Supervised Deep Learning

Size: px
Start display at page:

Download "Supervised Deep Learning"

Transcription

1 Supervised Deep Learning Joana Frontera-Pons Grigorios Tsagkatakis Dictionary Learning on Manifolds workshop Nice, September 2017

2 Supervised Learning Data Labels Model Prediction Spiral Exploiting prior knowledge Expert users Crowdsourcing Other instruments? Elliptical 2

3 State-of-the-art (before Deep Learning) Support Vector Machines Binary classification Kernels <-> non-linearities Random Forests Multi-class classification Markov Chains/Fields Temporal data 3

4 State-of-the-art (since 2015) Deep Learning (DL) Convolutional Neural Networks (CNN) <-> Images Recurrent Neural Networks (RNN) <-> NLP Long-Short Term memory (LSTM) <-> Audio 4

5 Convolutional Neural Networks (Convolution + Subsampling)+() + Fully Connected 5

6 height height Convolutional Layers 32x32x1 Image 28x28xK activation map 5x5x1 filter channels K filters 6

7 Convolutional Layers Characteristics Hierarchical features Location invariance Parameters Number of filters (32,64 ) Filter size (3x3, 5x5) Stride (1) Padding (2,4) Machine Learning and AI for Brain Simulations Andrew Ng Talk, UCLA,

8 Subsampling (pooling) Layers <-> downsampling Scale invariance Parameters Type Filter Size Stride 8

9 Activation Layer Introduction of non-linearity Brain: thresholding -> spike trains Tanh & Sigmoid 9

10 Activation Layer ReLU: x=max(0,x) Simplifies backprop Makes learning faster Avoids saturation issues ~ non-negativity constraint No saturated gradients Leaky ReLU: x=max(0.1x,x) 10

11 Fully Connected Layers Full connections to all activations in previous layer Typically at the end Can be replace by conv 11

12 Key Architectures LeNet [1998] AlexNet [2012] VGG GoogLeNet [2014] ResNet [2015] 12

13 LeNet 13

14 AlexNet Alex Krizhevsky, Ilya Sutskever and Geoff Hinton, ImageNet ILSVRC challenge in

15 K. Simonyan, A. Zisserman Very Deep Convolutional Networks for Large-Scale Image Recognition, arxiv technical report,

16 VGGnet D: VGG16 E: VGG19 All filters are 3x3 More layers smaller filters 16

17 Inception (GoogLeNet, 2014) Inception module Inception module with dimensionality reduction 17

18 Residuals 18

19 ResNet, 2015 He, Kaiming, et al. "Deep residual learning for image recognition." IEEE CVPR

20 Training protocols Fully Supervised Unsupervised pre-training + fine tuning Unsupervised pre-training + supervised layer 20

21 Success Stories Supervised learning application: Astronomy/Astrophysics Earth Observation Inverse problems Image super-resolution Image denoising 21

22 The Galaxy zoo challenge Online crowdsourcing project where users describe the morphology of galaxies based on color images 1 million galaxies imaged by the Sloan Digital Sky Survey (2007) 22

23 Dieleman, S., Kyle W. W., and Joni D.. "Rotation-invariant convolutional neural networks for galaxy morphology prediction." Monthly notices of the royal astronomical society,

24 Component 24

25 DL for galaxy morphology Recovery of galaxy parameters for HST images Simulation of 31K galaxies (24K training), H band PSF, CANDELS survey noise Tuccillo, D., Etienne Decencìère, and Santiago Velasco-Forero. "Deep learning for studies of galaxy morphology." Proceedings of the International Astronomical Union 12.S325 (2016):

26 DL for of galaxy morphology (con t) GALFIT CNN 26

27 CNN: Star-galaxy Classification Kim, Edward J., and Robert J. Brunner. "Star-galaxy classification using deep convolutional neural networks." Monthly Notices of the Royal Astronomical Society (2016): stw

28 Star Galaxy 28

29 Gravitational Lensing 29

30 CNN for lensing CNNs in Kilo Degree Survey colour-magnitude selected Luminous Red Galaxies, of which three are known lenses, the CNN retrieves 761 stronglens candidates and correctly classifies 2/3 of known lenses. Petrillo, C. E., et al. "Finding Strong Gravitational Lenses in the Kilo Degree Survey with Convolutional Neural Networks." Monthly Notices of the Royal Astronomical Society (2017). 30

