Tasks ADAS. Self Driving. Non-machine Learning. Traditional MLP. Machine-Learning based method. Supervised CNN. Methods. Deep-Learning based

Size: px
Start display at page:

Download "Tasks ADAS. Self Driving. Non-machine Learning. Traditional MLP. Machine-Learning based method. Supervised CNN. Methods. Deep-Learning based"

Transcription

1 UNDERSTANDING CNN

2 ADAS Tasks Self Driving Localizati on Perception Planning/ Control Driver state Vehicle Diagnosis Smart factory Methods Traditional Deep-Learning based Non-machine Learning Machine-Learning based method Supervised MLP CNN RNN (LSTM) DNN Reinforcement GPS, SLAM Pedestrian detection (HOG+SVM) Detection/ Segmentat ion/classif ication Dry/wet road classificati on Optimal control End-toend Learning End-toend Learning Unsupervised

3 TENSORFLOW-POWERED CUCUMBER SORTER

4 Cucumber sorting Each cucumber has different color, shape, quality and freshness. At Makoto's farm, they sort them into nine different classes, and his mother sorts them all herself spending up to eight hours per day at peak harvesting times.

5 Cucumber sorting You have to look at not only the size and thickness, but also the color, texture, small scratches, whether or not they are crooked and whether they have prickles. It takes months to learn the system and you can't just hire part-time workers during the busiest period. I myself only recently learned to sort cucumbers well, Makoto said. Makoto doesn t think sorting is an essential task for cucumber farmers. "Farmers want to focus and spend their time on growing delicious vegetables. I'd like to automate the sorting tasks before taking the farm business over from my parents.

6 Tensorflow-powered cucumber sorter Makoto used the sample TensorFlow code Deep MNIST for Experts with minor modifications to the convolution, pooling and last layers, changing the network design to adapt to the pixel format of cucumber images and the number of cucumber classes.

7 Cucumber sorter by Makoto Koike

8 MNIST & LENET

9 MNIST dataset handwritten digits a training set of 60,000 examples 28x28 images

10 LeNet Yann LeCun and his collaborators developed a recognizer for handwritten digits by using back-propagation in a feed-forward net

11 CNN BUILDING BLOCKS

12 Convolution

13 Convolutions in CNNs

14 Pooling Max vs Average pooling

15 DEEP MNIST FOR EXPERTS

16 Deep MNIST for Experts

17 Deep MNIST for Experts

18 LeNet #(Parameter) = 3,274,634 Layer C1 C2 1 2 Weight ,200 3,211,264 10,240 Bias ,024 10

19 The 82 errors by LeNet5

20

21 Feature map results

22 Learned Filters Trained 32 filters on C1 layer

23 Learned Filters Filtered result ReLU Filtered result ReLU Filtered result ReLU Filtered result ReLU Filtered result ReLU Filtered result ReLU Filtered result ReLU Filtered result ReLU

24 TensorFlow codes LeNet tensorflow codes

25 IMAGE CLASSIFICATION

26 Image Classification (ImageNet)

27 ALEXNET

28 AlexNet AlexNet: won the 2012 ImageNet competition by making 40% less error than the next best competitor It is composed of 5 convolutional layers The input is a color RGB image Computation is divided over 2 GPU architectures

29 AlexNet results AlexNet TensorFlow codes and some results

30 AlexNet Visualization Filters learned by the first convolutional layer. The top half corresponds to the layer on one GPU, the bottom on the other. From Krizehvsky et al. (2012) Each of the 96 filters is of size [11x11x3]

31 VISUALIZATION

32 Motivation It is well known that Artificial Neural Networks show remarkable performance in image classification However, we actually understand little of why certain models work and others don t There have been some attempts to visualize at each layer in the neural network - to know how neural networks work and what each layer has learned

33 Why is this important? There is a need of training networks with information we want to learn But this program couldn t ignore what we don t care about

34 Visualization method Deconvolution Matthew D. Zeiler and Rob Fergus, Visualizing and Understanding Convolutional Networks, ECCV 2014 Input optimization Naïve visualization Low/High frequency normalization With image prior With Laplacian (pyramid gradient) normalization

35 Channel 1 Channel 2 Channel 3 Channel n-1 Channel n Channel n+1 Naïve visualization GoogLeNet T: Selected layer and channel Objective function: L = mean(t) GRADIENT ASCENT: img new img old + α L img img old

36 Channel 1 Channel 2 Channel 3 Channel n-1 Channel n Channel n+1 Naïve visualization GoogLeNet Initial input: an arbitrary noise image Selected (layer, channel) L=34.99 i =0 L= i =9 L= i =19 GRADIENT ASCENT Output images

37 Channel 1 Channel 2 Channel 3 Channel n-1 Channel n Channel n+1 Single neuron activation GoogLeNet img Initial input: an arbitrary noise image T: Selected (layer,channel, position) i =0 i =4 i =9 i =14 i =19 i =24 i =29 i =34 i =39 i =44 i =49

