Potential of (portable) NMR and MRI for plant phenotyping. Henk Van As

Size: px
Start display at page:

Download "Potential of (portable) NMR and MRI for plant phenotyping. Henk Van As"

Transcription

1 Potential of (portable) NMR and MRI for plant phenotyping Henk Van As

2 NMR/MRI and plant phenotyping Non-invasive NMR and MRI sensors to measure plant performance and uncover genetic determinants of enhanced agronomic traits. A number of approaches and parameters are available from such sensors to study complex plant physiological traits such as growth, biomass accumulation and yield throughout the plant (crop) growing season. Both below-ground (3D root architecture), above-ground (stem, leaves, water status, growth, fruit development) and transport traits can be studied.

3 Suggested NMR/MRI accessible traits Rascher et al, 211, Functional Plant Biol. 38 There are some more possibilities.

4 (TD-)NMR and MRI NMR: non-spatially resolved, fast, detailed information, relatively cheap. Problem: tissue heterogeneity MRI: spatially resolved, longer measurement times, less detailed information on cell level. Problem: expensive dedicated equipment. But.

5 The (TD-)NMR signal ALL signal amplitude solids liquids solid+ liquid LIQUIDS t= excitation time (ms)

6 TD NMR: dynamics of water 1 H s One multi echoes analysis Sum of exponentials T2 distribution (CONTIN)

7 onion More details: use diffusion of water molecules to characterize free diffusion path length, combine with T2 =4 ms =16 ms =32 ms =128 ms

8 Effect of membrane permeability on T2 Cherry tomatoes dipped in N2 for different times Amplitude R 2 (s -1 ) T 2 (s)=1/r 2 x35. Amplitude 8.5. T 2 (s) 1.4

9 Longest T2, cell (vacuole) size and membrane permeability (H) MRI 1/T 2,obs = H(1/R x +1/R y +1/R z ) + 1/T 2,bulk 1/T 2 (s -1 ) pearl millet (n=4) maize (n=4),5,1,15,2,25 1/R longitudinal + 2/R radial (m -1 ) Cryo-SEM L. van der Weerd et al., Plant, Cell and Environment 22

10 Stem (apex) growth and T 2 during osmotic stress: maize and millet shoot growth (a.u.) PEG 1/T2 (s -1 ) 12 1 Maize Maize Millet no stress 48 h PEG time (hours) pearl millet maize amp 1/T 2 PEG ADC trans ADC long time (h) van der Weerd et al., Plant, Cell and Environment 22

11 Tonoplast membrane permeability in millet during osmotic stress: 1/T 2,obs = H (S/V) + 1/T 2,bulk H (1-5 m s -1 ) Osmotic stress PEG MRI time (h) Increase in H may facilitate water redistribution between tissues: aquaporins? van der Weerd et al., Plant, Cell and Environment 22 Cryo-SEM

12 T2, diffusion and permeability cytoplasm R y R x Relaxation: 1/T 2,obs = H(S/V) + 1/T 2,bulk Can we get information about S/V? H vacuole Yes! Diffusion as a function of diffusion time: Restricted due to finite compartment size Short diffusion distance: D app (=ADC) = D S/V C D 1/2 1/2 Long time-scale: (tissue) permeability Can we become independent of S/V? Yes: T1/T2

13 Conversion of starch: interaction between mobile and solid protons 2C 4C T = 8 weeks 8 weeks

14 Transport traits: especially appealing Xylem: Simple proportionality (modified Darcy s law) to compare (woody) plants by xylem specific conductivity, K s (length normalized) is rate of sap flow per crosssectional area at a given pressure gradient: K s /(LA/XA) VPD.g s.ht/( s - L ) Phloem: transport between source (leaves) and sinks (roots, fruits, growing tissue,..). Can it limit optimal photosynthesis? Loading from sucrose/starch. Can we benefit from optimized unloading?

15 Integrated model: photosynthesis, water and sugar Xylem and phloem sap flows are difficult to study because of their extreme sensitivity to invasive experimentation. Consequently little is known regarding the dynamics of sap flow and conductivity in an intact plant. If and when xylem transport and phloem can be limiting for optimal photosynthetic activity, CO2 uptake and plant performance in greenhouse conditions are not yet resolved. Phloem??? Xylem? De Schepper and Steppe, J Exp Bot. 21

16 Dynamic or displacement imaging P(r r,), conditional displacement probability displacement r + gradient G => frequency or phase shift diffusion, perfusion random, => no net phase shift flow: equal for all spins => net phase shift detect signal as function of G =FT=> distribution of displacements r

17 Propagator and flow characteristics For every pixel in the image or selected regions! Volume-flow R Q R R max P n R, R A ref P(R) (a.u.) A total propagator flowing water stationary water Average velocity v R R max n R R R max R P P n R, R, R displacement (um) (?m) (m) R FCA R R max P n R, A ( Q / v ) ref

18 Flow: xylem and phloem in Maize Amount of water flow: xylem (day) T2 flow: xylem and phloem (night)

19 NMR/MRI: axial and radial transport and water content in storage pools a water content b T c T 1 phloem and xylem volumeflow d 15*1-3 Resolution: 8-1 m Velocities: 1 m/s tens of cm/s 1 5*1-3

20 Dynamics in xylem and phloem flow a volume flow (mm3/s) water content a Poplar b velocity (mm/s) volume flow (mm3/s) T 2 c Tomato velocity (mm/s) stationary water / pixel (%) a flow conducting area / pixel (%) b 2% 1 c volume flow (mm3/s) b time (h) T Castor bean 1 1 time (h) volume flow velocity velocity (mm/s) d time (h) phloem and xylem volumeflow volume flow (mm3/s) d Tobacco 5*1-3 15* time (h) velocity (mm/s) average linear velocity / pixel (mm/s) c 1% 2.4 volume flow / pixel (mm 3 /s) d 4% 7.5*1-3 (Windt et al, PC&E 26) 4*1-3