31 DeepLens Training 20,000 LSST-like observations Testing for a rejection rate of non-lenses of 99%, a completeness of 90% can be achieved for lenses with Einstein radii larger than and S/N larger than 20 on individual g-band LSST exposures. Lanusse, Francois, et al. "CMU DeepLens: Deep Learning For Automatic Image-based Galaxy- Galaxy Strong Lens Finding." arxiv preprint arxiv: (2017). 31

32 Detecting strong lensing Strong galaxy-galaxy lensing systems CA-FR-HA Telescope Legacy Survey (CFHTLS) Ensemble of trained DL networks Search of 1.4 million early type galaxies selected from the survey catalog as potential deflectors, identified 2,465 candidates (117 previously known lens candidates, 29 confirmed lenses, 266 novel probable or potential lenses and 2097 false positives. Finding strong lenses in CFHTLS using convolutional neural networks 32

33 Other applications Classifying Radio Galaxies With Convolutional Neural Network Deep-hits: Rotation Invariant Convolutional Neural Network For Transient Detection 33

34 Beyond classification Inverse problems in Imaging Input: noisy/degraded image Output: clean/enhanced image Super-resolution 34

35 DL for super-resolution Patch Extraction and representation Non linear mapping Reconstruction C. Dong et al, Learning a deep convolutional network for image SR, ECCV

36 Relationship to CNNs SR creation stages Patch Extraction and representation Non linear mapping Reconstruction SR-CNN Applying a convolutional layer with n1 filters on the input image convolutional layers with a nonlinear activation Linear convolution on the n2 feature maps

37 Relationship to CNNs SR creation stages Patch Extraction and representation Non linear mapping Reconstruction SR-CNN Applying a convolutional layer with n1 filters on the input image convolutional layers with a nonlinear activation Linear convolution on the n2 feature maps

38 Relationship to CNNs SR creation stages Patch Extraction and representation Non linear mapping Reconstruction SR-CNN Applying a convolutional layer with n1 filters on the input image convolutional layers with a nonlinear activation Linear convolution on the n2 feature maps

39 Relationship to CNNs SR creation stages Patch Extraction and representation Non linear mapping Reconstruction SR-CNN Applying a convolutional layer with n1 filters on the input image convolutional layers with a nonlinear activation Linear convolution on the n2 feature maps

40 Impact of training examples 40

41 Residual for SR J. Kim et al, Accurate Image Super-Resolution Using Very Deep Convolutional Networks, arxiv: ,

42 Generative Adversarial Networks Generative model produces realistic new samples Discriminative model differentiate real vs synthetic samples Goodfellow, Ian, et al. "Generative adversarial nets." NIPS

43 GANs Key idea Training Use SGD-like algorithm on two minibatches : A minibatch of training examples A minibatch of generated samples Optional: run k steps of one player for every step of the other player. 43

44 Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arxiv preprint arxiv: (2015). 44

45 GANs for SR Ledig, Christian, et al. "Photo-realistic single image super-resolution using a generative adversarial network." arxiv preprint arxiv: (2016). 45

46 GANs for deconvolution 4,550 SDSS images of nearby galaxies at 0:01 < z < 0:02 Schawinski, Kevin, et al. "Generative Adversarial Networks recover features in astrophysical images of galaxies beyond the deconvolution limit." arxiv preprint arxiv: (2017). 46

47 Potential in learning Transfer learning /Domain adaptation Meta-learning / one-shot learning 47

48 Programming environments Keras (κέρας horn) Python neural networks library François Google Minimalist/Highly modular CPU/GPU execution TensorFlow Released by Google (Brain) 2016 Tensor modeling Computation graph 48

49 Example in Keras high-level neural networks library written in Python capable of running on top of either TensorFlow or Theano developed with a focus on enabling fast experimentation eras.pdf 49

50 Depedencies Python 2.7+ numpy: fundamental package for scientific computing with Python scipy: library used for scientific computing and technical computing Matplotlib (Optional, recommended for exploratory analysis) HDF5 and h5py (Optional, required if you use model saving/loading functions) Theano/Tensorflow 50

51 Sequential models Sequential Layers in Keras Dense: fully connected NN layer Activation: Applies an activation function Dropout: Applies Dropout to the input. Dropout consists in randomly setting a fraction p of input units to 0 at each update during training time, which helps prevent overfitting Convolutional Layers Pooling Layers 51