38 Single neuron activation results iteration 3a_3x3_pre_relu 4d_3x3_bottleneck_pre_relu 5a_pool_reduce_pre_relu layer

39 Examples of naïve feature visualization input localresponsenorm localresponsenorm GoogLeNet

40 Examples of naïve feature visualization input localresponsenorm localresponsenorm GoogLeNet

41 Examples of naïve feature visualization input localresponsenorm localresponsenorm GoogLeNet

42 Examples of naïve feature visualization input localresponsenorm localresponsenorm GoogLeNet

43 Examples of naïve feature visualization input localresponsenorm localresponsenorm GoogLeNet

44 Examples of naïve feature visualization input localresponsenorm localresponsenorm GoogLeNet

45 Examples of naïve feature visualization input localresponsenorm localresponsenorm GoogLeNet

46 Examples of naïve feature visualization input localresponsenorm localresponsenorm GoogLeNet

47 Examples of naïve feature visualization. input localresponsenorm localresponsenorm GoogLeNet

48 LOW/HIGH FREQUENCY NORMALIZATION

49 Gradient normalization GRADIENT Computation Initial input: an arbitrary noise image Low frequency normalization merge Normalized gradient High frequency normalization

50 Laplacian pyramid

51 Convergence example L=102.42

52 Result of Laplacian pyramid method input localresponsenorm localresponsenorm GoogLeNet

53 Result of Laplacian pyramid method input localresponsenorm localresponsenorm GoogLeNet

54 Result of Laplacian pyramid method input localresponsenorm localresponsenorm GoogLeNet

55 Result of Laplacian pyramid method input localresponsenorm localresponsenorm GoogLeNet

56 Result of Laplacian pyramid method input localresponsenorm localresponsenorm GoogLeNet

57 Result of Laplacian pyramid method input localresponsenorm localresponsenorm GoogLeNet

58 Result of Laplacian pyramid method input localresponsenorm localresponsenorm GoogLeNet

59 Result of Laplacian pyramid method input localresponsenorm localresponsenorm GoogLeNet

60 Result of Laplacian pyramid method input localresponsenorm localresponsenorm GoogLeNet

61 Result of Laplacian pyramid method. input localresponsenorm localresponsenorm GoogLeNet

62 Results with two channels

63 Summary x x CNN layer y CNN layer y layer Feature type Feature type Complex features

64 DEEPDREAM

65 DeepDream Square cost function vs vs 100 2

66 Examples (all feature maps in a layer)

67 DeepDream example

68 DeepDream example

69

70 TOPICS IN CNN

71 COMPARISON

72 AlexNet VS VGG-19 VS GoogLeNet Parameters Operations (MACs) *Top-1 accuracy (%) *Top-5 accuracy % AlexNet 60 M 832 M VGG M 19,632 M GoogLeNet 6.8 M 1,502 M *Evaluated with ImageNet2012 *

73 Comparison

74 VISUALIZING IMAGE CLASSIFICATION MODEL

75 Inputs maximizing class score S c I λ I 2 Objective Function (to be maximized) K. Simonyan, A. Vedaldi, A. Zisserman, Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, ICLR Workshop 2014

76 Inputs maximizing class score S c I λ I 2 Objective Function (to be maximized) Goose class

77 Maximizing class score S c I λ I 2 Objective Function (to be maximized) Goose class

78 Inputs maximizing class score dumbbell cup dalmatian bell pepper lemon husky

79 Inputs maximizing class score computer keyboard kit fox limousine Washing machine goose ostrich

80 SALIENCY

81 Saliency visualization Linear score model for class c: w : importance of corresponding pixels of I for class c

82 Saliency visualization Dog Class Objective Function

83 Saliency visualization Dog Class Differentiation Objective Function S c (I 0 ) I 0 =

84 Saliency visualization I 0 = saliency map

85 yacht dog monkey washing machine cow building

86 A NEURAL ALGORITHM OF ARTISTIC STYLE

87 Style Loss? Content Loss Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. "A neural algorithm of artistic style." arxiv preprint arxiv: (2015).

88 Style Loss? Content Loss Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. "A neural algorithm of artistic style." arxiv preprint arxiv: (2015).

89 Style Loss? Content Loss Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. "A neural algorithm of artistic style." arxiv preprint arxiv: (2015).

90 Artistic style

91 Artistic style

92 예제코드 Tensorflow codes Tensorflow codes

93 ADVERSARIAL EXAMPLE

94 예제코드 Codes

Neural Network Back-propagation HYUNG IL KOO

Neural Network Back-propagation HYUNG IL KOO Neural Network Back-propagation HYUNG IL KOO Hidden Layer Representations Backpropagation has an ability to discover useful intermediate representations at the hidden unit layers inside the networks which

More information

UNSUPERVISED LEARNING

UNSUPERVISED LEARNING UNSUPERVISED LEARNING Topics Layer-wise (unsupervised) pre-training Restricted Boltzmann Machines Auto-encoders LAYER-WISE (UNSUPERVISED) PRE-TRAINING Breakthrough in 2006 Layer-wise (unsupervised) pre-training

More information

Understanding CNNs using visualisation and transformation analysis

Understanding CNNs using visualisation and transformation analysis Understanding CNNs using visualisation and transformation analysis Andrea Vedaldi Medical Imaging Summer School August 2016 Image representations 2 encoder Φ representation An encoder maps the data into

More information

Understanding How ConvNets See

Understanding How ConvNets See Understanding How ConvNets See Slides from Andrej Karpathy Springerberg et al, Striving for Simplicity: The All Convolutional Net (ICLR 2015 workshops) CSC321: Intro to Machine Learning and Neural Networks,

More information

Introduction to Convolutional Neural Networks (CNNs)

Introduction to Convolutional Neural Networks (CNNs) Introduction to Convolutional Neural Networks (CNNs) nojunk@snu.ac.kr http://mipal.snu.ac.kr Department of Transdisciplinary Studies Seoul National University, Korea Jan. 2016 Many slides are from Fei-Fei

