Bioinformatics. Transcriptome

Size: px
Start display at page:

Download "Bioinformatics. Transcriptome"

Transcription

1 Bioinformatics Transcriptome Université Libre de Bruxelles, Belgique Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe)

2 Bioinformatics Transcriptome Université Libre de Bruxelles, Belgique Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe)

3 Measuring the expression of all the genes of a genome derisi et al. (1997). Science 278: In 1997, derisi and co-workers develop a method to measure the level of transcription of all the genes of a genome. The method allows to compare the concentrations of mrna of each gene between two experimental conditions Green channel: reference Red channel: test The intensity of a spot indicates the average concentration of the corresponding mrna in the two samples. The color of a spot indicates regulation: Red: up-regulated in the test, relative to the reference condition Green: down-regulated

4 DNA chip technology Cell culture, tissue,... RNA extraction Synthesis of fluorescent cdna Sample 1 Sample 2 RNA cdna RNA cdna Brightness Quantity Color Specificity yellowish reddish greenish not specific sample 1 - specific sample 2 - specific DNA chip Source: derisi et al., Science 1997

5 Scanning result slide from Peter Sterk

6 Complete microarray Source:DeRisi et al. (1997) Science, 278(5338), derisi et al. (1997). Science 278:

7 DNA chips raw measurements Raw measurements Red intensity Red background Green intensity Green background Intensity background = level of expression Red in experimental conditions Green in control

8 DNA chips useful metrics The level of regulation is represented by the ratio r = red " red.bg green " green.bg r >1 r < 1 up-regulated down-regulated The log-ratio provides a more convenient statistic (we will see why during the course) log 2 is even more convenient because the scale is intuitive # red " red.bg & R = log 2 % ( $ green " green.bg' R < 0 down-regulated R > 0 up-regulated R > 1 regulated by a factor of 2 R > 2 regulated by a factor of 4 R > w regulated by a factor of 2 w

9 Time series At each time point, the expression level is compared to the control (log-ratio) Example: Nitrogen depletion ORF Gene 30 min 1 hour 2 hours 4 hours 8 hours 12 hours 1 days 2 days 3 days 5 days YAL001C TFC YAL002W VPS YAL003W EFB YAL004W YAL004W YAL005C SSA YAL007C ERP YAL008W FUN YAL009W SPO YAL010C MDM YAL011W YAL011W YAL012W CYS YAL013W DEP YAL014C YAL014C YAL015C NTG Source: Gasch et al (2000) Molecular Biology of the Cell 11:

10 Examples of experimental conditions Presence/absence of a metabolite gal vs glucose Transcription factor mutants Yap1p over-expression TUP1 deletion Massive environmental changes rich versus minimal medium diauxic shift (7 time points during the shift) Cell differentiation sporulation mating type Cell cycle

11 Temporal profiles of expression derisi et al measured the level of expression of all the genes at 7 time points during the diauxic shit. The figure shows groups of genes show similar expression profiles, Some of these groups contain genes with similar function (e.g. coding for ribosomal proteins) Some of these groups have a common regulatory element in their promoter (e.g. stress response element). derisi et al. (1997). Science 278:

12 Cell cycle In 1998, Spellman and colleagues measure the expression of all yeast genes during the cell cycle. They detect 800 genes showing periodical fluctuations of expression. These genes can be sorted according to the peak of expression, in order to group genes induced during the different phases of the cell cycle (G1, S, G2, M). Spellman et al. (1998) Molecular Biology of the Cell 9:

13 Gene expression data: hierarchical clustering Alpha cdc15 cdc28 Elu MCM CLB2 SIC1 MAT CLN2 Y' On the image, genes are clustered according to expression profiles, using Michael Eisen s software cluster (Eisen et al., PNAS 1998: 95, ). Strengths The profiles and the clusters are visible together Familiar to biologists (frequently used for phylogeny) Weaknesses Isomorphism: each node of the tree can be permuted vertical distance between genes does not reflect the real distance Where to set the cluster boundaries? The tree does not reflect the combinatorial aspect of regulation MET Spellman et al. (1998). Mol Biol Cell 9(12),

14 Gasch (2000) - gene response to environmental changes Gasch et al. (2000) measure the transcriptional response of yeast genes to various environmental changes 173 microarrays ~6000 genes per microarray

15 Classification of cancer types Microarrays are also used to select genes which will serve as molecular signatures to classify cancer types. These genes can then be used to establish a diagnostic for new patients. Golub et al. (1999). Science 286:

Matrix-based pattern discovery algorithms

Matrix-based pattern discovery algorithms Regulatory Sequence Analysis Matrix-based pattern discovery algorithms Jacques.van.Helden@ulb.ac.be Université Libre de Bruxelles, Belgique Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe)