52 Example import numpy as np from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten, Convolution2D, MaxPooling2D from keras.datasets import mnist # Load pre-shuffled MNIST train and test sets (X_train, y_train), (X_test, y_test) = mnist.load_data() 52

53 Example Creating Sequential Model use constructor: model = Sequential([ Dense(32, input dim=784), Activation( relu ), Dense(10), Activation( softmax ), ]), or add layers via the.add() method: model = Sequential() model.add(dense(32, input dim=784)) model.add(activation( relu )) 53

54 Comment The model needs to know what input shape it should expect first layer in a Sequential model (and only the first, because following layers can do automatic shape inference) needs to receive information about its input shape 54

55 Thank you 55

arxiv: v1 [astro-ph.im] 20 Jan 2017

arxiv: v1 [astro-ph.im] 20 Jan 2017 IAU Symposium 325 on Astroinformatics Proceedings IAU Symposium No. xxx, xxx A.C. Editor, B.D. Editor & C.E. Editor, eds. c xxx International Astronomical Union DOI: 00.0000/X000000000000000X Deep learning

More information

Convolutional Neural Networks II. Slides from Dr. Vlad Morariu

Convolutional Neural Networks II. Slides from Dr. Vlad Morariu Convolutional Neural Networks II Slides from Dr. Vlad Morariu 1 Optimization Example of optimization progress while training a neural network. (Loss over mini-batches goes down over time.) 2 Learning rate

More information

Jakub Hajic Artificial Intelligence Seminar I

Jakub Hajic Artificial Intelligence Seminar I Jakub Hajic Artificial Intelligence Seminar I. 11. 11. 2014 Outline Key concepts Deep Belief Networks Convolutional Neural Networks A couple of questions Convolution Perceptron Feedforward Neural Network

More information

Convolutional neural networks

Convolutional neural networks 11-1: Convolutional neural networks Prof. J.C. Kao, UCLA Convolutional neural networks Motivation Biological inspiration Convolution operation Convolutional layer Padding and stride CNN architecture 11-2:

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Slide Set 6: Neural Networks and Deep Learning January 2018 Heikki Huttunen heikki.huttunen@tut.fi Department of Signal Processing Tampere University of Technology

More information

Deep Learning (CNNs)

Deep Learning (CNNs) 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Deep Learning (CNNs) Deep Learning Readings: Murphy 28 Bishop - - HTF - - Mitchell

More information

Introduction to Convolutional Neural Networks (CNNs)

Introduction to Convolutional Neural Networks (CNNs) Introduction to Convolutional Neural Networks (CNNs) nojunk@snu.ac.kr http://mipal.snu.ac.kr Department of Transdisciplinary Studies Seoul National University, Korea Jan. 2016 Many slides are from Fei-Fei

More information

Lecture 7 Convolutional Neural Networks

Lecture 7 Convolutional Neural Networks Lecture 7 Convolutional Neural Networks CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago April 17, 2017 We saw before: ŷ x 1 x 2 x 3 x 4 A series of matrix multiplications:

More information

Machine Learning for Signal Processing Neural Networks Continue. Instructor: Bhiksha Raj Slides by Najim Dehak 1 Dec 2016

Machine Learning for Signal Processing Neural Networks Continue. Instructor: Bhiksha Raj Slides by Najim Dehak 1 Dec 2016 Machine Learning for Signal Processing Neural Networks Continue Instructor: Bhiksha Raj Slides by Najim Dehak 1 Dec 2016 1 So what are neural networks?? Voice signal N.Net Transcription Image N.Net Text

More information

Artificial Neural Networks D B M G. Data Base and Data Mining Group of Politecnico di Torino. Elena Baralis. Politecnico di Torino

Artificial Neural Networks D B M G. Data Base and Data Mining Group of Politecnico di Torino. Elena Baralis. Politecnico di Torino Artificial Neural Networks Data Base and Data Mining Group of Politecnico di Torino Elena Baralis Politecnico di Torino Artificial Neural Networks Inspired to the structure of the human brain Neurons as

More information

Convolutional Neural Network Architecture

Convolutional Neural Network Architecture Convolutional Neural Network Architecture Zhisheng Zhong Feburary 2nd, 2018 Zhisheng Zhong Convolutional Neural Network Architecture Feburary 2nd, 2018 1 / 55 Outline 1 Introduction of Convolution Motivation

More information

Tasks ADAS. Self Driving. Non-machine Learning. Traditional MLP. Machine-Learning based method. Supervised CNN. Methods. Deep-Learning based