More information

Explaining Machine Learning Decisions

Explaining Machine Learning Decisions Explaining Machine Learning Decisions Grégoire Montavon, TU Berlin Joint work with: Wojciech Samek, Klaus-Robert Müller, Sebastian Lapuschkin, Alexander Binder 18/09/2018 Intl. Workshop ML & AI, Telecom

More information

Fine-grained Classification

Fine-grained Classification Fine-grained Classification Marcel Simon Department of Mathematics and Computer Science, Germany marcel.simon@uni-jena.de http://www.inf-cv.uni-jena.de/ Seminar Talk 23.06.2015 Outline 1 Motivation 2 3

More information

Convolutional Neural Network Architecture

Convolutional Neural Network Architecture Convolutional Neural Network Architecture Zhisheng Zhong Feburary 2nd, 2018 Zhisheng Zhong Convolutional Neural Network Architecture Feburary 2nd, 2018 1 / 55 Outline 1 Introduction of Convolution Motivation

More information

Lecture 7 Convolutional Neural Networks

Lecture 7 Convolutional Neural Networks Lecture 7 Convolutional Neural Networks CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago April 17, 2017 We saw before: ŷ x 1 x 2 x 3 x 4 A series of matrix multiplications:

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Neural networks Daniel Hennes 21.01.2018 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Logistic regression Neural networks Perceptron

More information

Deep Learning (CNNs)

Deep Learning (CNNs) 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Deep Learning (CNNs) Deep Learning Readings: Murphy 28 Bishop - - HTF - - Mitchell

More information

Artificial Neural Networks D B M G. Data Base and Data Mining Group of Politecnico di Torino. Elena Baralis. Politecnico di Torino

Artificial Neural Networks D B M G. Data Base and Data Mining Group of Politecnico di Torino. Elena Baralis. Politecnico di Torino Artificial Neural Networks Data Base and Data Mining Group of Politecnico di Torino Elena Baralis Politecnico di Torino Artificial Neural Networks Inspired to the structure of the human brain Neurons as

More information

Machine Learning for Computer Vision 8. Neural Networks and Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group

Machine Learning for Computer Vision 8. Neural Networks and Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group Machine Learning for Computer Vision 8. Neural Networks and Deep Learning Vladimir Golkov Technical University of Munich Computer Vision Group INTRODUCTION Nonlinear Coordinate Transformation http://cs.stanford.edu/people/karpathy/convnetjs/

More information

Convolutional Neural Network. Hung-yi Lee

Convolutional Neural Network. Hung-yi Lee al Neural Network Hung-yi Lee Why CNN for Image? [Zeiler, M. D., ECCV 2014] x 1 x 2 Represented as pixels x N The most basic classifiers Use 1 st layer as module to build classifiers Use 2 nd layer as

More information

Artificial Neural Networks. Introduction to Computational Neuroscience Tambet Matiisen

Artificial Neural Networks. Introduction to Computational Neuroscience Tambet Matiisen Artificial Neural Networks Introduction to Computational Neuroscience Tambet Matiisen 2.04.2018 Artificial neural network NB! Inspired by biology, not based on biology! Applications Automatic speech recognition

More information

Lecture 17: Neural Networks and Deep Learning

Lecture 17: Neural Networks and Deep Learning UVA CS 6316 / CS 4501-004 Machine Learning Fall 2016 Lecture 17: Neural Networks and Deep Learning Jack Lanchantin Dr. Yanjun Qi 1 Neurons 1-Layer Neural Network Multi-layer Neural Network Loss Functions

More information

Tutorial on Methods for Interpreting and Understanding Deep Neural Networks. Part 3: Applications & Discussion

Tutorial on Methods for Interpreting and Understanding Deep Neural Networks. Part 3: Applications & Discussion Tutorial on Methods for Interpreting and Understanding Deep Neural Networks W. Samek, G. Montavon, K.-R. Müller Part 3: Applications & Discussion ICASSP 2017 Tutorial W. Samek, G. Montavon & K.-R. Müller

More information

Neural Networks 2. 2 Receptive fields and dealing with image inputs

Neural Networks 2. 2 Receptive fields and dealing with image inputs CS 446 Machine Learning Fall 2016 Oct 04, 2016 Neural Networks 2 Professor: Dan Roth Scribe: C. Cheng, C. Cervantes Overview Convolutional Neural Networks Recurrent Neural Networks 1 Introduction There

More information

Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses about the label (Top-5 error) No Bounding Box

Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses about the label (Top-5 error) No Bounding Box ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton Motivation Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses

More information

Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net

Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net Supplementary Material Xingang Pan 1, Ping Luo 1, Jianping Shi 2, and Xiaoou Tang 1 1 CUHK-SenseTime Joint Lab, The Chinese University

More information

Convolutional Neural Networks

Convolutional Neural Networks Convolutional Neural Networks Books» http://www.deeplearningbook.org/ Books http://neuralnetworksanddeeplearning.com/.org/ reviews» http://www.deeplearningbook.org/contents/linear_algebra.html» http://www.deeplearningbook.org/contents/prob.html»

More information

CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS

CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS LAST TIME Intro to cudnn Deep neural nets using cublas and cudnn TODAY Building a better model for image classification Overfitting