21 Dynamics in flow conducting area / conductance!? (Windt et al, PC&E 26) flow conducting area (mm 2 ) linear flow velocity (mm/s) a b Phloem Day Night poplar castor bean tomato tobacco flow conducting area (mm 2 ) linear flow velocity (mm/s) a b Xylem Day Night poplar castor bean tomato tobacco. poplar castor bean tomato tobacco

22 Phloem flow velocity can not simply be explained by conductivity and / or laminar flow? Mullendore et al, The Plant Cell 21

23 Grape: bi-directional Xylem and phloem flow Phloem has been observed in both directions: Upward and downward (different plants)

24 Imaging stem-truss stalk connection lighting system climate chamber A plant iron yoke magnet poles pole caps gradient system B pot electromagnet and open gradient system

25 Flow in truss stalk tomato during 8 weeks of truss growth: Ratio [xylem]/[phloem] is >3:1and not 1:9!!!!back flow III II c b a 5 fruits red, one green remaining I last fruit red volume flow + - Windt et al, Plant Physiol 29

26 Below ground: 3D root anatomy and water uptake Maximum intensity projection 3T-MRI, Fast Spin Echo 128 x 128 x 128 pixels (FOV 1 cm -> ~.8 x.8 x.8 mm 3 per pixel) Total 3D experiment time 51 min 12 s

27 Root transport: e.g. ecotypes in relation to aquaporin expression Arabidopsis thaliana ecotype: Columbia; age: 4~6 weeks.

28 Transport in roots: pathway and tissue permeability Comp 1 (larger T2 and cell size) - Millet and Mais Comp 2 (smaller T2 and cell size) - Millet and Mais T35 o C T25 o C T15 o C T5 o C T35 o C T25 o C T15 o C T5 o C Permeability, m/s 1E-4 Permeability, m/s 1E-4 1E-5 1E-5 control stress stress2+gd control stress stress2+gd Pearl Millet Mais control stress stress2+gd control stress stress2+gd Pearl Millet Mais

29 NMR / MRI and phenotyping Anatomy: leaf thickness, 3D root structure, thickness of different tissues, cell size, vessel diameter, compartments, Internal parameters: water content in different tissues, transport and flow conducting area (xylem and phloem; sink-source connection), membrane or tissue permeability, starch content (leaves, beans), Static versus dynamics (growth and adaptation processes and rate)

30 MRI Lab bound, but... starting to become (trans)portable

31 Dedicated Plant MRI systems and climate control:.7 and 3T lights climate chamber plant gradient probe and RF coil electromagnet (.75 T) Growth medium Spiral cooler Balance Cooling unit P.C.

32 Chloroplasts, photosynthesis and single-sided portable NMR = 2 ms = 3 ms = 5 ms = 1 ms

33 Rascher et al Func Plant Biol 211

34 Mobile MRI: Kimura et al, 211

35 Halbach Tree scanner FZJuelich: Blumler et al.

36 Hinged Halbach (NMR-CUFF) and U- shape magnet Windt et al, JMR 211 Rascher et al, T 2.5Kg

37 Tree Hugger An open access transportable 1.1 MHz 1 H MRI system for the in situ analysis of living trees in the forest. Access up to 21 cm. Magnet: 55 kg. Jones et al, JMR 218: (212)

38 Conclusions Large number of parameters, some quite unique, is available by both NMR and MRI. The only systematic application (to my best knowledge) is MRI of 3D root anatomy (24 plants/day, can be increased to max 5 plants per day) There is a strong potential, but protocols and hardware have to be further developed This can only be realized via pilots combining NMR/MRIsts and plant scientists

39 Acknowledgements: Carel Windt Natalia Homan Frank Vergeldt Edo Gerkema, John Philippi Alena Prusova Louise van der Weerd, Tom Scheenen, Timur Sibgatullin NWO, LNV, WUR, SENTER, EU Space for partner logo s (place a white shape behind the logo s to hide this text and border)

NOTES: CH 36 - Transport in Plants

NOTES: CH 36 - Transport in Plants NOTES: CH 36 - Transport in Plants Recall that transport across the cell membrane of plant cells occurs by: -diffusion -facilitated diffusion -osmosis (diffusion of water) -active transport (done by transport

More information

C MPETENC EN I C ES LECT EC UR U E R

C MPETENC EN I C ES LECT EC UR U E R LECTURE 7: SUGAR TRANSPORT COMPETENCIES Students, after mastering the materials of Plant Physiology course, should be able to: 1. To explain the pathway of sugar transport in plants 2. To explain the mechanism

More information

0.7 and 3 T MRI and Sap Flow in Intact Trees: Xylem and Phloem in Action

0.7 and 3 T MRI and Sap Flow in Intact Trees: Xylem and Phloem in Action Appl. Magn. Reson. (27) 32, 157 17 DOI 1.17/s723-7-14-3 Printed in The Netherlands Applied Magnetic Resonance.7 and 3 T MRI and Sap Flow in Intact Trees: Xylem and Phloem in Action N. M. Homan 1, C. W.