More information

Introduction to clustering methods for gene expression data analysis

Introduction to clustering methods for gene expression data analysis Introduction to clustering methods for gene expression data analysis Giorgio Valentini e-mail: valentini@dsi.unimi.it Outline Levels of analysis of DNA microarray data Clustering methods for functional

More information

Introduction to clustering methods for gene expression data analysis

Introduction to clustering methods for gene expression data analysis Introduction to clustering methods for gene expression data analysis Giorgio Valentini e-mail: valentini@dsi.unimi.it Outline Levels of analysis of DNA microarray data Clustering methods for functional

More information

Computational Biology: Basics & Interesting Problems

Computational Biology: Basics & Interesting Problems Computational Biology: Basics & Interesting Problems Summary Sources of information Biological concepts: structure & terminology Sequencing Gene finding Protein structure prediction Sources of information

More information

Cluster Analysis of Gene Expression Microarray Data. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 8, 2002

Cluster Analysis of Gene Expression Microarray Data. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 8, 2002 Cluster Analysis of Gene Expression Microarray Data BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 8, 2002 1 Data representations Data are relative measurements log 2 ( red

More information

Estimation of Identification Methods of Gene Clusters Using GO Term Annotations from a Hierarchical Cluster Tree

Estimation of Identification Methods of Gene Clusters Using GO Term Annotations from a Hierarchical Cluster Tree Estimation of Identification Methods of Gene Clusters Using GO Term Annotations from a Hierarchical Cluster Tree YOICHI YAMADA, YUKI MIYATA, MASANORI HIGASHIHARA*, KENJI SATOU Graduate School of Natural

More information

Theoretical distribution of PSSM scores

Theoretical distribution of PSSM scores Regulatory Sequence Analysis Theoretical distribution of PSSM scores Jacques van Helden Jacques.van-Helden@univ-amu.fr Aix-Marseille Université, France Technological Advances for Genomics and Clinics (TAGC,

More information

CONJOINT 541. Translating a Transcriptome at Specific Times and Places. David Morris. Department of Biochemistry

CONJOINT 541. Translating a Transcriptome at Specific Times and Places. David Morris. Department of Biochemistry CONJOINT 541 Translating a Transcriptome at Specific Times and Places David Morris Department of Biochemistry http://faculty.washington.edu/dmorris/ Lecture 1 The Biology and Experimental Analysis of mrna

More information

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Computational Genomics. Reconstructing dynamic regulatory networks in multiple species

Computational Genomics. Reconstructing dynamic regulatory networks in multiple species 02-710 Computational Genomics Reconstructing dynamic regulatory networks in multiple species Methods for reconstructing networks in cells CRH1 SLT2 SLR3 YPS3 YPS1 Amit et al Science 2009 Pe er et al Recomb

More information

Introduction to Bioinformatics

Introduction to Bioinformatics CSCI8980: Applied Machine Learning in Computational Biology Introduction to Bioinformatics Rui Kuang Department of Computer Science and Engineering University of Minnesota kuang@cs.umn.edu History of Bioinformatics

More information

Comparative Network Analysis

Comparative Network Analysis Comparative Network Analysis BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2016 Anthony Gitter gitter@biostat.wisc.edu These slides, excluding third-party material, are licensed under CC BY-NC 4.0 by

More information

Rule learning for gene expression data

Rule learning for gene expression data Rule learning for gene expression data Stefan Enroth Original slides by Torgeir R. Hvidsten The Linnaeus Centre for Bioinformatics Predicting biological process from gene expression time profiles Papers:

More information

Integration of functional genomics data

Integration of functional genomics data Integration of functional genomics data Laboratoire Bordelais de Recherche en Informatique (UMR) Centre de Bioinformatique de Bordeaux (Plateforme) Rennes Oct. 2006 1 Observations and motivations Genomics

More information

Clustering & microarray technology

Clustering & microarray technology Clustering & microarray technology A large scale way to measure gene expression levels. Thanks to Kevin Wayne, Matt Hibbs, & SMD for a few of the slides 1 Why is expression important? Proteins Gene Expression

More information

Matrix-based pattern matching

Matrix-based pattern matching Regulatory sequence analysis Matrix-based pattern matching Jacques van Helden Jacques.van-Helden@univ-amu.fr Aix-Marseille Université, France Technological Advances for Genomics and Clinics (TAGC, INSERM

More information

Bioinformatics 2. Yeast two hybrid. Proteomics. Proteomics

Bioinformatics 2. Yeast two hybrid. Proteomics. Proteomics GENOME Bioinformatics 2 Proteomics protein-gene PROTEOME protein-protein METABOLISM Slide from http://www.nd.edu/~networks/ Citrate Cycle Bio-chemical reactions What is it? Proteomics Reveal protein Protein