More information

Spatial Transformer Networks

Spatial Transformer Networks BIL722 - Deep Learning for Computer Vision Spatial Transformer Networks Max Jaderberg Andrew Zisserman Karen Simonyan Koray Kavukcuoglu Contents Introduction to Spatial Transformers Related Works Spatial

More information

<Special Topics in VLSI> Learning for Deep Neural Networks (Back-propagation)

<Special Topics in VLSI> Learning for Deep Neural Networks (Back-propagation) Learning for Deep Neural Networks (Back-propagation) Outline Summary of Previous Standford Lecture Universal Approximation Theorem Inference vs Training Gradient Descent Back-Propagation

More information

Some Applications of Machine Learning to Astronomy. Eduardo Bezerra 20/fev/2018

Some Applications of Machine Learning to Astronomy. Eduardo Bezerra 20/fev/2018 Some Applications of Machine Learning to Astronomy Eduardo Bezerra ebezerra@cefet-rj.br 20/fev/2018 Overview 2 Introduction Definition Neural Nets Applications do Astronomy Ads: Machine Learning Course

More information

Machine Learning. Boris

Machine Learning. Boris Machine Learning Boris Nadion boris@astrails.com @borisnadion @borisnadion boris@astrails.com astrails http://astrails.com awesome web and mobile apps since 2005 terms AI (artificial intelligence)

More information

Introduction to Machine Learning (67577)

Introduction to Machine Learning (67577) Introduction to Machine Learning (67577) Shai Shalev-Shwartz School of CS and Engineering, The Hebrew University of Jerusalem Deep Learning Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks

More information

Convolutional Neural Networks II. Slides from Dr. Vlad Morariu

Convolutional Neural Networks II. Slides from Dr. Vlad Morariu Convolutional Neural Networks II Slides from Dr. Vlad Morariu 1 Optimization Example of optimization progress while training a neural network. (Loss over mini-batches goes down over time.) 2 Learning rate

More information

SGD and Deep Learning

SGD and Deep Learning SGD and Deep Learning Subgradients Lets make the gradient cheating more formal. Recall that the gradient is the slope of the tangent. f(w 1 )+rf(w 1 ) (w w 1 ) Non differentiable case? w 1 Subgradients

More information

Bayesian Networks (Part I)

Bayesian Networks (Part I) 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Bayesian Networks (Part I) Graphical Model Readings: Murphy 10 10.2.1 Bishop 8.1,

More information

Machine Learning for Signal Processing Neural Networks Continue. Instructor: Bhiksha Raj Slides by Najim Dehak 1 Dec 2016

Machine Learning for Signal Processing Neural Networks Continue. Instructor: Bhiksha Raj Slides by Najim Dehak 1 Dec 2016 Machine Learning for Signal Processing Neural Networks Continue Instructor: Bhiksha Raj Slides by Najim Dehak 1 Dec 2016 1 So what are neural networks?? Voice signal N.Net Transcription Image N.Net Text

More information

arxiv: v1 [cs.cv] 11 May 2015 Abstract

arxiv: v1 [cs.cv] 11 May 2015 Abstract Training Deeper Convolutional Networks with Deep Supervision Liwei Wang Computer Science Dept UIUC lwang97@illinois.edu Chen-Yu Lee ECE Dept UCSD chl260@ucsd.edu Zhuowen Tu CogSci Dept UCSD ztu0@ucsd.edu

More information

Supervised Deep Learning

Supervised Deep Learning Supervised Deep Learning Joana Frontera-Pons Grigorios Tsagkatakis Dictionary Learning on Manifolds workshop Nice, September 2017 Supervised Learning Data Labels Model Prediction Spiral Exploiting prior

More information

Convolutional neural networks

Convolutional neural networks 11-1: Convolutional neural networks Prof. J.C. Kao, UCLA Convolutional neural networks Motivation Biological inspiration Convolution operation Convolutional layer Padding and stride CNN architecture 11-2:

More information

Jakub Hajic Artificial Intelligence Seminar I

Jakub Hajic Artificial Intelligence Seminar I Jakub Hajic Artificial Intelligence Seminar I. 11. 11. 2014 Outline Key concepts Deep Belief Networks Convolutional Neural Networks A couple of questions Convolution Perceptron Feedforward Neural Network

More information

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /9/17

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /9/17 3/9/7 Neural Networks Emily Fox University of Washington March 0, 207 Slides adapted from Ali Farhadi (via Carlos Guestrin and Luke Zettlemoyer) Single-layer neural network 3/9/7 Perceptron as a neural

More information

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang Deep Learning Basics Lecture 7: Factor Analysis Princeton University COS 495 Instructor: Yingyu Liang Supervised v.s. Unsupervised Math formulation for supervised learning Given training data x i, y i

More information

Memory-Augmented Attention Model for Scene Text Recognition

Memory-Augmented Attention Model for Scene Text Recognition Memory-Augmented Attention Model for Scene Text Recognition Cong Wang 1,2, Fei Yin 1,2, Cheng-Lin Liu 1,2,3 1 National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences

More information

Theories of Deep Learning

Theories of Deep Learning Theories of Deep Learning Lecture 02 Donoho, Monajemi, Papyan Department of Statistics Stanford Oct. 4, 2017 1 / 50 Stats 385 Fall 2017 2 / 50 Stats 285 Fall 2017 3 / 50 Course info Wed 3:00-4:20 PM in

More information

CSE446: Neural Networks Spring Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer

CSE446: Neural Networks Spring Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer CSE446: Neural Networks Spring 2017 Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer Human Neurons Switching time ~ 0.001 second Number of neurons 10 10 Connections per neuron 10 4-5 Scene

More information

CSC321 Lecture 16: ResNets and Attention

CSC321 Lecture 16: ResNets and Attention CSC321 Lecture 16: ResNets and Attention Roger Grosse Roger Grosse CSC321 Lecture 16: ResNets and Attention 1 / 24 Overview Two topics for today: Topic 1: Deep Residual Networks (ResNets) This is the state-of-the

More information

Deep Learning for Automatic Speech Recognition Part II

Deep Learning for Automatic Speech Recognition Part II Deep Learning for Automatic Speech Recognition Part II Xiaodong Cui IBM T. J. Watson Research Center Yorktown Heights, NY 10598 Fall, 2018 Outline A brief revisit of sampling, pitch/formant and MFCC DNN-HMM

More information

Introduction to Convolutional Neural Networks 2018 / 02 / 23

Introduction to Convolutional Neural Networks 2018 / 02 / 23 Introduction to Convolutional Neural Networks 2018 / 02 / 23 Buzzword: CNN Convolutional neural networks (CNN, ConvNet) is a class of deep, feed-forward (not recurrent) artificial neural networks that

More information

CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning

CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning Lei Lei Ruoxuan Xiong December 16, 2017 1 Introduction Deep Neural Network

More information

Sajid Anwar, Kyuyeon Hwang and Wonyong Sung

Sajid Anwar, Kyuyeon Hwang and Wonyong Sung Sajid Anwar, Kyuyeon Hwang and Wonyong Sung Department of Electrical and Computer Engineering Seoul National University Seoul, 08826 Korea Email: sajid@dsp.snu.ac.kr, khwang@dsp.snu.ac.kr, wysung@snu.ac.kr

More information

Layer-wise Relevance Propagation for Neural Networks with Local Renormalization Layers

Layer-wise Relevance Propagation for Neural Networks with Local Renormalization Layers Layer-wise Relevance Propagation for Neural Networks with Local Renormalization Layers Alexander Binder 1, Grégoire Montavon 2, Sebastian Lapuschkin 3, Klaus-Robert Müller 2,4, and Wojciech Samek 3 1 ISTD

More information

CS 1674: Intro to Computer Vision. Final Review. Prof. Adriana Kovashka University of Pittsburgh December 7, 2016

CS 1674: Intro to Computer Vision. Final Review. Prof. Adriana Kovashka University of Pittsburgh December 7, 2016 CS 1674: Intro to Computer Vision Final Review Prof. Adriana Kovashka University of Pittsburgh December 7, 2016 Final info Format: multiple-choice, true/false, fill in the blank, short answers, apply an

More information

What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1

What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1 What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1 Multi-layer networks Steve Renals Machine Learning Practical MLP Lecture 3 7 October 2015 MLP Lecture 3 Multi-layer networks 2 What Do Single

More information

Maxout Networks. Hien Quoc Dang

Maxout Networks. Hien Quoc Dang Maxout Networks Hien Quoc Dang Outline Introduction Maxout Networks Description A Universal Approximator & Proof Experiments with Maxout Why does Maxout work? Conclusion 10/12/13 Hien Quoc Dang Machine

More information

RAGAV VENKATESAN VIJETHA GATUPALLI BAOXIN LI NEURAL DATASET GENERALITY

RAGAV VENKATESAN VIJETHA GATUPALLI BAOXIN LI NEURAL DATASET GENERALITY RAGAV VENKATESAN VIJETHA GATUPALLI BAOXIN LI NEURAL DATASET GENERALITY SIFT HOG ALL ABOUT THE FEATURES DAISY GABOR AlexNet GoogleNet CONVOLUTIONAL NEURAL NETWORKS VGG-19 ResNet FEATURES COMES FROM DATA

More information

Demystifying deep learning. Artificial Intelligence Group Department of Computer Science and Technology, University of Cambridge, UK

Demystifying deep learning. Artificial Intelligence Group Department of Computer Science and Technology, University of Cambridge, UK Demystifying deep learning Petar Veličković Artificial Intelligence Group Department of Computer Science and Technology, University of Cambridge, UK London Data Science Summit 20 October 2017 Introduction

More information

Very Deep Residual Networks with Maxout for Plant Identification in the Wild Milan Šulc, Dmytro Mishkin, Jiří Matas

Very Deep Residual Networks with Maxout for Plant Identification in the Wild Milan Šulc, Dmytro Mishkin, Jiří Matas Very Deep Residual Networks with Maxout for Plant Identification in the Wild Milan Šulc, Dmytro Mishkin, Jiří Matas Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering

More information

arxiv: v1 [cs.cv] 14 Sep 2016

arxiv: v1 [cs.cv] 14 Sep 2016 Understanding Convolutional Neural Networks with A Mathematical Model arxiv:1609.04112v1 [cs.cv] 14 Sep 2016 Abstract C.-C. Jay Kuo Ming-Hsieh Department of Electrical Engineering University of Southern

More information

Differentiable Fine-grained Quantization for Deep Neural Network Compression

Differentiable Fine-grained Quantization for Deep Neural Network Compression Differentiable Fine-grained Quantization for Deep Neural Network Compression Hsin-Pai Cheng hc218@duke.edu Yuanjun Huang University of Science and Technology of China Anhui, China yjhuang@mail.ustc.edu.cn