More information

Transport in Plants Notes AP Biology Mrs. Laux 3 levels of transport occur in plants: 1. Uptake of water and solutes by individual cells -for

Transport in Plants Notes AP Biology Mrs. Laux 3 levels of transport occur in plants: 1. Uptake of water and solutes by individual cells -for 3 levels of transport occur in plants: 1. Uptake of water and solutes by individual cells -for photosynthesis and respiration -ex: absorption of H 2 O /minerals by root hairs 2. Short distance cell-to-cell

More information

Chapter 36~ Transport in Plants

Chapter 36~ Transport in Plants Chapter 36~ Transport in Plants Structural Features Used for Resource Acquistion Roots and stems to do transport of resources Diffusion, active transport, and bulk flow Work in vascular plants to transport

More information

Translocation 11/30/2010. Translocation is the transport of products of photosynthesis, mainly sugars, from mature leaves to areas of growth and

Translocation 11/30/2010. Translocation is the transport of products of photosynthesis, mainly sugars, from mature leaves to areas of growth and Translocation Translocation is the transport of products of photosynthesis, mainly sugars, from mature leaves to areas of growth and storage. Phloem is the tissue through which translocation occurs. Sieve

More information

Dynamic state of water in excised Ligustrum lucidum branches observed by dedicated micro-magnetic resonance imaging

Dynamic state of water in excised Ligustrum lucidum branches observed by dedicated micro-magnetic resonance imaging Plant 2014; 2(3): 33-40 Published online June 30, 2014 (http://www.sciencepublishinggroup.com/j/plant) doi: 10.11648/j.plant.20140203.12 Dynamic state of water in excised Ligustrum lucidum branches observed

More information

Question 1: What are the factors affecting the rate of diffusion? Diffusion is the passive movement of substances from a region of higher concentration to a region of lower concentration. Diffusion of

More information

AP Biology Chapter 36

AP Biology Chapter 36 Chapter 36 Chapter 36 Transport in Plants 2006-2007 Transport in plants - Overview H2O & minerals transport in xylem transpiration evaporation, adhesion & cohesion negative pressure Sugars transport in

More information

Chapter 36: Transport in Vascular Plants - Pathways for Survival

Chapter 36: Transport in Vascular Plants - Pathways for Survival Chapter 36: Transport in Vascular Plants - Pathways for Survival For vascular plants, the evolutionary journey onto land involved differentiation into roots and shoots Vascular tissue transports nutrients

More information

35 Transport in Plants

35 Transport in Plants Transport in Plants 35 Transport in Plants 35.1 How Do Plants Take Up Water and Solutes? 35.2 How Are Water and Minerals Transported in the Xylem? 35.3 How Do Stomata Control the Loss of Water and the

More information

MRI of intact plants. Henk Van As Æ Tom Scheenen Æ Frank J. Vergeldt

MRI of intact plants. Henk Van As Æ Tom Scheenen Æ Frank J. Vergeldt Photosynth Res (2009) 102:213 222 DOI 10.1007/s11120-009-9486-3 REVIEW MRI of intact plants Henk Van As Æ Tom Scheenen Æ Frank J. Vergeldt Received: 3 July 2009 / Accepted: 29 July 2009 / Published online:

More information

CASE STUDY WATER ABSORPTION AND TRANSPORT IN PLANTS

CASE STUDY WATER ABSORPTION AND TRANSPORT IN PLANTS CASE STUDY WATER ABSORPTION AND TRANSPORT IN PLANTS Presentation of the problem: We need a pump to uplift water to a tank. The requirement of a pump is to pull water against the gravity. Look at the human

More information

Transport in Plants (Ch. 23.5)

Transport in Plants (Ch. 23.5) Transport in Plants (Ch. 23.5) Transport in plants H 2 O & minerals transport in xylem Transpiration Adhesion, cohesion & Evaporation Sugars transport in phloem bulk flow Gas exchange photosynthesis CO

More information

Compartments and Transport. Three Major Pathways of Transport. Absorp+on of Water and Minerals by Root Cells. Bulk flow

Compartments and Transport. Three Major Pathways of Transport. Absorp+on of Water and Minerals by Root Cells. Bulk flow Plasmodesmata Channels connec+ng neighboring cells Cell membrane and cytosol are con+nuous from cell to cell Symplast Cytoplasmic con+nuum Apoplast Compartments and Transport Through plasmodesmata con+nuum

More information

Functional Imaging of Plants: A Nuclear Magnetic Resonance Study of a Cucumber Plant

Functional Imaging of Plants: A Nuclear Magnetic Resonance Study of a Cucumber Plant Biophysical Journal Volume 82 January 2002 481 492 481 Functional Imaging of Plants: A Nuclear Magnetic Resonance Study of a Cucumber Plant Tom Scheenen, Anneriet Heemskerk, Andrie de Jager, Frank Vergeldt,

More information

CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-11 TRANSPORT IN PLANTS

CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-11 TRANSPORT IN PLANTS CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-11 TRANSPORT IN PLANTS Plant transport various substance like gases, minerals, water, hormones, photosynthetes and organic solutes to short distance

More information

Ch. 36 Transport in Vascular Plants

Ch. 36 Transport in Vascular Plants Ch. 36 Transport in Vascular Plants Feb 4 1:32 PM 1 Essential Question: How does a tall tree get the water from its roots to the top of the tree? Feb 4 1:38 PM 2 Shoot architecture and Light Capture: Phyllotaxy

More information

AP Biology. Transport in plants. Chapter 36. Transport in Plants. Transport in plants. Transport in plants. Transport in plants. Transport in plants

AP Biology. Transport in plants. Chapter 36. Transport in Plants. Transport in plants. Transport in plants. Transport in plants. Transport in plants Chapter 36. Transport in Plants evaporation, adhesion & cohesion negative pressure evaporation, adhesion & cohesion negative pressure transport in phloem bulk flow Calvin cycle in leaves loads sucrose