More information

10-810: Advanced Algorithms and Models for Computational Biology. Optimal leaf ordering and classification

10-810: Advanced Algorithms and Models for Computational Biology. Optimal leaf ordering and classification 10-810: Advanced Algorithms and Models for Computational Biology Optimal leaf ordering and classification Hierarchical clustering As we mentioned, its one of the most popular methods for clustering gene

More information

A Case Study -- Chu et al. The Transcriptional Program of Sporulation in Budding Yeast. What is Sporulation? CSE 527, W.L. Ruzzo 1

A Case Study -- Chu et al. The Transcriptional Program of Sporulation in Budding Yeast. What is Sporulation? CSE 527, W.L. Ruzzo 1 A Case Study -- Chu et al. An interesting early microarray paper My goals Show arrays used in a real experiment Show where computation is important Start looking at analysis techniques The Transcriptional

More information

Computational Systems Biology

Computational Systems Biology Computational Systems Biology Vasant Honavar Artificial Intelligence Research Laboratory Bioinformatics and Computational Biology Graduate Program Center for Computational Intelligence, Learning, & Discovery

More information

Position-specific scoring matrices (PSSM)

Position-specific scoring matrices (PSSM) Regulatory Sequence nalysis Position-specific scoring matrices (PSSM) Jacques van Helden Jacques.van-Helden@univ-amu.fr Université d ix-marseille, France Technological dvances for Genomics and Clinics

More information

Chapter 15 Active Reading Guide Regulation of Gene Expression

Chapter 15 Active Reading Guide Regulation of Gene Expression Name: AP Biology Mr. Croft Chapter 15 Active Reading Guide Regulation of Gene Expression The overview for Chapter 15 introduces the idea that while all cells of an organism have all genes in the genome,

More information

Inferring Transcriptional Regulatory Networks from High-throughput Data

Inferring Transcriptional Regulatory Networks from High-throughput Data Inferring Transcriptional Regulatory Networks from High-throughput Data Lectures 9 Oct 26, 2011 CSE 527 Computational Biology, Fall 2011 Instructor: Su-In Lee TA: Christopher Miles Monday & Wednesday 12:00-1:20

More information

Eukaryotic Gene Expression

Eukaryotic Gene Expression Eukaryotic Gene Expression Lectures 22-23 Several Features Distinguish Eukaryotic Processes From Mechanisms in Bacteria 123 Eukaryotic Gene Expression Several Features Distinguish Eukaryotic Processes

More information

Proteomics. Yeast two hybrid. Proteomics - PAGE techniques. Data obtained. What is it?

Proteomics. Yeast two hybrid. Proteomics - PAGE techniques. Data obtained. What is it? Proteomics What is it? Reveal protein interactions Protein profiling in a sample Yeast two hybrid screening High throughput 2D PAGE Automatic analysis of 2D Page Yeast two hybrid Use two mating strains

More information

Inferring Transcriptional Regulatory Networks from Gene Expression Data II

Inferring Transcriptional Regulatory Networks from Gene Expression Data II Inferring Transcriptional Regulatory Networks from Gene Expression Data II Lectures 9 Oct 26, 2011 CSE 527 Computational Biology, Fall 2011 Instructor: Su-In Lee TA: Christopher Miles Monday & Wednesday

More information

Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday

Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday 1. What is the Central Dogma? 2. How does prokaryotic DNA compare to eukaryotic DNA? 3. How is DNA

More information

T H E J O U R N A L O F C E L L B I O L O G Y

T H E J O U R N A L O F C E L L B I O L O G Y T H E J O U R N A L O F C E L L B I O L O G Y Supplemental material Breker et al., http://www.jcb.org/cgi/content/full/jcb.201301120/dc1 Figure S1. Single-cell proteomics of stress responses. (a) Using

More information

Substitution matrices

Substitution matrices Introduction to Bioinformatics Substitution matrices Jacques van Helden Jacques.van-Helden@univ-amu.fr Université d Aix-Marseille, France Lab. Technological Advances for Genomics and Clinics (TAGC, INSERM

More information

networks in molecular biology Wolfgang Huber

networks in molecular biology Wolfgang Huber networks in molecular biology Wolfgang Huber networks in molecular biology Regulatory networks: components = gene products interactions = regulation of transcription, translation, phosphorylation... Metabolic

More information

Analyzing Microarray Time course Genome wide Data

Analyzing Microarray Time course Genome wide Data OR 779 Functional Data Analysis Course Project Analyzing Microarray Time course Genome wide Data Presented by Xin Zhao April 29, 2002 Cornell University Overview 1. Introduction Biological Background Biological

More information

Biochip informatics-(i)

