Domain adaptation for deep learning

Size: px
Start display at page:

Download "Domain adaptation for deep learning"

Transcription

1 What you saw is not what you get Domain adaptation for deep learning Kate Saenko

2 Successes of Deep Learning in AI A Learning Advance in Artificial Intelligence Rivals Human Abilities Deep Learning for self-driving cars Translate FLOWER FIELD SKY CLOUDS Google's DeepMind Masters Atari Games Face Recognition 2

3 So is AI solved? pedestrian detection FAIL 3

4 Major limitation of deep learning Not data efficient: Learning requires millions of labeled examples, models do not generalize well to new domains; not like humans! New domain?

5 What you saw is not what you get What your net is trained on Dataset Bias Domain Shift Domain Adaptation Domain Transfer What it s asked to label

6 Example: scene segmentation sky building road building people road Train on Cityscapes, Test on Cityscapes FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation, Judy Hoffman, Dequan Wang, Fisher Yu, Trevor Darrell, Arxiv 2016

7 Domain shift: Cityscapes to SF FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation, Judy Hoffman, Dequan Wang, Fisher Yu, Trevor Darrell, Arxiv 2016 tree car sign road car tree Train on Cityscapes, Test on San Francisco Dashcam

8 No tunnels in CityScapes?... FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation, Judy Hoffman, Dequan Wang, Fisher Yu, Trevor Darrell, Arxiv 2016 tree building

9 Applications to different types of domain shift From dataset to dataset From RGB to depth From simulated to real control From CAD models to real images

10 Today Show that deep models can be adapted without labels Propose two deep adaptation methods: adversarial alignment correlation alignment Show applications

11 Background: Domain Adaptation from source to target distribution Adapt backpack chair bike?? bike Source Domain lots of labeled data Target Domain unlabeled or limited labels?

12 Background: unsupervised domain adaptation Sample re-weighting NO labels in target domain Roughly, three categories of methods Sample re-weighting Subspace matching Deep methods Subspace alignment Deep alignment B. Femando, A. Habrard, M. Sebban, and T. Tuytelaars. Unsupervised visual domain adaptation using subspace alignment. In ICCV, B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised domain adaptation. In CVPR, 2012 Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by back propagation. In ICML

13 How to adapt a deep network? backpack chair bike conv1 conv5 fc 6 fc 7 fc 8 classification loss Source Data

14 How to adapt a deep network? backpack chair bike conv1 conv5 fc 6 fc 7 fc 8 classification loss Source Data backpack Target Data Applying source classifier to target domain can yield inferior performance?

15 How to adapt a deep network? IDEA: align feature distributions backpack chair bike conv1 conv5 fc 6 fc 7 source data fc 8 Source Data shared shared shared shared shared classification loss backpack? Target Data same conv1 conv5 fc 6 fc 7 labeled target data Fine tune?..zero or few labels in target domain Siamese network?..no paired / aligned instance examples! fc 8

16 Deep distribution alignment by minimizing distance between distributions, e.g. Maximum Mean Discrepancy M. Long, et al. ICML 2015 CORrelation ALignment Sun and Saenko, AAAI 2016 or by adversarial domain alignment, e.g. Domain Confusion E. Tzeng et al. ICCV 2015 Reverse Gradient Y. Ganin and V. Lempitsky ICML

17 Adversarial Domain Adaptation Eric Tzeng UC Berkeley Judy Hoffman UC Berkeley Trevor Darrell UC Berkeley 18

18 Adversarial networks

19 Adversarial networks P P Q Q

20 Adversarial domain adaptation backpack chair bike Source Data + Labels conv1 conv5 fc 6 fc 7 Classifier classification loss Unlabeled Target Data conv1 conv5 fc 6 fc 7?

21 Adversarial domain adaptation backpack chair bike Source Data + Labels Encoder Classifier classification loss can be shared Unlabeled Target Data Encoder?

22 Adversarial domain adaptation backpack chair bike Source Data + Labels Encoder Classifier classification loss can be shared Unlabeled Target Data Encoder Discriminator Adversarial loss?

23 Adversarial domain adaptation backpack chair bike Source Data + Labels Encoder Classifier classification loss can be shared Unlabeled Target Data Encoder Discriminator Adversarial loss?

24 Design choices in adversarial adaptation backpack chair bike Source Data + Labels Generative or discriminative? Unlabeled Target Data Encoder Shared or not? Encoder Classifier Discriminator classification loss confusion Which loss? Adversarial loss? Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks, NIPS 2016

25 Deep domain confusion [Tzeng ICCV15 ] backpack chair bike conv1 conv5 fc 6 fc 7 source data fc 8 Source Data Unlabeled Target Data shared shared shared shared fc D domain confusion loss domain classifier loss shared classification loss? conv1 conv5 fc 6 fc 7 labeled target data fc 8 Adversarial Training of domain label predictor and domain confusion loss: Domain Label Cross-entropy with uniform distribution

26 Deep domain confusion [Tzeng ICCV15 ] Train a network to minimize classification loss AND confuse two domains source inputs target inputs network parameters (fixed) domain classifier (learn) domain classifier loss domain classifier prediction domain classifier (fixed) network parameters (learn) = pp(yy DD = 1 xx) domain confusion loss iterate (cross-entropy with uniform distribution) 27