More information

GENERATIVE MODELING OF CONVOLUTIONAL NEU-

GENERATIVE MODELING OF CONVOLUTIONAL NEU- GENERATIVE MODELING OF CONVOLUTIONAL NEU- RAL NETWORKS Jifeng Dai Microsoft Research jifdai@microsoft.com Yang Lu and Ying Nian Wu University of California, Los Angeles {yanglv, ywu}@stat.ucla.edu ABSTRACT

More information

Index. Santanu Pattanayak 2017 S. Pattanayak, Pro Deep Learning with TensorFlow,

Index. Santanu Pattanayak 2017 S. Pattanayak, Pro Deep Learning with TensorFlow, Index A Activation functions, neuron/perceptron binary threshold activation function, 102 103 linear activation function, 102 rectified linear unit, 106 sigmoid activation function, 103 104 SoftMax activation

More information

Reading Group on Deep Learning Session 2

Reading Group on Deep Learning Session 2 Reading Group on Deep Learning Session 2 Stephane Lathuiliere & Pablo Mesejo 10 June 2016 1/39 Chapter Structure Introduction. 5.1. Feed-forward Network Functions. 5.2. Network Training. 5.3. Error Backpropagation.

More information

Advancing Machine Learning and AI with Geography and GIS. Robert Kircher

Advancing Machine Learning and AI with Geography and GIS. Robert Kircher Advancing Machine Learning and AI with Geography and GIS Robert Kircher rkircher@esri.com Welcome & Thanks GIS is expected to do more, faster. see where find where predict where locate, connect WHERE route

More information

Asaf Bar Zvi Adi Hayat. Semantic Segmentation

Asaf Bar Zvi Adi Hayat. Semantic Segmentation Asaf Bar Zvi Adi Hayat Semantic Segmentation Today s Topics Fully Convolutional Networks (FCN) (CVPR 2015) Conditional Random Fields as Recurrent Neural Networks (ICCV 2015) Gaussian Conditional random

More information

Lecture 8: Introduction to Deep Learning: Part 2 (More on backpropagation, and ConvNets)

Lecture 8: Introduction to Deep Learning: Part 2 (More on backpropagation, and ConvNets) COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 8: Introduction to Deep Learning: Part 2 (More on backpropagation, and ConvNets) Sanjeev Arora Elad Hazan Recap: Structure of a deep

More information

arxiv: v1 [cs.lg] 7 Dec 2017

arxiv: v1 [cs.lg] 7 Dec 2017 Take it in your stride: Do we need striding in CNNs? Chen Kong imon Lucey Carnegie Mellon University {chenk, slucey}@andrew.cmu.edu arxiv:1712.02502v1 [cs.lg] 7 Dec 2017 Abstract ince their inception,

More information

Mitosis Detection in Breast Cancer Histology Images with Multi Column Deep Neural Networks

Mitosis Detection in Breast Cancer Histology Images with Multi Column Deep Neural Networks Mitosis Detection in Breast Cancer Histology Images with Multi Column Deep Neural Networks IDSIA, Lugano, Switzerland dan.ciresan@gmail.com Dan C. Cireşan and Alessandro Giusti DNN for Visual Pattern Recognition

More information

Explaining NonLinear Classification Decisions with Deep Taylor Decomposition

Explaining NonLinear Classification Decisions with Deep Taylor Decomposition 1 Explaining NonLinear Classification Decisions with Deep Taylor Decomposition Grégoire Montavon, Sebastian Bach, Alexander Binder, Wojciech Samek, and Klaus-Robert Müller arxiv:1512.2479v1 [cs.lg] 8 Dec

More information

Lecture 35: Optimization and Neural Nets

Lecture 35: Optimization and Neural Nets Lecture 35: Optimization and Neural Nets CS 4670/5670 Sean Bell DeepDream [Google, Inceptionism: Going Deeper into Neural Networks, blog 2015] Aside: CNN vs ConvNet Note: There are many papers that use

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks Oliver Schulte - CMPT 310 Neural Networks Neural networks arise from attempts to model human/animal brains Many models, many claims of biological plausibility We will focus on

More information

A practical theory for designing very deep convolutional neural networks. Xudong Cao.

A practical theory for designing very deep convolutional neural networks. Xudong Cao. A practical theory for designing very deep convolutional neural networks Xudong Cao notcxd@gmail.com Abstract Going deep is essential for deep learning. However it is not easy, there are many ways of going

More information

Deep Learning Lecture 2

Deep Learning Lecture 2 Fall 2016 Machine Learning CMPSCI 689 Deep Learning Lecture 2 Sridhar Mahadevan Autonomous Learning Lab UMass Amherst COLLEGE Outline of lecture New type of units Convolutional units, Rectified linear

More information

Neural Architectures for Image, Language, and Speech Processing

Neural Architectures for Image, Language, and Speech Processing Neural Architectures for Image, Language, and Speech Processing Karl Stratos June 26, 2018 1 / 31 Overview Feedforward Networks Need for Specialized Architectures Convolutional Neural Networks (CNNs) Recurrent

More information

PRUNING CONVOLUTIONAL NEURAL NETWORKS. Pavlo Molchanov Stephen Tyree Tero Karras Timo Aila Jan Kautz