More information

in angiosperms 10/29/08 Roots take up water via roots Large surface area is needed Roots branch and have root hairs Cortex structure also helps uptake

in angiosperms 10/29/08 Roots take up water via roots Large surface area is needed Roots branch and have root hairs Cortex structure also helps uptake in angiosperms A. Root System Roots take up water via roots Large surface area is needed Roots branch and have root hairs Cortex structure also helps uptake 1 B. Minerals Nitrogen (NO 3-,NH 4+ ) Potassium

More information

Division Ave. High School AP Biology

Division Ave. High School AP Biology Monocots & dicots Angiosperm are divide into 2 classes dicots (eudicot) 2 cotyledons (seed leaves) leaves with network of veins woody plants, trees, shrubs, beans monocots 1 cotyledon leaves with parallel

More information

Introduction to Plant Transport

Introduction to Plant Transport Introduction to Plant Transport The algal ancestors of plants were completely immersed in water and dissolved minerals. The adaptation to land involved the differentiation of the plant body into roots,

More information

Chapter 36. Transport in Vascular Plants

Chapter 36. Transport in Vascular Plants Chapter 36 Transport in Vascular Plants Overview: Pathways for Survival For vascular plants The evolutionary journey onto land involved the differentiation of the plant body into roots and shoots Vascular

More information

Respiration and Carbon Partitioning. Thomas G Chastain CROP 200 Crop Ecology and Morphology

Respiration and Carbon Partitioning. Thomas G Chastain CROP 200 Crop Ecology and Morphology Respiration and Carbon Partitioning Thomas G Chastain CROP 200 Crop Ecology and Morphology Respiration Aerobic respiration is the controlled oxidation of reduced carbon substrates such as a carbohydrate

More information

The plant body has a hierarchy of organs, tissues, and cells. Plants, like multicellular animals:

The plant body has a hierarchy of organs, tissues, and cells. Plants, like multicellular animals: Chapter 28 The plant body has a hierarchy of organs, tissues, and cells Plants, like multicellular animals: o Have organs composed of different tissues, which are in turn composed of cells 3 basic organs:

More information

The Science of Plants in Agriculture Pl.Sci 102. Getting to Know Plants

The Science of Plants in Agriculture Pl.Sci 102. Getting to Know Plants The Science of Plants in Agriculture Pl.Sci 102 Getting to Know Plants Growth and Development of Plants Growth and Development of Plants Why it s important to have knowledge about plant development. What

More information

Plant Anatomy AP Biology

Plant Anatomy AP Biology Plant Anatomy 2006-2007 Basic plant anatomy 1 root root tip root hairs Roots 1 Roots anchor plant in soil, absorb minerals & water, & store food fibrous roots (1) mat of thin roots that spread out monocots

More information

Please sit next to a partner. you are an A or a B

Please sit next to a partner. you are an A or a B Please sit next to a partner you are an A or a B Plants Transport in Vascular Plants Transport Overview Vascular tissue transports nutrients throughout a plant Such transport may occur over long distances

More information

IB Bio: Plant Biology. Topic 9

IB Bio: Plant Biology. Topic 9 IB Bio: Plant Biology Topic 9 9.1: Transport in xylem How and why does water move up a plant? How do plants conserve water? 9.2: Transport in phloem How and why and where does food move in a plant? 9.3:

More information

Bio Factsheet. Transport in Plants. Number 342

Bio Factsheet. Transport in Plants.   Number 342 Number 342 Transport in Plants This Factsheet: Explains why plants need a transport system Describes what plants transport Describes the tissues which carry out transport Outlines the position of the xylem

More information

POTASSIUM IN PLANT GROWTH AND YIELD. by Ismail Cakmak Sabanci University Istanbul, Turkey

POTASSIUM IN PLANT GROWTH AND YIELD. by Ismail Cakmak Sabanci University Istanbul, Turkey POTASSIUM IN PLANT GROWTH AND YIELD by Ismail Cakmak Sabanci University Istanbul, Turkey Low K High K High K Low K Low K High K Low K High K Control K Deficiency Cakmak et al., 1994, J. Experimental Bot.

More information

Transport in Plants. Transport in plants. Transport across Membranes. Water potential 10/9/2016

Transport in Plants. Transport in plants. Transport across Membranes. Water potential 10/9/2016 Transport in Plants Transport in plants How is a plant able to move water and nutrients from roots to the rest of the plant body? Especially tall trees? Sequoia can be over 300 feet tall! Transport across

More information

CHAPTER 32 TRANSPORT IN PLANTS OUTLINE OBJECTIVES

CHAPTER 32 TRANSPORT IN PLANTS OUTLINE OBJECTIVES CHAPTER 32 TRANSPORT IN PLANTS OUTLINE I. The traffic of water and solutes occurs on cellular, organ, and whole-plant levels: an overview of transport in plants A. Transport at the Cellular Level B. Short

More information

Water and Food Transportation

Water and Food Transportation Water and Food Transportation Sugars in a Plant Sugar Form Location in Plant Organ Function of Sugar form Glucose Leaf Energy (made in photosynthesis summer, used in cellular respiration for growth-spring)

More information

Macro- and Microscopic Aspects of Fruit Water Relations Influencing Growth and Quality in Tomato

Macro- and Microscopic Aspects of Fruit Water Relations Influencing Growth and Quality in Tomato Macro- and Microscopic Aspects of Fruit Water Relations Influencing Growth and Quality in Tomato W. van Ieperen, U. van Meeteren, J. Oosterkamp and G. Trouwborst Department of Plant Sciences, Horticultural

More information

Answer Key. Vocabulary Practice. 1. guard cell 2. parenchyma cell 3. sclerenchyma cell 4. collenchyma cell 5. All are types of plant cells

Answer Key. Vocabulary Practice. 1. guard cell 2. parenchyma cell 3. sclerenchyma cell 4. collenchyma cell 5. All are types of plant cells Answer Key Vocabulary Practice A. Choose the Right Word 1. guard cell 2. parenchyma cell 3. sclerenchyma cell 4. collenchyma cell 5. All are types of cells 6. meristem 7. ground tissue 8. dermal tissue

More information

Chapter C3: Multicellular Organisms Plants

Chapter C3: Multicellular Organisms Plants Chapter C3: Multicellular Organisms Plants Multicellular Organisms Multicellular organisms have specialized cells of many different types that allow them to grow to a larger size than single-celled organisms.