Biochip informatics-(i) Biochip informatics-(i) : biochip normalization & differential expression Ju Han Kim, M.D., Ph.D. SNUBI: SNUBiomedical Informatics http://www.snubi snubi.org/ Biochip Informatics - (I) Biochip basics Preprocessing

More information

Supplemental Information for Pramila et al. Periodic Normal Mixture Model (PNM)

Supplemental Information for Pramila et al. Periodic Normal Mixture Model (PNM) Supplemental Information for Pramila et al. Periodic Normal Mixture Model (PNM) The data sets alpha30 and alpha38 were analyzed with PNM (Lu et al. 2004). The first two time points were deleted to alleviate

More information

Dynamic optimisation identifies optimal programs for pathway regulation in prokaryotes. - Supplementary Information -

Dynamic optimisation identifies optimal programs for pathway regulation in prokaryotes. - Supplementary Information - Dynamic optimisation identifies optimal programs for pathway regulation in prokaryotes - Supplementary Information - Martin Bartl a, Martin Kötzing a,b, Stefan Schuster c, Pu Li a, Christoph Kaleta b a

More information

Lecture 2: Read about the yeast MAT locus in Molecular Biology of the Gene. Watson et al. Chapter 10. Plus section on yeast as a model system Read

Lecture 2: Read about the yeast MAT locus in Molecular Biology of the Gene. Watson et al. Chapter 10. Plus section on yeast as a model system Read Lecture 2: Read about the yeast MAT locus in Molecular Biology of the Gene. Watson et al. Chapter 10. Plus section on yeast as a model system Read chapter 22 and chapter 10 [section on MATing type gene

More information

Fuzzy Clustering of Gene Expression Data

Fuzzy Clustering of Gene Expression Data Fuzzy Clustering of Gene Data Matthias E. Futschik and Nikola K. Kasabov Department of Information Science, University of Otago P.O. Box 56, Dunedin, New Zealand email: mfutschik@infoscience.otago.ac.nz,

More information

Emergence of gene regulatory networks under functional constraints

Emergence of gene regulatory networks under functional constraints under functional constraints Institute of Physics, Jagiellonian University, Kraków, Poland in collaboration with Zdzislaw Burda, Andre Krzywicki and Olivier C. Martin 30 November 2012, Leipzig, CompPhys12

More information

The geneticist s questions. Deleting yeast genes. Functional genomics. From Wikipedia, the free encyclopedia

The geneticist s questions. Deleting yeast genes. Functional genomics. From Wikipedia, the free encyclopedia From Wikipedia, the free encyclopedia Functional genomics..is a field of molecular biology that attempts to make use of the vast wealth of data produced by genomic projects (such as genome sequencing projects)

More information

Simulation of Gene Regulatory Networks

Simulation of Gene Regulatory Networks Simulation of Gene Regulatory Networks Overview I have been assisting Professor Jacques Cohen at Brandeis University to explore and compare the the many available representations and interpretations of

More information

Discovering molecular pathways from protein interaction and ge

Discovering molecular pathways from protein interaction and ge Discovering molecular pathways from protein interaction and gene expression data 9-4-2008 Aim To have a mechanism for inferring pathways from gene expression and protein interaction data. Motivation Why

More information

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models 02-710 Computational Genomics Systems biology Putting it together: Data integration using graphical models High throughput data So far in this class we discussed several different types of high throughput

More information

Topic 4 - #14 The Lactose Operon

Topic 4 - #14 The Lactose Operon Topic 4 - #14 The Lactose Operon The Lactose Operon The lactose operon is an operon which is responsible for the transport and metabolism of the sugar lactose in E. coli. - Lactose is one of many organic

More information

CLUSTER, FUNCTION AND PROMOTER: ANALYSIS OF YEAST EXPRESSION ARRAY

CLUSTER, FUNCTION AND PROMOTER: ANALYSIS OF YEAST EXPRESSION ARRAY CLUSTER, FUNCTION AND PROMOTER: ANALYSIS OF YEAST EXPRESSION ARRAY J. ZHU, M. Q. ZHANG Cold Spring Harbor Lab, P. O. Box 100 Cold Spring Harbor, NY 11724 Gene clusters could be derived based on expression

More information

Written Exam 15 December Course name: Introduction to Systems Biology Course no

Written Exam 15 December Course name: Introduction to Systems Biology Course no Technical University of Denmark Written Exam 15 December 2008 Course name: Introduction to Systems Biology Course no. 27041 Aids allowed: Open book exam Provide your answers and calculations on separate

More information

Principal component analysis (PCA) for clustering gene expression data

Principal component analysis (PCA) for clustering gene expression data Principal component analysis (PCA) for clustering gene expression data Ka Yee Yeung Walter L. Ruzzo Bioinformatics, v17 #9 (2001) pp 763-774 1 Outline of talk Background and motivation Design of our empirical