27 Applications to different types of domain shift From dataset to dataset From RGB to depth From simulated to real control From CAD models to real images

28 ImageNet adapted to Caltech [Tzeng ICCV15 ] Multiclass Accuracy Number of labeled target examples

29 FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation, Judy Hoffman, Dequan Wang, Fisher Yu, Trevor Darrell, Arxiv 2016 Results on Cityscapes to SF adaptation Before domain confusion After domain confusion

30 Adversarial Loss Functions Confusion loss [Tzeng 2015] Minimax loss [Ganin 2015] GAN loss [Goodfellow 2014] stronger gradients

31 Adversarial Discriminative Domain Adaptation (ADDA) (in submission) backpack chair bike Source Data + Labels Generative or discriminative? Unlabeled Target Data Encoder Shared or not? Encoder Classifier Discriminator classification loss Which loss? Adversarial loss GAN?

32 ADDA: Adaptation on digits (in submission)

33 Applications to different types of domain shift From dataset to dataset From RGB to depth From simulated to real control From CAD models to real images

34 ADDA: Adaptation on RGB-D (in submission) Train on RGB Test on depth

35 ADDA: Adaptation on RGB-D (in submission)

36 Applications to different types of domain shift From dataset to dataset From RGB to depth From simulated to real control From CAD models to real images

37 Adapting Deep Visuomotor Representations with Weak Pairwise Constraints Eric Tzeng1, Coline Devin1, Judy Hoffman1, Chelsea Finn1, Pieter Abbeel1, Sergey Levine1, Kate Saenko2, Trevor Darrell1 1 University of California, Berkeley 2 Boston University

38 From simulation to real world control [Tzeng, Devin, et al 16]

39 Weak pairwise constraints [Tzeng, Devin, et al 16]

40 Robotic task: place rope on scale [Tzeng, Devin, et al 16]

41 Applications to different types of domain shift From dataset to dataset From RGB to depth From simulated to real control From CAD models to real images

42 Domain Adaptation via Correlation Alignment Baochen Sun Microsoft Xingchao Peng Boston University 49

43 Deep CORAL: Correlation Alignment for Deep Domain Adaptation [Sun 2016]

44 Deep CORAL: Correlation Alignment for Deep Domain Adaptation [Sun 2016]

45 Generative CORAL Network (in submission)

46 Synthetic to real adaptation for object recognition (in submission) Train on synthetic Test on real

47 Synthetic to Real Adaptation with Deep Generative Correlation Alignment Networks (in submission)

48 Synthetic to Real Adaptation with Deep Generative Correlation Alignment Networks (in submission)

49 Synthetic to Real Adaptation with Deep Generative Correlation Alignment Networks (in submission)

50 Summary Deep models can be adapted to new domains without labels Proposed two deep feature alignment methods: adversarial alignment correlation alignment Many potential applications

51 Thank you References Eric Tzeng, Judy Hoffman, Trevor Darrell, Kate Saenko, Simultaneous Deep Transfer Across Domains and Tasks, ICCV 2015 Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn, Pieter Abbeel, Sergey Levine, Kate Saenko, Trevor Darrell, Adapting Deep Visuomotor Representations with Weak Pairwise Constraints, WAFR 2016 Baochen Sun, Jiashi Feng, Kate Saenko, Return of Frustratingly Easy Domain Adaptation, AAAI 2016 Baochen Sun, Kate Saenko, Deep CORAL: Correlation Alignment for Deep Domain Adaptation, TASK-CV Workshop at ICCV 2016 Adversarial Discriminative Domain Adaptation, in submission Synthetic to Real Adaptation with Deep Generative Correlation Alignment Networks, in submission

Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net

Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net Supplementary Material Xingang Pan 1, Ping Luo 1, Jianping Shi 2, and Xiaoou Tang 1 1 CUHK-SenseTime Joint Lab, The Chinese University

More information

Deep Domain Adaptation by Geodesic Distance Minimization

Deep Domain Adaptation by Geodesic Distance Minimization Deep Domain Adaptation by Geodesic Distance Minimization Yifei Wang, Wen Li, Dengxin Dai, Luc Van Gool EHT Zurich Ramistrasse 101, 8092 Zurich yifewang@ethz.ch {liwen, dai, vangool}@vision.ee.ethz.ch Abstract

More information

arxiv: v1 [cs.lg] 25 Jul 2017

arxiv: v1 [cs.lg] 25 Jul 2017 Partial Transfer Learning with Selective Adversarial Networks arxiv:177.791v1 [cs.lg] 25 Jul 17 Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Michael I. Jordan KLiss, MOE; TNList; School of Software,

More information

Importance Reweighting Using Adversarial-Collaborative Training

Importance Reweighting Using Adversarial-Collaborative Training Importance Reweighting Using Adversarial-Collaborative Training Yifan Wu yw4@andrew.cmu.edu Tianshu Ren tren@andrew.cmu.edu Lidan Mu lmu@andrew.cmu.edu Abstract We consider the problem of reweighting a

More information

Visual meta-learning for planning and control

Visual meta-learning for planning and control Visual meta-learning for planning and control Seminar on Current Works in Computer Vision @ Chair of Pattern Recognition and Image Processing. Samuel Roth Winter Semester 2018/19 Albert-Ludwigs-Universität