Tasks ADAS. Self Driving. Non-machine Learning. Traditional MLP. Machine-Learning based method. Supervised CNN. Methods. Deep-Learning based UNDERSTANDING CNN ADAS Tasks Self Driving Localizati on Perception Planning/ Control Driver state Vehicle Diagnosis Smart factory Methods Traditional Deep-Learning based Non-machine Learning Machine-Learning

More information

Asaf Bar Zvi Adi Hayat. Semantic Segmentation

Asaf Bar Zvi Adi Hayat. Semantic Segmentation Asaf Bar Zvi Adi Hayat Semantic Segmentation Today s Topics Fully Convolutional Networks (FCN) (CVPR 2015) Conditional Random Fields as Recurrent Neural Networks (ICCV 2015) Gaussian Conditional random

More information

COMPARING FIXED AND ADAPTIVE COMPUTATION TIME FOR RE-

COMPARING FIXED AND ADAPTIVE COMPUTATION TIME FOR RE- Workshop track - ICLR COMPARING FIXED AND ADAPTIVE COMPUTATION TIME FOR RE- CURRENT NEURAL NETWORKS Daniel Fojo, Víctor Campos, Xavier Giró-i-Nieto Universitat Politècnica de Catalunya, Barcelona Supercomputing

More information

Deep Learning Year in Review 2016: Computer Vision Perspective

Deep Learning Year in Review 2016: Computer Vision Perspective Deep Learning Year in Review 2016: Computer Vision Perspective Alex Kalinin, PhD Candidate Bioinformatics @ UMich alxndrkalinin@gmail.com @alxndrkalinin Architectures Summary of CNN architecture development

More information

Machine Learning for Computer Vision 8. Neural Networks and Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group

Machine Learning for Computer Vision 8. Neural Networks and Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group Machine Learning for Computer Vision 8. Neural Networks and Deep Learning Vladimir Golkov Technical University of Munich Computer Vision Group INTRODUCTION Nonlinear Coordinate Transformation http://cs.stanford.edu/people/karpathy/convnetjs/

More information

Lecture 14: Deep Generative Learning

Lecture 14: Deep Generative Learning Generative Modeling CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 14: Deep Generative Learning Density estimation Reconstructing probability density function using samples Bohyung Han

More information

Bayesian Networks (Part I)

Bayesian Networks (Part I) 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Bayesian Networks (Part I) Graphical Model Readings: Murphy 10 10.2.1 Bishop 8.1,

More information

Deep Learning for Automatic Speech Recognition Part II

Deep Learning for Automatic Speech Recognition Part II Deep Learning for Automatic Speech Recognition Part II Xiaodong Cui IBM T. J. Watson Research Center Yorktown Heights, NY 10598 Fall, 2018 Outline A brief revisit of sampling, pitch/formant and MFCC DNN-HMM

More information

Generative Adversarial Networks

Generative Adversarial Networks Generative Adversarial Networks SIBGRAPI 2017 Tutorial Everything you wanted to know about Deep Learning for Computer Vision but were afraid to ask Presentation content inspired by Ian Goodfellow s tutorial

More information

Lecture 17: Neural Networks and Deep Learning

Lecture 17: Neural Networks and Deep Learning UVA CS 6316 / CS 4501-004 Machine Learning Fall 2016 Lecture 17: Neural Networks and Deep Learning Jack Lanchantin Dr. Yanjun Qi 1 Neurons 1-Layer Neural Network Multi-layer Neural Network Loss Functions

More information

Generative adversarial networks

Generative adversarial networks 14-1: Generative adversarial networks Prof. J.C. Kao, UCLA Generative adversarial networks Why GANs? GAN intuition GAN equilibrium GAN implementation Practical considerations Much of these notes are based

More information

Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses about the label (Top-5 error) No Bounding Box

Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses about the label (Top-5 error) No Bounding Box ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton Motivation Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses

More information

RAGAV VENKATESAN VIJETHA GATUPALLI BAOXIN LI NEURAL DATASET GENERALITY

RAGAV VENKATESAN VIJETHA GATUPALLI BAOXIN LI NEURAL DATASET GENERALITY RAGAV VENKATESAN VIJETHA GATUPALLI BAOXIN LI NEURAL DATASET GENERALITY SIFT HOG ALL ABOUT THE FEATURES DAISY GABOR AlexNet GoogleNet CONVOLUTIONAL NEURAL NETWORKS VGG-19 ResNet FEATURES COMES FROM DATA