More information

Lecture 5: November 19, Minimizing the maximum intracluster distance

Lecture 5: November 19, Minimizing the maximum intracluster distance Analysis of DNA Chips and Gene Networks Spring Semester, 2009 Lecture 5: November 19, 2009 Lecturer: Ron Shamir Scribe: Renana Meller 5.1 Minimizing the maximum intracluster distance 5.1.1 Introduction

More information

Biology. Biology. Slide 1 of 26. End Show. Copyright Pearson Prentice Hall

Biology. Biology. Slide 1 of 26. End Show. Copyright Pearson Prentice Hall Biology Biology 1 of 26 Fruit fly chromosome 12-5 Gene Regulation Mouse chromosomes Fruit fly embryo Mouse embryo Adult fruit fly Adult mouse 2 of 26 Gene Regulation: An Example Gene Regulation: An Example

More information

Cellular Biophysics SS Prof. Manfred Radmacher

Cellular Biophysics SS Prof. Manfred Radmacher SS 20007 Manfred Radmacher Ch. 12 Systems Biology Let's recall chemotaxis in Dictiostelium synthesis of camp excretion of camp external camp gradient detection cell polarity cell migration 2 Single cells

More information

Improving the identification of differentially expressed genes in cdna microarray experiments

Improving the identification of differentially expressed genes in cdna microarray experiments Improving the identification of differentially expressed genes in cdna microarray experiments Databionics Research Group University of Marburg 33 Marburg, Germany Alfred Ultsch Abstract. The identification

More information

Regulation of Gene Expression

Regulation of Gene Expression Chapter 18 Regulation of Gene Expression PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Microbiome: 16S rrna Sequencing 3/30/2018

Microbiome: 16S rrna Sequencing 3/30/2018 Microbiome: 16S rrna Sequencing 3/30/2018 Skills from Previous Lectures Central Dogma of Biology Lecture 3: Genetics and Genomics Lecture 4: Microarrays Lecture 12: ChIP-Seq Phylogenetics Lecture 13: Phylogenetics

More information

The Research Plan. Functional Genomics Research Stream. Transcription Factors. Tuning In Is A Good Idea

The Research Plan. Functional Genomics Research Stream. Transcription Factors. Tuning In Is A Good Idea Functional Genomics Research Stream The Research Plan Tuning In Is A Good Idea Research Meeting: March 23, 2010 The Road to Publication Transcription Factors Protein that binds specific DNA sequences controlling

More information

Lecture 18 June 2 nd, Gene Expression Regulation Mutations

Lecture 18 June 2 nd, Gene Expression Regulation Mutations Lecture 18 June 2 nd, 2016 Gene Expression Regulation Mutations From Gene to Protein Central Dogma Replication DNA RNA PROTEIN Transcription Translation RNA Viruses: genome is RNA Reverse Transcriptase

More information

INTERACTIVE CLUSTERING FOR EXPLORATION OF GENOMIC DATA

INTERACTIVE CLUSTERING FOR EXPLORATION OF GENOMIC DATA INTERACTIVE CLUSTERING FOR EXPLORATION OF GENOMIC DATA XIUFENG WAN xw6@cs.msstate.edu Department of Computer Science Box 9637 JOHN A. BOYLE jab@ra.msstate.edu Department of Biochemistry and Molecular Biology

More information

Fitness constraints on horizontal gene transfer

Fitness constraints on horizontal gene transfer Fitness constraints on horizontal gene transfer Dan I Andersson University of Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden GMM 3, 30 Aug--2 Sep, Oslo, Norway Acknowledgements:

More information

Advances in microarray technologies (1 5) have enabled

Advances in microarray technologies (1 5) have enabled Statistical modeling of large microarray data sets to identify stimulus-response profiles Lue Ping Zhao*, Ross Prentice*, and Linda Breeden Divisions of *Public Health Sciences and Basic Sciences, Fred

More information

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 REVIEW: Signals that Start and Stop Transcription and Translation BUT, HOW DO CELLS CONTROL WHICH GENES ARE EXPRESSED AND WHEN? First of

More information

Measuring TF-DNA interactions

Measuring TF-DNA interactions Measuring TF-DNA interactions How is Biological Complexity Achieved? Mediated by Transcription Factors (TFs) 2 Regulation of Gene Expression by Transcription Factors TF trans-acting factors TF TF TF TF

More information

Taxonomy. Content. How to determine & classify a species. Phylogeny and evolution

Taxonomy. Content. How to determine & classify a species. Phylogeny and evolution Taxonomy Content Why Taxonomy? How to determine & classify a species Domains versus Kingdoms Phylogeny and evolution Why Taxonomy? Classification Arrangement in groups or taxa (taxon = group) Nomenclature