More information

Plant Structure and Function (Ch. 23)

Plant Structure and Function (Ch. 23) Plant Structure and Function (Ch. 23) Basic plant anatomy 1 root root tip root hairs Roots Roots anchor plant in soil, absorb minerals & water, & store food fibrous roots (1) mat of thin roots that spread

More information

'H NMR Techniques in Studies of Transport of Paramagnetic Ions in Multicellular Systems

'H NMR Techniques in Studies of Transport of Paramagnetic Ions in Multicellular Systems Gen. Physiol. Biophys. (1987), 6, 609 615 609 'H NMR Techniques in Studies of Transport of Paramagnetic Ions in Multicellular Systems S. RATKOVIČ 1 AND G. BAČIČ 2 1 Department of Technology and Chemical

More information

Resource acquisition and transport in vascular plants

Resource acquisition and transport in vascular plants Resource acquisition and transport in vascular plants Overview of what a plant does Chapter 36 CO 2 O 2 O 2 and and CO 2 CO 2 O 2 Sugar Light Shoots are optimized to capture light and reduce water loss

More information

Introduction to Plant Transport

Introduction to Plant Transport Introduction to Plant Transport The algal ancestors of plants were completely immersed in water and dissolved minerals. The adaptation to land involved the differentiation of the plant body into roots,

More information

Today: Plant Structure Exam II is on F March 31

Today: Plant Structure Exam II is on F March 31 Next few lectures are on plant form and function Today: Plant Structure Exam II is on F March 31 Outline Plant structure I. Plant Cells structure & different types II. Types of meristems Apical meristems:

More information

Transport in Plants AP Biology

Transport in Plants AP Biology Transport in Plants 2006-2007 Water & mineral absorption Water absorption from soil osmosis aquaporins Mineral absorption active transport proton pumps active transport of H + aquaporin root hair proton

More information

Water Relations in Viticulture BRIANNA HOGE AND JIM KAMAS

Water Relations in Viticulture BRIANNA HOGE AND JIM KAMAS Water Relations in Viticulture BRIANNA HOGE AND JIM KAMAS Overview Introduction Important Concepts for Understanding water Movement through Vines Osmosis Water Potential Cell Expansion and the Acid Growth

More information

Recap. Waxy layer which protects the plant & conserves water. Contains chloroplasts: Specialized for light absorption.

Recap. Waxy layer which protects the plant & conserves water. Contains chloroplasts: Specialized for light absorption. Recap Contains chloroplasts: Specialized for light absorption Waxy layer which protects the plant & conserves water mesophyll Layer contains air spaces: Specialized for gas exchange Vascular Tissue Exchange

More information

Two major categories. BIOLOGY 189 Fundamentals of Life Sciences. Spring 2004 Plant Structure and Function. Plant Structure and Function

Two major categories. BIOLOGY 189 Fundamentals of Life Sciences. Spring 2004 Plant Structure and Function. Plant Structure and Function BIOLOGY 189 Fundamentals of Life Sciences Spring 2004 Plant Structure and Function 18 16 14 12 10 8 6 Examination #1 Class Average: 33/60 for 55% 4 Chapters 31-32 32 2 0 6 10 15 20 25 30 35 40 45 50 55

More information

6 Heat Ratio Method Theory

6 Heat Ratio Method Theory 6 Heat Ratio Method Theory The Heat Ratio Method (HRM) can measure both sap velocity (Vs) and volumetric water flow in xylem tissue using a short pulse of heat as a tracer. It is a modification of the

More information

TREES. Functions, structure, physiology

TREES. Functions, structure, physiology TREES Functions, structure, physiology Trees in Agroecosystems - 1 Microclimate effects lower soil temperature alter soil moisture reduce temperature fluctuations Maintain or increase soil fertility biological

More information

Anisotropy of Shale Properties: A Multi-Scale and Multi-Physics Characterization

Anisotropy of Shale Properties: A Multi-Scale and Multi-Physics Characterization Observation Scale Wavelength 10 0 10 4 10 6 10 8 10 12 10 16 10 18 10 20 Frequency (Hz) Anisotropy of Shale Properties: A Multi-Scale and Multi-Physics Characterization Elastic, Mechanical, Petrophysical

More information

2018 Version. Photosynthesis Junior Science

2018 Version. Photosynthesis Junior Science 2018 Version Photosynthesis Junior Science 1 Plants fill the role of Producers in a community Plants are special because they have leaves and are able to produce their own food by the process of photosynthesis

More information

AP Biology Transpiration and Stomata

AP Biology Transpiration and Stomata AP Biology Transpiration and Stomata Living things must exchange matter with the environment to survive, Example: Gas Exchange in Plants photosynthesis cellular respiration 1. During which hours does a

More information

Stems and Transport in Vascular Plants. Herbaceous Stems. Herbaceous Dicot Stem 3/12/2012. Chapter 34. Basic Tissues in Herbaceous Stems.