More information

Identifying QCD transition using Deep Learning

Identifying QCD transition using Deep Learning Identifying QCD transition using Deep Learning Kai Zhou Long-Gang Pang, Nan Su, Hannah Peterson, Horst Stoecker, Xin-Nian Wang Collaborators: arxiv:1612.04262 Outline 2 What is deep learning? Artificial

More information

Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net

Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net Supplementary Material Xingang Pan 1, Ping Luo 1, Jianping Shi 2, and Xiaoou Tang 1 1 CUHK-SenseTime Joint Lab, The Chinese University

More information

Introduction to Convolutional Neural Networks 2018 / 02 / 23

Introduction to Convolutional Neural Networks 2018 / 02 / 23 Introduction to Convolutional Neural Networks 2018 / 02 / 23 Buzzword: CNN Convolutional neural networks (CNN, ConvNet) is a class of deep, feed-forward (not recurrent) artificial neural networks that

More information

TUTORIAL PART 1 Unsupervised Learning

TUTORIAL PART 1 Unsupervised Learning TUTORIAL PART 1 Unsupervised Learning Marc'Aurelio Ranzato Department of Computer Science Univ. of Toronto ranzato@cs.toronto.edu Co-organizers: Honglak Lee, Yoshua Bengio, Geoff Hinton, Yann LeCun, Andrew

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

Deep Learning: a gentle introduction

Deep Learning: a gentle introduction Deep Learning: a gentle introduction Jamal Atif jamal.atif@dauphine.fr PSL, Université Paris-Dauphine, LAMSADE February 8, 206 Jamal Atif (Université Paris-Dauphine) Deep Learning February 8, 206 / Why

More information

Index. Santanu Pattanayak 2017 S. Pattanayak, Pro Deep Learning with TensorFlow,

Index. Santanu Pattanayak 2017 S. Pattanayak, Pro Deep Learning with TensorFlow, Index A Activation functions, neuron/perceptron binary threshold activation function, 102 103 linear activation function, 102 rectified linear unit, 106 sigmoid activation function, 103 104 SoftMax activation

More information

arxiv: v1 [cs.cv] 11 May 2015 Abstract

arxiv: v1 [cs.cv] 11 May 2015 Abstract Training Deeper Convolutional Networks with Deep Supervision Liwei Wang Computer Science Dept UIUC lwang97@illinois.edu Chen-Yu Lee ECE Dept UCSD chl260@ucsd.edu Zhuowen Tu CogSci Dept UCSD ztu0@ucsd.edu

More information

Deep Learning: Pre- Requisites. Understanding gradient descent, autodiff, and softmax

Deep Learning: Pre- Requisites. Understanding gradient descent, autodiff, and softmax Deep Learning: Pre- Requisites Understanding gradient descent, autodiff, and softmax Gradient Descent autodiff Gradient descent requires knowledge of, well, the gradient from your cost function (MSE) Mathematically

More information

Some Applications of Machine Learning to Astronomy. Eduardo Bezerra 20/fev/2018

Some Applications of Machine Learning to Astronomy. Eduardo Bezerra 20/fev/2018 Some Applications of Machine Learning to Astronomy Eduardo Bezerra ebezerra@cefet-rj.br 20/fev/2018 Overview 2 Introduction Definition Neural Nets Applications do Astronomy Ads: Machine Learning Course

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

Very Deep Residual Networks with Maxout for Plant Identification in the Wild Milan Šulc, Dmytro Mishkin, Jiří Matas

Very Deep Residual Networks with Maxout for Plant Identification in the Wild Milan Šulc, Dmytro Mishkin, Jiří Matas Very Deep Residual Networks with Maxout for Plant Identification in the Wild Milan Šulc, Dmytro Mishkin, Jiří Matas Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering

More information

Abstention Protocol for Accuracy and Speed

Abstention Protocol for Accuracy and Speed Abstention Protocol for Accuracy and Speed Abstract Amirata Ghorbani EE Dept. Stanford University amiratag@stanford.edu In order to confidently rely on machines to decide and perform tasks for us, there

More information

CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning

CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning Lei Lei Ruoxuan Xiong December 16, 2017 1 Introduction Deep Neural Network