More information

Shrinkage-Based Similarity Metric for Cluster Analysis of Microarray Data

Shrinkage-Based Similarity Metric for Cluster Analysis of Microarray Data Shrinkage-Based Similarity Metric for Cluster Analysis of Microarray Data Vera Cherepinsky, Jiawu Feng, Marc Rejali, and Bud Mishra, Courant Institute, New York University, 5 Mercer Street, New York, NY

More information

Supplementary Information

Supplementary Information Supplementary Information For the article "The organization of transcriptional activity in the yeast, S. cerevisiae" by I. J. Farkas, H. Jeong, T. Vicsek, A.-L. Barabási, and Z. N. Oltvai For the Referees

More information

Exhaustive search. CS 466 Saurabh Sinha

Exhaustive search. CS 466 Saurabh Sinha Exhaustive search CS 466 Saurabh Sinha Agenda Two different problems Restriction mapping Motif finding Common theme: exhaustive search of solution space Reading: Chapter 4. Restriction Mapping Restriction

More information

Exploratory statistical analysis of multi-species time course gene expression

Exploratory statistical analysis of multi-species time course gene expression Exploratory statistical analysis of multi-species time course gene expression data Eng, Kevin H. University of Wisconsin, Department of Statistics 1300 University Avenue, Madison, WI 53706, USA. E-mail:

More information

Boolean models of gene regulatory networks. Matthew Macauley Math 4500: Mathematical Modeling Clemson University Spring 2016

Boolean models of gene regulatory networks. Matthew Macauley Math 4500: Mathematical Modeling Clemson University Spring 2016 Boolean models of gene regulatory networks Matthew Macauley Math 4500: Mathematical Modeling Clemson University Spring 2016 Gene expression Gene expression is a process that takes gene info and creates

More information

SPOTTED cdna MICROARRAYS

SPOTTED cdna MICROARRAYS SPOTTED cdna MICROARRAYS Spot size: 50um - 150um SPOTTED cdna MICROARRAYS Compare the genetic expression in two samples of cells PRINT cdna from one gene on each spot SAMPLES cdna labelled red/green e.g.

More information

Plant Molecular and Cellular Biology Lecture 8: Mechanisms of Cell Cycle Control and DNA Synthesis Gary Peter

Plant Molecular and Cellular Biology Lecture 8: Mechanisms of Cell Cycle Control and DNA Synthesis Gary Peter Plant Molecular and Cellular Biology Lecture 8: Mechanisms of Cell Cycle Control and DNA Synthesis Gary Peter 9/10/2008 1 Learning Objectives Explain why a cell cycle was selected for during evolution

More information

Kernels for gene regulatory regions

Kernels for gene regulatory regions Kernels for gene regulatory regions Jean-Philippe Vert Geostatistics Center Ecole des Mines de Paris - ParisTech Jean-Philippe.Vert@ensmp.fr Robert Thurman Division of Medical Genetics University of Washington

More information

BIOINFORMATICS. Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle

BIOINFORMATICS. Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle BIOINFORMATICS Vol 20 no 12 2004, pages 1914 1927 doi:101093/bioinformatics/bth178 Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle Hong-Chu Chen 1, Hsiao-Ching

More information

Modelling Gene Expression Data over Time: Curve Clustering with Informative Prior Distributions.

Modelling Gene Expression Data over Time: Curve Clustering with Informative Prior Distributions. BAYESIAN STATISTICS 7, pp. 000 000 J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West (Eds.) c Oxford University Press, 2003 Modelling Data over Time: Curve

More information

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid.

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid. 1. A change that makes a polypeptide defective has been discovered in its amino acid sequence. The normal and defective amino acid sequences are shown below. Researchers are attempting to reproduce the

More information

CHAPTER : Prokaryotic Genetics

CHAPTER : Prokaryotic Genetics CHAPTER 13.3 13.5: Prokaryotic Genetics 1. Most bacteria are not pathogenic. Identify several important roles they play in the ecosystem and human culture. 2. How do variations arise in bacteria considering

More information

How much non-coding DNA do eukaryotes require?

How much non-coding DNA do eukaryotes require? How much non-coding DNA do eukaryotes require? Andrei Zinovyev UMR U900 Computational Systems Biology of Cancer Institute Curie/INSERM/Ecole de Mine Paritech Dr. Sebastian Ahnert Dr. Thomas Fink Bioinformatics

More information

Self Similar (Scale Free, Power Law) Networks (I)

Self Similar (Scale Free, Power Law) Networks (I) Self Similar (Scale Free, Power Law) Networks (I) E6083: lecture 4 Prof. Predrag R. Jelenković Dept. of Electrical Engineering Columbia University, NY 10027, USA {predrag}@ee.columbia.edu February 7, 2007