More information

Asaf Bar Zvi Adi Hayat. Semantic Segmentation

Asaf Bar Zvi Adi Hayat. Semantic Segmentation Asaf Bar Zvi Adi Hayat Semantic Segmentation Today s Topics Fully Convolutional Networks (FCN) (CVPR 2015) Conditional Random Fields as Recurrent Neural Networks (ICCV 2015) Gaussian Conditional random

More information

Modular Vehicle Control for Transferring Semantic Information Between Weather Conditions Using GANs

Modular Vehicle Control for Transferring Semantic Information Between Weather Conditions Using GANs Modular Vehicle Control for Transferring Semantic Information Between Weather Conditions Using GANs Patrick Wenzel 1,2, Qadeer Khan 1,2, Daniel Cremers 1,2, and Laura Leal-Taixé 1 1 Technical University

More information

Wasserstein Distance Guided Representation Learning for Domain Adaptation

Wasserstein Distance Guided Representation Learning for Domain Adaptation Wasserstein Distance Guided Representation Learning for Domain Adaptation Jian Shen, Yanru Qu, Weinan Zhang, Yong Yu Shanghai Jiao Tong University {rockyshen, kevinqu, wnzhang, yyu}@apex.sjtu.edu.cn 2009),

More information

Unsupervised Domain Adaptation with Distribution Matching Machines

Unsupervised Domain Adaptation with Distribution Matching Machines Unsupervised Domain Adaptation with Distribution Matching Machines Yue Cao, Mingsheng Long, Jianmin Wang KLiss, MOE; NEL-BDS; TNList; School of Software, Tsinghua University, China caoyue1@gmail.com mingsheng@tsinghua.edu.cn

More information

Fine-grained Classification

Fine-grained Classification Fine-grained Classification Marcel Simon Department of Mathematics and Computer Science, Germany marcel.simon@uni-jena.de http://www.inf-cv.uni-jena.de/ Seminar Talk 23.06.2015 Outline 1 Motivation 2 3

More information

Beyond Spatial Pyramids

Beyond Spatial Pyramids Beyond Spatial Pyramids Receptive Field Learning for Pooled Image Features Yangqing Jia 1 Chang Huang 2 Trevor Darrell 1 1 UC Berkeley EECS 2 NEC Labs America Goal coding pooling Bear Analysis of the pooling

More information

Predicting Deeper into the Future of Semantic Segmentation Supplementary Material

Predicting Deeper into the Future of Semantic Segmentation Supplementary Material Predicting Deeper into the Future of Semantic Segmentation Supplementary Material Pauline Luc 1,2 Natalia Neverova 1 Camille Couprie 1 Jakob Verbeek 2 Yann LeCun 1,3 1 Facebook AI Research 2 Inria Grenoble,

More information

Unsupervised Domain Adaptation with Residual Transfer Networks

Unsupervised Domain Adaptation with Residual Transfer Networks Unsupervised Domain Adaptation with Residual Transfer Networks Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I. Jordan KLiss, MOE; TNList; School of Software, Tsinghua University, China University

More information

Transferable Attention for Domain Adaptation

Transferable Attention for Domain Adaptation Transferable Attention for Domain Adaptation Ximei Wang, Liang Li, Weirui Ye, Mingsheng Long ( ), and Jianmin Wang School of Software, Tsinghua University, China KLiss, MOE; BNRist; Research Center for

More information

Towards a Data-driven Approach to Exploring Galaxy Evolution via Generative Adversarial Networks

Towards a Data-driven Approach to Exploring Galaxy Evolution via Generative Adversarial Networks Towards a Data-driven Approach to Exploring Galaxy Evolution via Generative Adversarial Networks Tian Li tian.li@pku.edu.cn EECS, Peking University Abstract Since laboratory experiments for exploring astrophysical

More information

Kernel Density Topic Models: Visual Topics Without Visual Words

Kernel Density Topic Models: Visual Topics Without Visual Words Kernel Density Topic Models: Visual Topics Without Visual Words Konstantinos Rematas K.U. Leuven ESAT-iMinds krematas@esat.kuleuven.be Mario Fritz Max Planck Institute for Informatics mfrtiz@mpi-inf.mpg.de

More information

A Little History of Machine Learning

A Little History of Machine Learning 機器學習現在 過去 未來 A Little History of Machine Learning Chia-Ping Chen National Sun Yat-sen University @NPTU, December 2016 Outline ubiquitous machine intelligence challenge and reaction AI brief deep learning

More information

Course Structure. Psychology 452 Week 12: Deep Learning. Chapter 8 Discussion. Part I: Deep Learning: What and Why? Rufus. Rufus Processed By Fetch

Course Structure. Psychology 452 Week 12: Deep Learning. Chapter 8 Discussion. Part I: Deep Learning: What and Why? Rufus. Rufus Processed By Fetch Psychology 452 Week 12: Deep Learning What Is Deep Learning? Preliminary Ideas (that we already know!) The Restricted Boltzmann Machine (RBM) Many Layers of RBMs Pros and Cons of Deep Learning Course Structure

More information

UNSUPERVISED LEARNING

UNSUPERVISED LEARNING UNSUPERVISED LEARNING Topics Layer-wise (unsupervised) pre-training Restricted Boltzmann Machines Auto-encoders LAYER-WISE (UNSUPERVISED) PRE-TRAINING Breakthrough in 2006 Layer-wise (unsupervised) pre-training