More information

arxiv: v2 [astro-ph.ga] 20 Dec 2017 Published on MNRAS: 11 December 2017

arxiv: v2 [astro-ph.ga] 20 Dec 2017 Published on MNRAS: 11 December 2017 MNRAS, 1?? (217) Preprint 21 December 217 Compiled using MNRAS LATEX style file v3. Deep learning for galaxy surface brightness profile fitting D. Tuccillo, 1,2 M. Huertas-Company, 3,1,4 E. Decencière,

More information

Deep Learning Autoencoder Models

Deep Learning Autoencoder Models Deep Learning Autoencoder Models Davide Bacciu Dipartimento di Informatica Università di Pisa Intelligent Systems for Pattern Recognition (ISPR) Generative Models Wrap-up Deep Learning Module Lecture Generative

More information

Handwritten Indic Character Recognition using Capsule Networks

Handwritten Indic Character Recognition using Capsule Networks Handwritten Indic Character Recognition using Capsule Networks Bodhisatwa Mandal,Suvam Dubey, Swarnendu Ghosh, RiteshSarkhel, Nibaran Das Dept. of CSE, Jadavpur University, Kolkata, 700032, WB, India.

More information

P-TELU : Parametric Tan Hyperbolic Linear Unit Activation for Deep Neural Networks

P-TELU : Parametric Tan Hyperbolic Linear Unit Activation for Deep Neural Networks P-TELU : Parametric Tan Hyperbolic Linear Unit Activation for Deep Neural Networks Rahul Duggal rahulduggal2608@gmail.com Anubha Gupta anubha@iiitd.ac.in SBILab (http://sbilab.iiitd.edu.in/) Deptt. of

More information

Neural networks and optimization

Neural networks and optimization Neural networks and optimization Nicolas Le Roux Criteo 18/05/15 Nicolas Le Roux (Criteo) Neural networks and optimization 18/05/15 1 / 85 1 Introduction 2 Deep networks 3 Optimization 4 Convolutional

More information

Introduction to Machine Learning (67577)

Introduction to Machine Learning (67577) Introduction to Machine Learning (67577) Shai Shalev-Shwartz School of CS and Engineering, The Hebrew University of Jerusalem Deep Learning Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks

More information

Determination of Linear Force- Free Magnetic Field Constant αα Using Deep Learning

Determination of Linear Force- Free Magnetic Field Constant αα Using Deep Learning Determination of Linear Force- Free Magnetic Field Constant αα Using Deep Learning Bernard Benson, Zhuocheng Jiang, W. David Pan Dept. of Electrical and Computer Engineering (Dept. of ECE) G. Allen Gary

More information

Introduction to Neural Networks

Introduction to Neural Networks CUONG TUAN NGUYEN SEIJI HOTTA MASAKI NAKAGAWA Tokyo University of Agriculture and Technology Copyright by Nguyen, Hotta and Nakagawa 1 Pattern classification Which category of an input? Example: Character

More information

Theories of Deep Learning

Theories of Deep Learning Theories of Deep Learning Lecture 02 Donoho, Monajemi, Papyan Department of Statistics Stanford Oct. 4, 2017 1 / 50 Stats 385 Fall 2017 2 / 50 Stats 285 Fall 2017 3 / 50 Course info Wed 3:00-4:20 PM in

More information

Introduction to (Convolutional) Neural Networks

Introduction to (Convolutional) Neural Networks Introduction to (Convolutional) Neural Networks Philipp Grohs Summer School DL and Vis, Sept 2018 Syllabus 1 Motivation and Definition 2 Universal Approximation 3 Backpropagation 4 Stochastic Gradient

More information

Based on the original slides of Hung-yi Lee

Based on the original slides of Hung-yi Lee Based on the original slides of Hung-yi Lee Google Trends Deep learning obtains many exciting results. Can contribute to new Smart Services in the Context of the Internet of Things (IoT). IoT Services

More information

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, 2017 Spis treści Website Acknowledgments Notation xiii xv xix 1 Introduction 1 1.1 Who Should Read This Book?