PRUNING CONVOLUTIONAL NEURAL NETWORKS. Pavlo Molchanov Stephen Tyree Tero Karras Timo Aila Jan Kautz PRUNING CONVOLUTIONAL NEURAL NETWORKS Pavlo Molchanov Stephen Tyree Tero Karras Timo Aila Jan Kautz 2017 WHY WE CAN PRUNE CNNS? 2 WHY WE CAN PRUNE CNNS? Optimization failures : Some neurons are "dead":

More information

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6 Machine Learning for Large-Scale Data Analysis and Decision Making 80-629-17A Neural Networks Week #6 Today Neural Networks A. Modeling B. Fitting C. Deep neural networks Today s material is (adapted)

More information

An overview of deep learning methods for genomics

An overview of deep learning methods for genomics An overview of deep learning methods for genomics Matthew Ploenzke STAT115/215/BIO/BIST282 Harvard University April 19, 218 1 Snapshot 1. Brief introduction to convolutional neural networks What is deep

More information

Top Tagging with Lorentz Boost Networks and Simulation of Electromagnetic Showers with a Wasserstein GAN

Top Tagging with Lorentz Boost Networks and Simulation of Electromagnetic Showers with a Wasserstein GAN Top Tagging with Lorentz Boost Networks and Simulation of Electromagnetic Showers with a Wasserstein GAN Y. Rath, M. Erdmann, B. Fischer, L. Geiger, E. Geiser, J.Glombitza, D. Noll, T. Quast, M. Rieger,

More information

Deep Learning: a gentle introduction

Deep Learning: a gentle introduction Deep Learning: a gentle introduction Jamal Atif jamal.atif@dauphine.fr PSL, Université Paris-Dauphine, LAMSADE February 8, 206 Jamal Atif (Université Paris-Dauphine) Deep Learning February 8, 206 / Why

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

Convolutional Neural Networks. Srikumar Ramalingam

Convolutional Neural Networks. Srikumar Ramalingam Convolutional Neural Networks Srikumar Ramalingam Reference Many of the slides are prepared using the following resources: neuralnetworksanddeeplearning.com (mainly Chapter 6) http://cs231n.github.io/convolutional-networks/

More information

EVERYTHING YOU NEED TO KNOW TO BUILD YOUR FIRST CONVOLUTIONAL NEURAL NETWORK (CNN)

EVERYTHING YOU NEED TO KNOW TO BUILD YOUR FIRST CONVOLUTIONAL NEURAL NETWORK (CNN) EVERYTHING YOU NEED TO KNOW TO BUILD YOUR FIRST CONVOLUTIONAL NEURAL NETWORK (CNN) TARGETED PIECES OF KNOWLEDGE Linear regression Activation function Multi-Layers Perceptron (MLP) Stochastic Gradient Descent

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) Human Brain Neurons Input-Output Transformation Input Spikes Output Spike Spike (= a brief pulse) (Excitatory Post-Synaptic Potential)

More information

Deep learning attracts lots of attention.

Deep learning attracts lots of attention. Deep Learning Deep learning attracts lots of attention. I believe you have seen lots of exciting results before. Deep learning trends at Google. Source: SIGMOD/Jeff Dean Ups and downs of Deep Learning

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

Feature Design. Feature Design. Feature Design. & Deep Learning

Feature Design. Feature Design. Feature Design. & Deep Learning Artificial Intelligence and its applications Lecture 9 & Deep Learning Professor Daniel Yeung danyeung@ieee.org Dr. Patrick Chan patrickchan@ieee.org South China University of Technology, China Appropriately

More information

Deep Learning Lab Course 2017 (Deep Learning Practical)

Deep Learning Lab Course 2017 (Deep Learning Practical) Deep Learning Lab Course 207 (Deep Learning Practical) Labs: (Computer Vision) Thomas Brox, (Robotics) Wolfram Burgard, (Machine Learning) Frank Hutter, (Neurorobotics) Joschka Boedecker University of

More information

Explaining Predictions of Non-Linear Classifiers in NLP

Explaining Predictions of Non-Linear Classifiers in NLP Explaining Predictions of Non-Linear Classifiers in NLP Leila Arras 1, Franziska Horn 2, Grégoire Montavon 2, Klaus-Robert Müller 2,3, and Wojciech Samek 1 1 Machine Learning Group, Fraunhofer Heinrich

More information

Binary Convolutional Neural Network on RRAM

Binary Convolutional Neural Network on RRAM Binary Convolutional Neural Network on RRAM Tianqi Tang, Lixue Xia, Boxun Li, Yu Wang, Huazhong Yang Dept. of E.E, Tsinghua National Laboratory for Information Science and Technology (TNList) Tsinghua

More information

Modularity Matters: Learning Invariant Relational Reasoning Tasks

Modularity Matters: Learning Invariant Relational Reasoning Tasks Summer Review 3 Modularity Matters: Learning Invariant Relational Reasoning Tasks Jason Jo 1, Vikas Verma 2, Yoshua Bengio 1 1: MILA, Universit de Montral 2: Department of Computer Science Aalto University,

More information

Deep Learning. Hung-yi Lee 李宏毅

Deep Learning. Hung-yi Lee 李宏毅 Deep Learning Hung-yi Lee 李宏毅 Deep learning attracts lots of attention. I believe you have seen lots of exciting results before. Deep learning trends at Google. Source: SIGMOD 206/Jeff Dean 958: Perceptron