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2010 Lecture 24: Perceptrons and More! 4/22/2010 Pieter Abbeel UC Berkeley Slides adapted from Dan Klein Announcements W7 due tonight [this is your last written for

More information

Tasks ADAS. Self Driving. Non-machine Learning. Traditional MLP. Machine-Learning based method. Supervised CNN. Methods. Deep-Learning based

Tasks ADAS. Self Driving. Non-machine Learning. Traditional MLP. Machine-Learning based method. Supervised CNN. Methods. Deep-Learning based UNDERSTANDING CNN ADAS Tasks Self Driving Localizati on Perception Planning/ Control Driver state Vehicle Diagnosis Smart factory Methods Traditional Deep-Learning based Non-machine Learning Machine-Learning

More information

Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks Emily Denton 1, Soumith Chintala 2, Arthur Szlam 2, Rob Fergus 2 1 New York University 2 Facebook AI Research Denotes equal

More information

Kai Yu NEC Laboratories America, Cupertino, California, USA

Kai Yu NEC Laboratories America, Cupertino, California, USA Kai Yu NEC Laboratories America, Cupertino, California, USA Joint work with Jinjun Wang, Fengjun Lv, Wei Xu, Yihong Gong Xi Zhou, Jianchao Yang, Thomas Huang, Tong Zhang Chen Wu NEC Laboratories America

More information

Very Deep Residual Networks with Maxout for Plant Identification in the Wild Milan Šulc, Dmytro Mishkin, Jiří Matas

Very Deep Residual Networks with Maxout for Plant Identification in the Wild Milan Šulc, Dmytro Mishkin, Jiří Matas Very Deep Residual Networks with Maxout for Plant Identification in the Wild Milan Šulc, Dmytro Mishkin, Jiří Matas Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering

More information

Towards Fully-automated Driving

Towards Fully-automated Driving Towards Fully-automated Driving Challenges and Potential Solutions Dr. Gijs Dubbelman Mobile Perception Systems EE-SPS/VCA Mobile Perception Systems 6 PhDs, postdoc, project manager, software engineer,

More information

Neural networks and optimization

Neural networks and optimization Neural networks and optimization Nicolas Le Roux Criteo 18/05/15 Nicolas Le Roux (Criteo) Neural networks and optimization 18/05/15 1 / 85 1 Introduction 2 Deep networks 3 Optimization 4 Convolutional

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Spring 2018 http://vllab.ee.ntu.edu.tw/dlcv.html (primary) https://ceiba.ntu.edu.tw/1062dlcv (grade, etc.) FB: DLCV Spring 2018 Yu-Chiang Frank Wang 王鈺強, Associate Professor

More information

Tutorial on Methods for Interpreting and Understanding Deep Neural Networks. Part 3: Applications & Discussion

Tutorial on Methods for Interpreting and Understanding Deep Neural Networks. Part 3: Applications & Discussion Tutorial on Methods for Interpreting and Understanding Deep Neural Networks W. Samek, G. Montavon, K.-R. Müller Part 3: Applications & Discussion ICASSP 2017 Tutorial W. Samek, G. Montavon & K.-R. Müller

More information

Announcements. CS 188: Artificial Intelligence Spring Classification. Today. Classification overview. Case-Based Reasoning

Announcements. CS 188: Artificial Intelligence Spring Classification. Today. Classification overview. Case-Based Reasoning CS 188: Artificial Intelligence Spring 21 Lecture 22: Nearest Neighbors, Kernels 4/18/211 Pieter Abbeel UC Berkeley Slides adapted from Dan Klein Announcements On-going: contest (optional and FUN!) Remaining

More information

Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses about the label (Top-5 error) No Bounding Box

Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses about the label (Top-5 error) No Bounding Box ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton Motivation Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses

More information

Analyzing the Performance of Multilayer Neural Networks for Object Recognition

Analyzing the Performance of Multilayer Neural Networks for Object Recognition Analyzing the Performance of Multilayer Neural Networks for Object Recognition Pulkit Agrawal, Ross Girshick, Jitendra Malik {pulkitag,rbg,malik}@eecs.berkeley.edu University of California Berkeley Supplementary

More information

Jakub Hajic Artificial Intelligence Seminar I

Jakub Hajic Artificial Intelligence Seminar I Jakub Hajic Artificial Intelligence Seminar I. 11. 11. 2014 Outline Key concepts Deep Belief Networks Convolutional Neural Networks A couple of questions Convolution Perceptron Feedforward Neural Network

More information

CS4495/6495 Introduction to Computer Vision. 8C-L3 Support Vector Machines

CS4495/6495 Introduction to Computer Vision. 8C-L3 Support Vector Machines CS4495/6495 Introduction to Computer Vision 8C-L3 Support Vector Machines Discriminative classifiers Discriminative classifiers find a division (surface) in feature space that separates the classes Several

More information

Distinguish between different types of scenes. Matching human perception Understanding the environment

Distinguish between different types of scenes. Matching human perception Understanding the environment Scene Recognition Adriana Kovashka UTCS, PhD student Problem Statement Distinguish between different types of scenes Applications Matching human perception Understanding the environment Indexing of images

More information

Anticipating Visual Representations from Unlabeled Data. Carl Vondrick, Hamed Pirsiavash, Antonio Torralba