Stems and Transport in Vascular Plants. Herbaceous Stems. Herbaceous Dicot Stem 3/12/2012. Chapter 34. Basic Tissues in Herbaceous Stems. Bud scale Terminal bud Stems and Transport in Plants One year's growth Terminal bud scale scars Axillary bud Leaf scar Node Internode Node Chapter 34 Lenticels Terminal bud scale scars Bundle scars A Woody

More information

Movement of water and solutes in plants Chapter 4 and 30

Movement of water and solutes in plants Chapter 4 and 30 Movement of water and solutes in plants Chapter 4 and 30 Molecular Movement Diffusion Molecules or ions moving in the opposite direction = movement against a diffusion gradient. Rates of diffusion are

More information

CHAPTER TRANSPORT

CHAPTER TRANSPORT CHAPTER 2 2.4 TRANSPORT Uptake of CO2 FOCUS: Uptake and transport of water and mineral salts Transport of organic substances Physical forces drive the transport of materials in plants over a range of distances

More information

Transport of substances in plants

Transport of substances in plants Transport of substances in plants We have already looked at why many organisms need transport systems with special reference to surface area and volume. The larger the volume : surface area ratio, the

More information

PLANT STRUCTURE AND FUNCTION Read pages Re-read and then complete the questions below.

PLANT STRUCTURE AND FUNCTION Read pages Re-read and then complete the questions below. PLANT STRUCTURE AND FUNCTION Read pages 600-602. Re-read and then complete the questions below. 1. PLANT TISSUES - plant tissues are made up of 3 basic cell types: Parenchyma, Collenchyma or Sclerenchyma

More information

Page 1. Gross Anatomy of a typical plant (Angiosperm = Flowering Plant): Gross Anatomy of a typical plant (Angiosperm = Flowering Plant):

Page 1. Gross Anatomy of a typical plant (Angiosperm = Flowering Plant): Gross Anatomy of a typical plant (Angiosperm = Flowering Plant): Chapter 43: Plant Form and Function Gross Anatomy of a typical plant (Angiosperm = Flowering Plant): Root System Anchor plant Absorb water / nutrients Store surplus sugars Transport materials from / to

More information

RuBP has 5 carbons and is regenerated in the Calvin cycle. In the Calvin cycle, carbon is conserved, ATP is used and NADPH is used.

RuBP has 5 carbons and is regenerated in the Calvin cycle. In the Calvin cycle, carbon is conserved, ATP is used and NADPH is used. Carbon Reactions: CO 2 is fixed by Rubisco located in the stroma. The molecule that is carboxylated is RuBP. RuBP has 5 carbons and is regenerated in the Calvin cycle. In the Calvin cycle, carbon is conserved,

More information

cytosol stroma Photorespiration: Ribulose bisphosphate carboxylase/oxygenase (Rubisco) Ribulose bisphosphate carboxylase/oxygenase (Rubisco)

cytosol stroma Photorespiration: Ribulose bisphosphate carboxylase/oxygenase (Rubisco) Ribulose bisphosphate carboxylase/oxygenase (Rubisco) Carbon Reactions: CO 2 is fixed by Rubisco located in the stroma. The molecule that is carboxylated is RuBP. RuBP has 5 carbons and is regenerated in the Calvin cycle. In the Calvin cycle, carbon is conserved,

More information

Plant Structure and Growth

Plant Structure and Growth Plant Structure and Growth A. Flowering Plant Parts: The flowering plants or are the most diverse group of plants. They are divided into 2 classes and. Examples of monocots: Examples of dicots: The morphology

More information

Master Gardeners. Botany for the Gardener. Developed by Steve Dubik.

Master Gardeners. Botany for the Gardener. Developed by Steve Dubik. Master Gardeners Botany for the Gardener Developed by Steve Dubik sdubik@umd.edu Steve.dubik@montgomerycollege.edu 1 Plant cell Basic building block of life. 2 Plant cell - key points Cell membrane Cytoplasm

More information

2014 Pearson Education, Inc. 1

2014 Pearson Education, Inc. 1 1 CO 2 O 2 Light Sugar O 2 and minerals CO 2 2 Buds 42 29 21 34 13 26 5 18 10 31 23 8 15 28 16 2 24 Shoot apical meristem 7 3 20 1 mm 32 11 19 12 6 4 1 25 17 14 9 40 27 22 3 Cell wall Apoplastic route

More information

Part II: Magnetic Resonance Imaging (MRI)

Part II: Magnetic Resonance Imaging (MRI) Part II: Magnetic Resonance Imaging (MRI) Contents Magnetic Field Gradients Selective Excitation Spatially Resolved Reception k-space Gradient Echo Sequence Spin Echo Sequence Magnetic Resonance Imaging

More information

Plants and Photosynthesis. Chapters 6 and 31

Plants and Photosynthesis. Chapters 6 and 31 Plants and Photosynthesis Chapters 6 and 31 Unit 11, Lecture 1 Topics: Introduction to Plants The Shoot System: The Flower Covers information from: Chapter 31 (PG 598 619) Terms to Describe Plants Eukaryotic

More information

Stomata and water fluxes through plants

Stomata and water fluxes through plants Stomata and water fluxes through plants Bill Davies The Lancaster Environment Centre, UK Summary Stomata and responses to the environment Conductance, a function of frequency and aperture Measuring/estimating

More information

Plants. Anatomy, Physiology & Photosynthesis

Plants. Anatomy, Physiology & Photosynthesis Plants Anatomy, Physiology & Photosynthesis Plant anatomy Aerial portion absorb light energy gas exchange of O 2, CO 2 & H 2 O stomata (holes) Structural support Terrestrial portion anchorage H 2 O absorption

More information

Resource Acquisition and Transport in Vascular Plants

Resource Acquisition and Transport in Vascular Plants Chapter 36 Resource Acquisition and Transport in Vascular Plants PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