More information

UNIVERSITY OF YORK. BA, BSc, and MSc Degree Examinations Department : BIOLOGY. Title of Exam: Molecular microbiology

UNIVERSITY OF YORK. BA, BSc, and MSc Degree Examinations Department : BIOLOGY. Title of Exam: Molecular microbiology Examination Candidate Number: Desk Number: UNIVERSITY OF YORK BA, BSc, and MSc Degree Examinations 2017-8 Department : BIOLOGY Title of Exam: Molecular microbiology Time Allowed: 1 hour 30 minutes Marking

More information

Introduction to Bioinformatics. Shifra Ben-Dor Irit Orr

Introduction to Bioinformatics. Shifra Ben-Dor Irit Orr Introduction to Bioinformatics Shifra Ben-Dor Irit Orr Lecture Outline: Technical Course Items Introduction to Bioinformatics Introduction to Databases This week and next week What is bioinformatics? A

More information

A New Method to Build Gene Regulation Network Based on Fuzzy Hierarchical Clustering Methods

A New Method to Build Gene Regulation Network Based on Fuzzy Hierarchical Clustering Methods International Academic Institute for Science and Technology International Academic Journal of Science and Engineering Vol. 3, No. 6, 2016, pp. 169-176. ISSN 2454-3896 International Academic Journal of

More information

Co-ordination occurs in multiple layers Intracellular regulation: self-regulation Intercellular regulation: coordinated cell signalling e.g.

Co-ordination occurs in multiple layers Intracellular regulation: self-regulation Intercellular regulation: coordinated cell signalling e.g. Gene Expression- Overview Differentiating cells Achieved through changes in gene expression All cells contain the same whole genome A typical differentiated cell only expresses ~50% of its total gene Overview

More information

Chapters 12&13 Notes: DNA, RNA & Protein Synthesis

Chapters 12&13 Notes: DNA, RNA & Protein Synthesis Chapters 12&13 Notes: DNA, RNA & Protein Synthesis Name Period Words to Know: nucleotides, DNA, complementary base pairing, replication, genes, proteins, mrna, rrna, trna, transcription, translation, codon,

More information

Support Vector Machine Classification of Microarray Gene Expression Data UCSC-CRL-99-09

Support Vector Machine Classification of Microarray Gene Expression Data UCSC-CRL-99-09 Support Vector Machine Classification of Microarray Gene Expression Data UCSCCRL9909 MichaelP.S.Brown z William Noble Grundy z Λ David Lin z Nello Cristianini x y Charles Sugnet Manuel Ares, Jr. David

More information

Topographic Independent Component Analysis of Gene Expression Time Series Data

Topographic Independent Component Analysis of Gene Expression Time Series Data Topographic Independent Component Analysis of Gene Expression Time Series Data Sookjeong Kim and Seungjin Choi Department of Computer Science Pohang University of Science and Technology San 31 Hyoja-dong,

More information

Proteomics Systems Biology

Proteomics Systems Biology Dr. Sanjeeva Srivastava IIT Bombay Proteomics Systems Biology IIT Bombay 2 1 DNA Genomics RNA Transcriptomics Global Cellular Protein Proteomics Global Cellular Metabolite Metabolomics Global Cellular

More information

Dynamic modular architecture of protein-protein interaction networks beyond the dichotomy of date and party hubs

Dynamic modular architecture of protein-protein interaction networks beyond the dichotomy of date and party hubs Dynamic modular architecture of protein-protein interaction networks beyond the dichotomy of date and party hubs Xiao Chang 1,#, Tao Xu 2,#, Yun Li 3, Kai Wang 1,4,5,* 1 Zilkha Neurogenetic Institute,

More information

Genome-wide Gene Expression Profiling in Fission Yeast

Genome-wide Gene Expression Profiling in Fission Yeast Genome-wide Gene Expression Profiling in Fission Yeast http://www.sanger.ac.uk/postgenomics/s_pombe Jürg Bähler The Wellcome Trust Sanger Institute / Cancer Research UK Post-genomic vs traditional experiments:

More information

Missing Value Estimation for Time Series Microarray Data Using Linear Dynamical Systems Modeling

Missing Value Estimation for Time Series Microarray Data Using Linear Dynamical Systems Modeling 22nd International Conference on Advanced Information Networking and Applications - Workshops Missing Value Estimation for Time Series Microarray Data Using Linear Dynamical Systems Modeling Connie Phong

More information

Controlling Gene Expression

Controlling Gene Expression Controlling Gene Expression Control Mechanisms Gene regulation involves turning on or off specific genes as required by the cell Determine when to make more proteins and when to stop making more Housekeeping

More information

What is Systems Biology

What is Systems Biology What is Systems Biology 2 CBS, Department of Systems Biology 3 CBS, Department of Systems Biology Data integration In the Big Data era Combine different types of data, describing different things or the