Anticipating Visual Representations from Unlabeled Data. Carl Vondrick, Hamed Pirsiavash, Antonio Torralba Anticipating Visual Representations from Unlabeled Data Carl Vondrick, Hamed Pirsiavash, Antonio Torralba Overview Problem Key Insight Methods Experiments Problem: Predict future actions and objects Image

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Neural networks Daniel Hennes 21.01.2018 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Logistic regression Neural networks Perceptron

More information

Deep learning on 3D geometries. Hope Yao Design Informatics Lab Department of Mechanical and Aerospace Engineering

Deep learning on 3D geometries. Hope Yao Design Informatics Lab Department of Mechanical and Aerospace Engineering Deep learning on 3D geometries Hope Yao Design Informatics Lab Department of Mechanical and Aerospace Engineering Overview Background Methods Numerical Result Future improvements Conclusion Background

More information

CS 188: Artificial Intelligence. Outline

CS 188: Artificial Intelligence. Outline CS 188: Artificial Intelligence Lecture 21: Perceptrons Pieter Abbeel UC Berkeley Many slides adapted from Dan Klein. Outline Generative vs. Discriminative Binary Linear Classifiers Perceptron Multi-class

More information

Feature Design. Feature Design. Feature Design. & Deep Learning

Feature Design. Feature Design. Feature Design. & Deep Learning Artificial Intelligence and its applications Lecture 9 & Deep Learning Professor Daniel Yeung danyeung@ieee.org Dr. Patrick Chan patrickchan@ieee.org South China University of Technology, China Appropriately

More information

What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1

What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1 What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1 Multi-layer networks Steve Renals Machine Learning Practical MLP Lecture 3 7 October 2015 MLP Lecture 3 Multi-layer networks 2 What Do Single

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2010 Lecture 22: Nearest Neighbors, Kernels 4/18/2011 Pieter Abbeel UC Berkeley Slides adapted from Dan Klein Announcements On-going: contest (optional and FUN!)

More information

GENERALIZING ACROSS DOMAINS VIA CROSS-GRADIENT TRAINING

GENERALIZING ACROSS DOMAINS VIA CROSS-GRADIENT TRAINING GENERALIZING ACROSS DOMAINS VIA CROSS-GRADIENT TRAINING Shiv Shankar 1, Vihari Piratla 1, Soumen Chakrabarti 1, Siddhartha Chaudhuri 1,2, Preethi Jyothi 1, and Sunita Sarawagi 1 1 Department of Computer

More information

SELF-SUPERVISION. Nate Russell, Christian Followell, Pratik Lahiri

SELF-SUPERVISION. Nate Russell, Christian Followell, Pratik Lahiri SELF-SUPERVISION Nate Russell, Christian Followell, Pratik Lahiri TASKS Classification & Detection Segmentation Retrieval Action Prediction And Many More Strong Supervision Monarch Butterfly Monarch Butterfly

More information

OBJECT DETECTION FROM MMS IMAGERY USING DEEP LEARNING FOR GENERATION OF ROAD ORTHOPHOTOS

OBJECT DETECTION FROM MMS IMAGERY USING DEEP LEARNING FOR GENERATION OF ROAD ORTHOPHOTOS OBJECT DETECTION FROM MMS IMAGERY USING DEEP LEARNING FOR GENERATION OF ROAD ORTHOPHOTOS Y. Li 1,*, M. Sakamoto 1, T. Shinohara 1, T. Satoh 1 1 PASCO CORPORATION, 2-8-10 Higashiyama, Meguro-ku, Tokyo 153-0043,

More information

Hidden CRFs for Human Activity Classification from RGBD Data

Hidden CRFs for Human Activity Classification from RGBD Data H Hidden s for Human from RGBD Data Avi Singh & Ankit Goyal IIT-Kanpur CS679: Machine Learning for Computer Vision April 13, 215 Overview H 1 2 3 H 4 5 6 7 Statement H Input An RGBD video with a human

More information

TUTORIAL PART 1 Unsupervised Learning

TUTORIAL PART 1 Unsupervised Learning TUTORIAL PART 1 Unsupervised Learning Marc'Aurelio Ranzato Department of Computer Science Univ. of Toronto ranzato@cs.toronto.edu Co-organizers: Honglak Lee, Yoshua Bengio, Geoff Hinton, Yann LeCun, Andrew

More information

arxiv: v1 [cs.cv] 30 Nov 2018

arxiv: v1 [cs.cv] 30 Nov 2018 ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation Tuan-Hung Vu 1 Himalaya Jain 1 Maxime Bucher 1 Matthieu Cord 1,2 Patrick Pérez 1 arxiv:1811.12833v1 [cs.cv] 30 Nov

More information

Toward Correlating and Solving Abstract Tasks Using Convolutional Neural Networks Supplementary Material

Toward Correlating and Solving Abstract Tasks Using Convolutional Neural Networks Supplementary Material Toward Correlating and Solving Abstract Tasks Using Convolutional Neural Networks Supplementary Material Kuan-Chuan Peng Cornell University kp388@cornell.edu Tsuhan Chen Cornell University tsuhan@cornell.edu

More information

Singing Voice Separation using Generative Adversarial Networks

Singing Voice Separation using Generative Adversarial Networks Singing Voice Separation using Generative Adversarial Networks Hyeong-seok Choi, Kyogu Lee Music and Audio Research Group Graduate School of Convergence Science and Technology Seoul National University

