Jessica Parr First Letter of last Name PLEASE PRINT YOUR NAME IN BLOCK LETTERS Name: Last 4 Digits of USC ID: Lab TA s Name: Question Points Score Grader 8 2 4 3 9 4 0

More information

Chemistry 2 Exam Roane State Academic Festival. Name (print neatly) School

Chemistry 2 Exam Roane State Academic Festival. Name (print neatly) School Name (print neatly) School There are fifteen question on this exam. Each question is weighted equally. n the answer sheet, write your name in the space provided and your answers in the blanks provided.

More information

The Electronic Theory of Chemistry

The Electronic Theory of Chemistry JF Chemistry CH1101 The Electronic Theory of Chemistry Dr. Baker bakerrj@tcd.ie Module Aims: To provide an introduction to the fundamental concepts of theoretical and practical chemistry, including concepts

More information

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start. Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

Reporting Category 1: Matter and Energy

Reporting Category 1: Matter and Energy Name: Science Teacher: Reporting Category 1: Matter and Energy Atoms Fill in the missing information to summarize what you know about atomic structure. Name of Subatomic Particle Location within the Atom

More information

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start. Page # Points possible Points awarded

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start. Page # Points possible Points awarded Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Chem 6A Michael J. Sailor, UC San Diego 1 Announcements: Thursday (Sep 29) quiz: Bring student ID or we cannot accept your quiz! No notes, no calculators Covers chapters 1 and

More information

Chemistry Standard level Paper 1

Chemistry Standard level Paper 1 M17/4/EMI/SPM/ENG/TZ1/XX hemistry Standard level Paper 1 Thursday 11 May 2017 (afternoon) 45 minutes Instructions to candidates Do not open this examination paper until instructed to do so. Answer all

More information

M14/4/CHEMI/SPM/ENG/TZ1/XX CHEMISTRY. Monday 19 May 2014 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

M14/4/CHEMI/SPM/ENG/TZ1/XX CHEMISTRY. Monday 19 May 2014 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES M14/4/CEMI/SPM/ENG/TZ1/XX 22146110 CEMISTRY standard level Paper 1 Monday 19 May 2014 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so. Answer

More information

4.1 Atomic structure and the periodic table. GCSE Chemistry

4.1 Atomic structure and the periodic table. GCSE Chemistry 4.1 Atomic structure and the periodic table GCSE Chemistry All substances are made of atoms this is cannot be chemically broken down it is the smallest part of an element. Elements are made of only one

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

Chem 115 POGIL Worksheet - Week #9 Quantum Mechanical Model of Electronic Structure

Chem 115 POGIL Worksheet - Week #9 Quantum Mechanical Model of Electronic Structure Chem 115 POGIL Worksheet - Week #9 Quantum Mechanical Model of Electronic Structure Why? Bohr s model of the atom, which was so successful in explaining the line spectra of singleelectron atoms, was a

More information

Particle Behavior of Light 1. Calculate the energy of a photon, mole of photons 2. Find binding energy of an electron (know KE) 3. What is a quanta?

Particle Behavior of Light 1. Calculate the energy of a photon, mole of photons 2. Find binding energy of an electron (know KE) 3. What is a quanta? Properties of Electromagnetic Radiation 1. What is spectroscopy, a continuous spectrum, a line spectrum, differences and similarities 2. Relationship of wavelength to frequency, relationship of E to λ

More information