More information

Notes on Adversarial Examples

Notes on Adversarial Examples Notes on Adversarial Examples David Meyer dmm@{1-4-5.net,uoregon.edu,...} March 14, 2017 1 Introduction The surprising discovery of adversarial examples by Szegedy et al. [6] has led to new ways of thinking

More information

CSCI 315: Artificial Intelligence through Deep Learning

CSCI 315: Artificial Intelligence through Deep Learning CSCI 35: Artificial Intelligence through Deep Learning W&L Fall Term 27 Prof. Levy Convolutional Networks http://wernerstudio.typepad.com/.a/6ad83549adb53ef53629ccf97c-5wi Convolution: Convolution is

More information

Is Robustness the Cost of Accuracy? A Comprehensive Study on the Robustness of 18 Deep Image Classification Models

Is Robustness the Cost of Accuracy? A Comprehensive Study on the Robustness of 18 Deep Image Classification Models Is Robustness the Cost of Accuracy? A Comprehensive Study on the Robustness of 18 Deep Image Classification Models Dong Su 1*, Huan Zhang 2*, Hongge Chen 3, Jinfeng Yi 4, Pin-Yu Chen 1, and Yupeng Gao

More information

Axiomatic Attribution of Neural Networks

Axiomatic Attribution of Neural Networks Axiomatic Attribution of Neural Networks Mukund Sundararajan* 1, Ankur Taly* 1, Qiqi Yan* 1 1 Google Inc. Presenter: Arshdeep Sekhon Mukund Sundararajan*, Ankur Taly*, Qiqi Yan*Axiomatic Attribution of

More information

Explaining Predictions of Non-Linear Classifiers in NLP

Explaining Predictions of Non-Linear Classifiers in NLP Explaining Predictions of Non-Linear Classifiers in NLP Leila Arras 1, Franziska Horn 2, Grégoire Montavon 2, Klaus-Robert Müller 2,3, and Wojciech Samek 1 1 Machine Learning Group, Fraunhofer Heinrich

More information

Lecture 14: Deep Generative Learning

Lecture 14: Deep Generative Learning Generative Modeling CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 14: Deep Generative Learning Density estimation Reconstructing probability density function using samples Bohyung Han

More information

Deep Learning. Convolutional Neural Network (CNNs) Ali Ghodsi. October 30, Slides are partially based on Book in preparation, Deep Learning

Deep Learning. Convolutional Neural Network (CNNs) Ali Ghodsi. October 30, Slides are partially based on Book in preparation, Deep Learning Convolutional Neural Network (CNNs) University of Waterloo October 30, 2015 Slides are partially based on Book in preparation, by Bengio, Goodfellow, and Aaron Courville, 2015 Convolutional Networks Convolutional

More information

COMPARING FIXED AND ADAPTIVE COMPUTATION TIME FOR RE-

COMPARING FIXED AND ADAPTIVE COMPUTATION TIME FOR RE- Workshop track - ICLR COMPARING FIXED AND ADAPTIVE COMPUTATION TIME FOR RE- CURRENT NEURAL NETWORKS Daniel Fojo, Víctor Campos, Xavier Giró-i-Nieto Universitat Politècnica de Catalunya, Barcelona Supercomputing

More information

Deep Learning: Pre- Requisites. Understanding gradient descent, autodiff, and softmax

Deep Learning: Pre- Requisites. Understanding gradient descent, autodiff, and softmax Deep Learning: Pre- Requisites Understanding gradient descent, autodiff, and softmax Gradient Descent autodiff Gradient descent requires knowledge of, well, the gradient from your cost function (MSE) Mathematically

More information

Towards Accurate Binary Convolutional Neural Network

Towards Accurate Binary Convolutional Neural Network Paper: #261 Poster: Pacific Ballroom #101 Towards Accurate Binary Convolutional Neural Network Xiaofan Lin, Cong Zhao and Wei Pan* firstname.lastname@dji.com Photos and videos are either original work

More information

Final Examination CS540-2: Introduction to Artificial Intelligence

Final Examination CS540-2: Introduction to Artificial Intelligence Final Examination CS540-2: Introduction to Artificial Intelligence May 9, 2018 LAST NAME: SOLUTIONS FIRST NAME: Directions 1. This exam contains 33 questions worth a total of 100 points 2. Fill in your

More information

@SoyGema GEMA PARREÑO PIQUERAS

@SoyGema GEMA PARREÑO PIQUERAS @SoyGema GEMA PARREÑO PIQUERAS WHAT IS AN ARTIFICIAL NEURON? WHAT IS AN ARTIFICIAL NEURON? Image Recognition Classification using Softmax Regressions and Convolutional Neural Networks Languaje Understanding

More information

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann (Feed-Forward) Neural Networks 2016-12-06 Dr. Hajira Jabeen, Prof. Jens Lehmann Outline In the previous lectures we have learned about tensors and factorization methods. RESCAL is a bilinear model for

More information

Introduction To Artificial Neural Networks

Introduction To Artificial Neural Networks Introduction To Artificial Neural Networks Machine Learning Supervised circle square circle square Unsupervised group these into two categories Supervised Machine Learning Supervised Machine Learning Supervised

More information

Handwritten Indic Character Recognition using Capsule Networks

Handwritten Indic Character Recognition using Capsule Networks Handwritten Indic Character Recognition using Capsule Networks Bodhisatwa Mandal,Suvam Dubey, Swarnendu Ghosh, RiteshSarkhel, Nibaran Das Dept. of CSE, Jadavpur University, Kolkata, 700032, WB, India.

More information