More information

Lecture 14: Deep Generative Learning

Lecture 14: Deep Generative Learning Generative Modeling CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 14: Deep Generative Learning Density estimation Reconstructing probability density function using samples Bohyung Han

More information

Machine Learning for Signal Processing Neural Networks Continue. Instructor: Bhiksha Raj Slides by Najim Dehak 1 Dec 2016

Machine Learning for Signal Processing Neural Networks Continue. Instructor: Bhiksha Raj Slides by Najim Dehak 1 Dec 2016 Machine Learning for Signal Processing Neural Networks Continue Instructor: Bhiksha Raj Slides by Najim Dehak 1 Dec 2016 1 So what are neural networks?? Voice signal N.Net Transcription Image N.Net Text

More information

Large-Scale Feature Learning with Spike-and-Slab Sparse Coding

Large-Scale Feature Learning with Spike-and-Slab Sparse Coding Large-Scale Feature Learning with Spike-and-Slab Sparse Coding Ian J. Goodfellow, Aaron Courville, Yoshua Bengio ICML 2012 Presented by Xin Yuan January 17, 2013 1 Outline Contributions Spike-and-Slab

More information

Supplementary Material for Superpixel Sampling Networks

Supplementary Material for Superpixel Sampling Networks Supplementary Material for Superpixel Sampling Networks Varun Jampani 1, Deqing Sun 1, Ming-Yu Liu 1, Ming-Hsuan Yang 1,2, Jan Kautz 1 1 NVIDIA 2 UC Merced {vjampani,deqings,mingyul,jkautz}@nvidia.com,

More information

Convolutional Neural Networks

Convolutional Neural Networks Convolutional Neural Networks Books» http://www.deeplearningbook.org/ Books http://neuralnetworksanddeeplearning.com/.org/ reviews» http://www.deeplearningbook.org/contents/linear_algebra.html» http://www.deeplearningbook.org/contents/prob.html»

More information

Introduction to Deep Neural Networks

Introduction to Deep Neural Networks Introduction to Deep Neural Networks Presenter: Chunyuan Li Pattern Classification and Recognition (ECE 681.01) Duke University April, 2016 Outline 1 Background and Preliminaries Why DNNs? Model: Logistic

More information

Laconic: Label Consistency for Image Categorization

Laconic: Label Consistency for Image Categorization 1 Laconic: Label Consistency for Image Categorization Samy Bengio, Google with Jeff Dean, Eugene Ie, Dumitru Erhan, Quoc Le, Andrew Rabinovich, Jon Shlens, and Yoram Singer 2 Motivation WHAT IS THE OCCLUDED

More information

Self-Tuning Semantic Image Segmentation

Self-Tuning Semantic Image Segmentation Self-Tuning Semantic Image Segmentation Sergey Milyaev 1,2, Olga Barinova 2 1 Voronezh State University sergey.milyaev@gmail.com 2 Lomonosov Moscow State University obarinova@graphics.cs.msu.su Abstract.

More information

Probabilistic and Logistic Circuits: A New Synthesis of Logic and Machine Learning

Probabilistic and Logistic Circuits: A New Synthesis of Logic and Machine Learning Probabilistic and Logistic Circuits: A New Synthesis of Logic and Machine Learning Guy Van den Broeck KULeuven Symposium Dec 12, 2018 Outline Learning Adding knowledge to deep learning Logistic circuits

More information

CS230: Lecture 9 Deep Reinforcement Learning

CS230: Lecture 9 Deep Reinforcement Learning CS230: Lecture 9 Deep Reinforcement Learning Kian Katanforoosh Menti code: 21 90 15 Today s outline I. Motivation II. Recycling is good: an introduction to RL III. Deep Q-Learning IV. Application of Deep

More information

Compressed Fisher vectors for LSVR

Compressed Fisher vectors for LSVR XRCE@ILSVRC2011 Compressed Fisher vectors for LSVR Florent Perronnin and Jorge Sánchez* Xerox Research Centre Europe (XRCE) *Now with CIII, Cordoba University, Argentina Our system in a nutshell High-dimensional

More information

A Unified Framework for Domain Adaptation using Metric Learning on Manifolds

A Unified Framework for Domain Adaptation using Metric Learning on Manifolds A Unified Framework for Domain Adaptation using Metric Learning on Manifolds Sridhar Mahadevan 1, Bamdev Mishra 2, and Shalini Ghosh 3 1 University of Massachusetts. Amherst, MA 01003, and Department of

More information

arxiv: v4 [cs.lg] 29 Dec 2018

arxiv: v4 [cs.lg] 29 Dec 2018 Conditional Adversarial Domain Adaptation arxiv:1705.10667v4 [cs.lg] 29 Dec 2018 Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I. Jordan School of Software, Tsinghua University, China KLiss,

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning CS4731 Dr. Mihail Fall 2017 Slide content based on books by Bishop and Barber. https://www.microsoft.com/en-us/research/people/cmbishop/ http://web4.cs.ucl.ac.uk/staff/d.barber/pmwiki/pmwiki.php?n=brml.homepage

More information

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /9/17

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /9/17 3/9/7 Neural Networks Emily Fox University of Washington March 0, 207 Slides adapted from Ali Farhadi (via Carlos Guestrin and Luke Zettlemoyer) Single-layer neural network 3/9/7 Perceptron as a neural