Quiz 1: Cells and Cell Structures

Quiz 1: Cells and Cell Structures Quiz 1: Cells and Cell Structures 1. Identify the structures in the diagram. (3 marks) 2. List the 3 cell structures not found in animal cells but are found in plants cells. (1 mark) 3. Where is DNA found

More information

Introduction to Biomedical Imaging

Introduction to Biomedical Imaging Alejandro Frangi, PhD Computational Imaging Lab Department of Information & Communication Technology Pompeu Fabra University www.cilab.upf.edu MRI advantages Superior soft-tissue contrast Depends on among

More information

1. Introduction. Hiromi Kano 1, Mika Koizumi 2, * address: (H. Kano), (M.

1. Introduction. Hiromi Kano 1, Mika Koizumi 2, *  address: (H. Kano), (M. Plant 2014; 2(6): 60-67 Published online December 17, 2014 (http://www.sciencepublishinggroup.com/j/plant) doi: 10.11648/j.plant.20140206.11 ISSN: 2331-0669 (Print); ISSN: 2331-0677 (Online) Seasonal changes

More information

Plant Structure and Function

Plant Structure and Function Plant Structure and Function A Meridian Biology AP Study Guide by John Ho and Tim Qi Plant Terms Growth: Growth Types Type Location Description Primary Primary Vertical growth (up-down), dominant direction

More information

Organs and leaf structure

Organs and leaf structure Organs and leaf structure Different types of tissues are arranged together to form organs. Structure: 2 parts (Petiole and Leaf Blade) Thin flat blade, large surface area Leaves contain all 3 types of

More information

Plants. Plant Form and Function. Tissue Systems 6/4/2012. Chapter 17. Herbaceous (nonwoody) Woody. Flowering plants can be divided into two groups:

Plants. Plant Form and Function. Tissue Systems 6/4/2012. Chapter 17. Herbaceous (nonwoody) Woody. Flowering plants can be divided into two groups: Monocots Dicots 6/4/2012 Plants Plant Form and Function Chapter 17 Herbaceous (nonwoody) In temperate climates, aerial parts die back Woody In temperate climates, aerial parts persist The Plant Body Functions

More information

AP Biology. Basic anatomy. Chapter 35. Plant Anatomy. Shoots. Expanded anatomy. Roots. Modified shoots root shoot (stem) leaves

AP Biology. Basic anatomy. Chapter 35. Plant Anatomy. Shoots. Expanded anatomy. Roots. Modified shoots root shoot (stem) leaves Chapter 35. Basic anatomy root shoot (stem) leaves Plant Anatomy Expanded anatomy root root tip root hairs shoot (stem) nodes internodes apical buds axillary buds flowers leaves veins Shoots Shoots consist

More information

Biology 2 Chapter 21 Review

Biology 2 Chapter 21 Review Biology 2 Chapter 21 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is not a tissue system of vascular plants? a. vascular

More information

The three principal organs of seed plants are roots, stems, and leaves.

The three principal organs of seed plants are roots, stems, and leaves. 23 1 Specialized Tissues in Plants Seed Plant Structure The three principal organs of seed plants are roots, stems, and leaves. 1 of 34 23 1 Specialized Tissues in Plants Seed Plant Structure Roots: absorb

More information

The Basics of Magnetic Resonance Imaging

The Basics of Magnetic Resonance Imaging The Basics of Magnetic Resonance Imaging Nathalie JUST, PhD nathalie.just@epfl.ch CIBM-AIT, EPFL Course 2013-2014-Chemistry 1 Course 2013-2014-Chemistry 2 MRI: Many different contrasts Proton density T1

More information

Chapter 35 Regulation and Transport in Plants

Chapter 35 Regulation and Transport in Plants Chapter 35 Regulation and Remember what plants need Photosynthesis light reactions Calvin cycle light sun H 2 O ground CO 2 air What structures have plants evolved to supply these needs? Interdependent

More information

Magnetic resonance imaging MRI

Magnetic resonance imaging MRI Magnetic resonance imaging MRI Introduction What is MRI MRI is an imaging technique used primarily in medical settings that uses a strong magnetic field and radio waves to produce very clear and detailed

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS 54 BIOLOGY, EXEMPLAR PROBLEMS CHAPTER 11 TRANSPORT IN PLANTS MULTIPLE CHOICE QUESTIONS 1. Which of the following statements does not apply to reverse osmosis? a. it is used for water purification. b. In

More information

thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 2.3 Transport in Plants. Answers.

thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 2.3 Transport in Plants. Answers. thebiotutor AS Biology OCR Unit F211: Cells, Exchange & Transport Module 2.3 Transport in Plants Answers Andy Todd 2013 1 1. (i) transports water (up plant); ACCEPT alternative wording for transport e.g.

More information

-Each asexual organs. -Anchors the plant -Absorbs water and minerals -Stores sugars and starches

-Each asexual organs. -Anchors the plant -Absorbs water and minerals -Stores sugars and starches Plants are made up of: -organs, tissues, and cells The three major plant organs are: -Roots, stems, and leaves -Each asexual organs Plants have a Root System beneath the ground that us a multicellular

More information

Transport in Plant (IGCSE Biology Syllabus )

Transport in Plant (IGCSE Biology Syllabus ) Transport in Plant (IGCSE Biology Syllabus 2016-2018) Plants have transport systems to move food, water and minerals around. These systems use continuous tubes called xylem and phloem: - Xylem vessels

More information

Hormonal and other chemical effects on plant growth and functioning. Bill Davies Lancaster Environment Centre, UK

Hormonal and other chemical effects on plant growth and functioning. Bill Davies Lancaster Environment Centre, UK Hormonal and other chemical effects on plant growth and functioning Bill Davies Lancaster Environment Centre, UK Integrating the impacts of soil drought and atmospheric stress High radiant load Reduced

More information

Plant Tissues and Organs. Topic 13 Plant Science Subtopics , ,

Plant Tissues and Organs. Topic 13 Plant Science Subtopics , , Plant Tissues and Organs Topic 13 Plant Science Subtopics 13.1.2, 13.1.3, 13.1.4 Objectives: List and describe the major plant organs their structure and function List and describe the major types of plant

More information

3. Describe the role played by protein pumps during active transport in plants.

3. Describe the role played by protein pumps during active transport in plants. CLASS XI BIOLOGY Transport in Plants 1. What are the factors affecting the rate of diffusion? Answer: Factors affecting the rate of diffusion: 1. Gradient of Concentration 2. Permeability of membrane 3.