More information

Prokaryotic Gene Expression (Learning Objectives)

Prokaryotic Gene Expression (Learning Objectives) Prokaryotic Gene Expression (Learning Objectives) 1. Learn how bacteria respond to changes of metabolites in their environment: short-term and longer-term. 2. Compare and contrast transcriptional control

More information

Bi 1x Spring 2014: LacI Titration

Bi 1x Spring 2014: LacI Titration Bi 1x Spring 2014: LacI Titration 1 Overview In this experiment, you will measure the effect of various mutated LacI repressor ribosome binding sites in an E. coli cell by measuring the expression of a

More information

Cell cycle regulation in the budding yeast

Cell cycle regulation in the budding yeast Cell cycle regulation in the budding yeast Bởi: TS. Nguyen Cuong Introduction The cell cycle is the sequence of events by which a growing cell duplicates all its components and then divides into two daughter

More information

13.4 Gene Regulation and Expression

13.4 Gene Regulation and Expression 13.4 Gene Regulation and Expression Lesson Objectives Describe gene regulation in prokaryotes. Explain how most eukaryotic genes are regulated. Relate gene regulation to development in multicellular organisms.

More information

Whole-genome analysis of GCN4 binding in S.cerevisiae

Whole-genome analysis of GCN4 binding in S.cerevisiae Whole-genome analysis of GCN4 binding in S.cerevisiae Lillian Dai Alex Mallet Gcn4/DNA diagram (CREB symmetric site and AP-1 asymmetric site: Song Tan, 1999) removed for copyright reasons. What is GCN4?

More information

10-810: Advanced Algorithms and Models for Computational Biology. microrna and Whole Genome Comparison

10-810: Advanced Algorithms and Models for Computational Biology. microrna and Whole Genome Comparison 10-810: Advanced Algorithms and Models for Computational Biology microrna and Whole Genome Comparison Central Dogma: 90s Transcription factors DNA transcription mrna translation Proteins Central Dogma:

More information

16 The Cell Cycle. Chapter Outline The Eukaryotic Cell Cycle Regulators of Cell Cycle Progression The Events of M Phase Meiosis and Fertilization

16 The Cell Cycle. Chapter Outline The Eukaryotic Cell Cycle Regulators of Cell Cycle Progression The Events of M Phase Meiosis and Fertilization The Cell Cycle 16 The Cell Cycle Chapter Outline The Eukaryotic Cell Cycle Regulators of Cell Cycle Progression The Events of M Phase Meiosis and Fertilization Introduction Self-reproduction is perhaps

More information

Tiffany Samaroo MB&B 452a December 8, Take Home Final. Topic 1

Tiffany Samaroo MB&B 452a December 8, Take Home Final. Topic 1 Tiffany Samaroo MB&B 452a December 8, 2003 Take Home Final Topic 1 Prior to 1970, protein and DNA sequence alignment was limited to visual comparison. This was a very tedious process; even proteins with

More information

Clustering and Network

Clustering and Network Clustering and Network Jing-Dong Jackie Han jdhan@picb.ac.cn http://www.picb.ac.cn/~jdhan Copy Right: Jing-Dong Jackie Han What is clustering? A way of grouping together data samples that are similar in

More information

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus:

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: m Eukaryotic mrna processing Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: Cap structure a modified guanine base is added to the 5 end. Poly-A tail

More information

Xiaosi Zhang. A thesis submitted to the graduate faculty. in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

Xiaosi Zhang. A thesis submitted to the graduate faculty. in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE GENE EXPRESSION PATTERN ANALYSIS Xiaosi Zhang A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Bioinformatics and Computational

More information

Central postgenomic. Transcription regulation: a genomic network. Transcriptome: the set of all mrnas expressed in a cell at a specific time.

Central postgenomic. Transcription regulation: a genomic network. Transcriptome: the set of all mrnas expressed in a cell at a specific time. Transcription regulation: a genomic network Nicholas Luscombe Laboratory of Mark Gerstein Department of Molecular Biophysics and Biochemistry Yale University Understand Proteins, through analyzing populations

More information

UNIT 5. Protein Synthesis 11/22/16

UNIT 5. Protein Synthesis 11/22/16 UNIT 5 Protein Synthesis IV. Transcription (8.4) A. RNA carries DNA s instruction 1. Francis Crick defined the central dogma of molecular biology a. Replication copies DNA b. Transcription converts DNA

More information

Sparse regularization for functional logistic regression models

Sparse regularization for functional logistic regression models Sparse regularization for functional logistic regression models Hidetoshi Matsui The Center for Data Science Education and Research, Shiga University 1-1-1 Banba, Hikone, Shiga, 5-85, Japan. hmatsui@biwako.shiga-u.ac.jp

More information