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

CS230: Lecture 5 Advanced topics in Object Detection

CS230: Lecture 5 Advanced topics in Object Detection CS230: Lecture 5 Advanced topics in Object Detection Stanford University Today s outline We will learn: - the Intuition behind object detection methods - a series of computer vision papers I. Object detection

More information

Generalized Zero-Shot Learning with Deep Calibration Network

Generalized Zero-Shot Learning with Deep Calibration Network Generalized Zero-Shot Learning with Deep Calibration Network Shichen Liu, Mingsheng Long, Jianmin Wang, and Michael I.Jordan School of Software, Tsinghua University, China KLiss, MOE; BNRist; Research

More information

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang Deep Learning Basics Lecture 7: Factor Analysis Princeton University COS 495 Instructor: Yingyu Liang Supervised v.s. Unsupervised Math formulation for supervised learning Given training data x i, y i

More information

Generative Adversarial Networks

Generative Adversarial Networks Generative Adversarial Networks SIBGRAPI 2017 Tutorial Everything you wanted to know about Deep Learning for Computer Vision but were afraid to ask Presentation content inspired by Ian Goodfellow s tutorial

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Deep Learning Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein, Pieter Abbeel, Anca Dragan for CS188 Intro to AI at UC Berkeley.

More information

Introduction to Convolutional Neural Networks (CNNs)

Introduction to Convolutional Neural Networks (CNNs) Introduction to Convolutional Neural Networks (CNNs) nojunk@snu.ac.kr http://mipal.snu.ac.kr Department of Transdisciplinary Studies Seoul National University, Korea Jan. 2016 Many slides are from Fei-Fei

More information

CS 4700: Foundations of Artificial Intelligence

CS 4700: Foundations of Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Prof. Bart Selman selman@cs.cornell.edu Machine Learning: Neural Networks R&N 18.7 Intro & perceptron learning 1 2 Neuron: How the brain works # neurons

More information

Transfer Learning through Greedy Subset Selection

Transfer Learning through Greedy Subset Selection Transfer Learning through Greedy Subset Selection Ilja Kuzborskij 1, Francesco Orabona 2, and Barbara Caputo 3 1 Idiap Research Institute, Centre du Parc, Rue Marconi 19, 1920 Martigny, Switzerland École

More information

Loss Functions and Optimization. Lecture 3-1

Loss Functions and Optimization. Lecture 3-1 Lecture 3: Loss Functions and Optimization Lecture 3-1 Administrative Assignment 1 is released: http://cs231n.github.io/assignments2017/assignment1/ Due Thursday April 20, 11:59pm on Canvas (Extending

More information

How to do backpropagation in a brain

How to do backpropagation in a brain How to do backpropagation in a brain Geoffrey Hinton Canadian Institute for Advanced Research & University of Toronto & Google Inc. Prelude I will start with three slides explaining a popular type of deep

More information

Cross-Domain Sentiment Classification with Target Domain Specific Information

Cross-Domain Sentiment Classification with Target Domain Specific Information Cross-Domain Sentiment Classification with Target Domain Specific Information Minlong Peng, Qi Zhang, Yu-gang Jiang, Xuanjing Huang Shanghai Key Laboratory of Intelligent Information Processing, Fudan

More information

Improved Local Coordinate Coding using Local Tangents

Improved Local Coordinate Coding using Local Tangents Improved Local Coordinate Coding using Local Tangents Kai Yu NEC Laboratories America, 10081 N. Wolfe Road, Cupertino, CA 95129 Tong Zhang Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854

More information

An EoS-meter of QCD transition from deep learning

An EoS-meter of QCD transition from deep learning An EoS-meter of QCD transition from deep learning Nan Su Frankfurt Institute for Advanced Studies with Long-Gang Pang, Kai Zhou (FIAS), Hannah Petersen, Horst Stöcker (FIAS/Uni Frankfurt/GSI), Xin-Nian

More information

CSCI 315: Artificial Intelligence through Deep Learning

CSCI 315: Artificial Intelligence through Deep Learning CSCI 35: Artificial Intelligence through Deep Learning W&L Fall Term 27 Prof. Levy Convolutional Networks http://wernerstudio.typepad.com/.a/6ad83549adb53ef53629ccf97c-5wi Convolution: Convolution is

More information

Understanding How ConvNets See

Understanding How ConvNets See Understanding How ConvNets See Slides from Andrej Karpathy Springerberg et al, Striving for Simplicity: The All Convolutional Net (ICLR 2015 workshops) CSC321: Intro to Machine Learning and Neural Networks,

More information

Approximate Q-Learning. Dan Weld / University of Washington

Approximate Q-Learning. Dan Weld / University of Washington Approximate Q-Learning Dan Weld / University of Washington [Many slides taken from Dan Klein and Pieter Abbeel / CS188 Intro to AI at UC Berkeley materials available at http://ai.berkeley.edu.] Q Learning

More information

Deep Learning (CNNs)

Deep Learning (CNNs) 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Deep Learning (CNNs) Deep Learning Readings: Murphy 28 Bishop - - HTF - - Mitchell

More information

Lecture 12. Talk Announcement. Neural Networks. This Lecture: Advanced Machine Learning. Recap: Generalized Linear Discriminants

Lecture 12. Talk Announcement. Neural Networks. This Lecture: Advanced Machine Learning. Recap: Generalized Linear Discriminants Advanced Machine Learning Lecture 2 Neural Networks 24..206 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/ leibe@vision.rwth-aachen.de Talk Announcement Yann LeCun (NYU & FaceBook AI) 28..