More information

Non Permanent Tissues - Meristematic Tissue

Non Permanent Tissues - Meristematic Tissue PLANT TISSUES Non Permanent Tissues - Meristematic Tissue Undifferentiated plant cells that are continually dividing by mitosis Large thin walled cells No vacuole Dense cytoplasm Large nucleus Found at

More information

Resource Acquisition and Transport in Vascular Plants

Resource Acquisition and Transport in Vascular Plants Chapter 36 Resource Acquisition and Transport in Vascular Plants PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

OCR (A) Biology A-level

OCR (A) Biology A-level OCR (A) Biology A-level Topic 3.3: Transport in plants Notes Plants require a transport system to ensure that all the cells of a plant receive a sufficient amount of nutrients. This is achieved through

More information

PII S X(98) FLOW AND TRANSPORT STUDIES IN (NON)CONSOLIDATED POROUS (BIO)SYSTEMS CONSISTING OF SOLID OR POROUS BEADS BY PFG NMR

PII S X(98) FLOW AND TRANSPORT STUDIES IN (NON)CONSOLIDATED POROUS (BIO)SYSTEMS CONSISTING OF SOLID OR POROUS BEADS BY PFG NMR PII S0730-725X(98)00052-6 Magnetic Resonance Imaging, Vol. 16, Nos. 5/6, pp. 569 573, 1998 1998 Elsevier Science Inc. All rights reserved. Printed in the USA. 0730-725X/98 $19.00.00 Contributed Paper FLOW

More information

Crop Physiology. Plant/Crop Physiology. First

Crop Physiology. Plant/Crop Physiology. First Plant/Crop Physiology Plant physiology is a sub-discipline of botany concerned with the functioning of plants. Includes the study of all the internal activities of plants those chemical and physical processes

More information

WHAT DO you think of when you

WHAT DO you think of when you Stem Anatomy WHAT DO you think of when you think of a stem? Do you think of a flower stalk, the trees in your area, or a soybean stalk? Most people probably visualize something like the flower or the bean

More information

screw clip air bubble Transpiration itself is not measured directly by a potometer....

screw clip air bubble Transpiration itself is not measured directly by a potometer.... 1. Transpiration is the loss of water from plants by evaporation. The diagram below shows a potometer, an apparatus used to estimate transpiration rates. water reservoir leafy shoot screw clip air bubble

More information

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics Magnetic Resonance Imaging Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics pal.e.goa@ntnu.no 1 Why MRI? X-ray/CT: Great for bone structures and high spatial resolution Not so great

More information

UNIT A: Basic Principles of Plant Science with a focus on Field Crops. Lesson 1: Examining Plant Structures and Functions

UNIT A: Basic Principles of Plant Science with a focus on Field Crops. Lesson 1: Examining Plant Structures and Functions UNIT A: Basic Principles of Plant Science with a focus on Field Crops Lesson 1: Examining Plant Structures and Functions 1 Terms Alternate leaf arrangement Bulb Cell Cell specialization Cladophyll Compound

More information

Plants Week 6 Booklet

Plants Week 6 Booklet Plants Week 6 Booklet Living vs. Non-Living Foss Investigation #5 The Vascular System Part 1: What Happened to the Water? Part 2: Looking at Plant Structures Not in Foss- Nonvascular Systems Types of Roots

More information

REVIEW 7: PLANT ANATOMY & PHYSIOLOGY UNIT. A. Top 10 If you learned anything from this unit, you should have learned:

REVIEW 7: PLANT ANATOMY & PHYSIOLOGY UNIT. A. Top 10 If you learned anything from this unit, you should have learned: Period Date REVIEW 7: PLANT ANATOMY & PHYSIOLOGY UNIT A. Top 10 If you learned anything from this unit, you should have learned: 1. Gas exchange a. structure: stomates b. function: diffusion, supports

More information

DNA or RNA metabolism (1%) Signal transduction (2%) Development (2%) Other cellular processes (17%)

DNA or RNA metabolism (1%) Signal transduction (2%) Development (2%) Other cellular processes (17%) Fig. 35-24 Other metabolism (18%) DNA or RNA metabolism (1%) Signal transduction (2%) Development (2%) Unknown (24%) Energy pathways (3%) Cell division and organization (3%) Transport (4%) Transcription

More information

BIOL 221 Concepts of Botany Water Relations, Osmosis and Transpiration:

BIOL 221 Concepts of Botany Water Relations, Osmosis and Transpiration: BIOL 221 Concepts of Botany Topic 12: Water Relations, Osmosis and Transpiration: A. Water Relations Water plays a critical role in plants. Water is the universal solvent that allows biochemical reactions

More information

Plant Transport and Nutrition

Plant Transport and Nutrition Plant Transport and Nutrition Chapter 36: Transport in Plants H 2 O & Minerals o Transport in xylem o Transpiration Evaporation, adhesion & cohesion Negative pressure. Sugars o Transport in phloem. o Bulk

More information