More information

Training Generative Adversarial Networks Via Turing Test

Training Generative Adversarial Networks Via Turing Test raining enerative Adversarial Networks Via uring est Jianlin Su School of Mathematics Sun Yat-sen University uangdong, China bojone@spaces.ac.cn Abstract In this article, we introduce a new mode for training

More information

Classification Semi-supervised learning based on network. Speakers: Hanwen Wang, Xinxin Huang, and Zeyu Li CS Winter

Classification Semi-supervised learning based on network. Speakers: Hanwen Wang, Xinxin Huang, and Zeyu Li CS Winter Classification Semi-supervised learning based on network Speakers: Hanwen Wang, Xinxin Huang, and Zeyu Li CS 249-2 2017 Winter Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions Xiaojin

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Explainable AI Marc Toussaint University of Stuttgart Winter 2018/19 Explainable AI General Concept of Explaination Data, Objective, Method, & Input Counterfactuals & Pearl Fitting

More information

Approximation Methods in Reinforcement Learning

Approximation Methods in Reinforcement Learning 2018 CS420, Machine Learning, Lecture 12 Approximation Methods in Reinforcement Learning Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/cs420/index.html Reinforcement

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) Human Brain Neurons Input-Output Transformation Input Spikes Output Spike Spike (= a brief pulse) (Excitatory Post-Synaptic Potential)

More information

Multi-Label Learning with Weak Label

Multi-Label Learning with Weak Label Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10) Multi-Label Learning with Weak Label Yu-Yin Sun Yin Zhang Zhi-Hua Zhou National Key Laboratory for Novel Software Technology

More information

Spatial Transformer Networks

Spatial Transformer Networks BIL722 - Deep Learning for Computer Vision Spatial Transformer Networks Max Jaderberg Andrew Zisserman Karen Simonyan Koray Kavukcuoglu Contents Introduction to Spatial Transformers Related Works Spatial

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

GENERATIVE ADVERSARIAL LEARNING

GENERATIVE ADVERSARIAL LEARNING GENERATIVE ADVERSARIAL LEARNING OF MARKOV CHAINS Jiaming Song, Shengjia Zhao & Stefano Ermon Computer Science Department Stanford University {tsong,zhaosj12,ermon}@cs.stanford.edu ABSTRACT We investigate

More information

Image Analysis. PCA and Eigenfaces

Image Analysis. PCA and Eigenfaces Image Analysis PCA and Eigenfaces Christophoros Nikou cnikou@cs.uoi.gr Images taken from: D. Forsyth and J. Ponce. Computer Vision: A Modern Approach, Prentice Hall, 2003. Computer Vision course by Svetlana

More information

Enforcing constraints for interpolation and extrapolation in Generative Adversarial Networks

Enforcing constraints for interpolation and extrapolation in Generative Adversarial Networks Enforcing constraints for interpolation and extrapolation in Generative Adversarial Networks Panos Stinis (joint work with T. Hagge, A.M. Tartakovsky and E. Yeung) Pacific Northwest National Laboratory

More information

Two transfer learning approaches for domain adaptation

Two transfer learning approaches for domain adaptation Two transfer learning approaches for domain adaptation Amaury Habrard amaury.habrard@univ-st-etienne.fr Laboratoire Hubert Curien, UMR CNRS 5516 University Jean Monnet - Saint-Étienne (France) Seminar,

More information

Dynamic Data Modeling, Recognition, and Synthesis. Rui Zhao Thesis Defense Advisor: Professor Qiang Ji

Dynamic Data Modeling, Recognition, and Synthesis. Rui Zhao Thesis Defense Advisor: Professor Qiang Ji Dynamic Data Modeling, Recognition, and Synthesis Rui Zhao Thesis Defense Advisor: Professor Qiang Ji Contents Introduction Related Work Dynamic Data Modeling & Analysis Temporal localization Insufficient

More information

The Success of Deep Generative Models

The Success of Deep Generative Models The Success of Deep Generative Models Jakub Tomczak AMLAB, University of Amsterdam CERN, 2018 What is AI about? What is AI about? Decision making: What is AI about? Decision making: new data High probability

More information

DANIEL WILSON AND BEN CONKLIN. Integrating AI with Foundation Intelligence for Actionable Intelligence

DANIEL WILSON AND BEN CONKLIN. Integrating AI with Foundation Intelligence for Actionable Intelligence DANIEL WILSON AND BEN CONKLIN Integrating AI with Foundation Intelligence for Actionable Intelligence INTEGRATING AI WITH FOUNDATION INTELLIGENCE FOR ACTIONABLE INTELLIGENCE in an arms race for artificial

More information

CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS

CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS LAST TIME Intro to cudnn Deep neural nets using cublas and cudnn TODAY Building a better model for image classification Overfitting

More information

Fantope Regularization in Metric Learning

Fantope Regularization in Metric Learning Fantope Regularization in Metric Learning CVPR 2014 Marc T. Law (LIP6, UPMC), Nicolas Thome (LIP6 - UPMC Sorbonne Universités), Matthieu Cord (LIP6 - UPMC Sorbonne Universités), Paris, France Introduction

More information