More information

10. Artificial Neural Networks

10. Artificial Neural Networks Foundations of Machine Learning CentraleSupélec Fall 217 1. Artificial Neural Networks Chloé-Agathe Azencot Centre for Computational Biology, Mines ParisTech chloe-agathe.azencott@mines-paristech.fr Learning

More information

Introduction to Deep Learning CMPT 733. Steven Bergner

Introduction to Deep Learning CMPT 733. Steven Bergner Introduction to Deep Learning CMPT 733 Steven Bergner Overview Renaissance of artificial neural networks Representation learning vs feature engineering Background Linear Algebra, Optimization Regularization

More information

Recurrent Neural Networks with Flexible Gates using Kernel Activation Functions

Recurrent Neural Networks with Flexible Gates using Kernel Activation Functions 2018 IEEE International Workshop on Machine Learning for Signal Processing (MLSP 18) Recurrent Neural Networks with Flexible Gates using Kernel Activation Functions Authors: S. Scardapane, S. Van Vaerenbergh,

More information

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight)

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight) CSCE 636 Neural Networks Instructor: Yoonsuck Choe Deep Learning What Is Deep Learning? Learning higher level abstractions/representations from data. Motivation: how the brain represents sensory information

More information

Making Deep Learning Understandable for Analyzing Sequential Data about Gene Regulation

Making Deep Learning Understandable for Analyzing Sequential Data about Gene Regulation Making Deep Learning Understandable for Analyzing Sequential Data about Gene Regulation Dr. Yanjun Qi Department of Computer Science University of Virginia Tutorial @ ACM BCB-2018 8/29/18 Yanjun Qi / UVA

More information

Large-Scale Feature Learning with Spike-and-Slab Sparse Coding

Large-Scale Feature Learning with Spike-and-Slab Sparse Coding Large-Scale Feature Learning with Spike-and-Slab Sparse Coding Ian J. Goodfellow, Aaron Courville, Yoshua Bengio ICML 2012 Presented by Xin Yuan January 17, 2013 1 Outline Contributions Spike-and-Slab

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Neural networks Daniel Hennes 21.01.2018 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Logistic regression Neural networks Perceptron

More information

Introduction to CNN and PyTorch

Introduction to CNN and PyTorch Introduction to CNN and PyTorch Kripasindhu Sarkar kripasindhu.sarkar@dfki.de Kaiserslautern University, DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de Some of the contents

More information

Deep Residual. Variations

Deep Residual. Variations Deep Residual Network and Its Variations Diyu Yang (Originally prepared by Kaiming He from Microsoft Research) Advantages of Depth Degradation Problem Possible Causes? Vanishing/Exploding Gradients. Overfitting

More information

Deep Convolutional Neural Networks for Pairwise Causality

Deep Convolutional Neural Networks for Pairwise Causality Deep Convolutional Neural Networks for Pairwise Causality Karamjit Singh, Garima Gupta, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal TCS Research, Delhi Tata Consultancy Services Ltd. {karamjit.singh,

More information

Encoder Based Lifelong Learning - Supplementary materials

Encoder Based Lifelong Learning - Supplementary materials Encoder Based Lifelong Learning - Supplementary materials Amal Rannen Rahaf Aljundi Mathew B. Blaschko Tinne Tuytelaars KU Leuven KU Leuven, ESAT-PSI, IMEC, Belgium firstname.lastname@esat.kuleuven.be

More information

Memory-Augmented Attention Model for Scene Text Recognition

Memory-Augmented Attention Model for Scene Text Recognition Memory-Augmented Attention Model for Scene Text Recognition Cong Wang 1,2, Fei Yin 1,2, Cheng-Lin Liu 1,2,3 1 National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences

More information

Architecture Multilayer Perceptron (MLP)

Architecture Multilayer Perceptron (MLP) Architecture Multilayer Perceptron (MLP) 1 Output Hidden Input Neurons partitioned into layers; y 1 y 2 one input layer, one output layer, possibly several hidden layers layers numbered from 0; the input

More information

Machine Learning. Boris

Machine Learning. Boris Machine Learning Boris Nadion boris@astrails.com @borisnadion @borisnadion boris@astrails.com astrails http://astrails.com awesome web and mobile apps since 2005 terms AI (artificial intelligence)

More information

Introduction to Deep Neural Networks

Introduction to Deep Neural Networks Introduction to Deep Neural Networks Presenter: Chunyuan Li Pattern Classification and Recognition (ECE 681.01) Duke University April, 2016 Outline 1 Background and Preliminaries Why DNNs? Model: Logistic

More information

CSE446: Neural Networks Spring Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer

CSE446: Neural Networks Spring Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer CSE446: Neural Networks Spring 2017 Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer Human Neurons Switching time ~ 0.001 second Number of neurons 10 10 Connections per neuron 10 4-5 Scene

More information

Learning Deep Architectures for AI. Part II - Vijay Chakilam

Learning Deep Architectures for AI. Part II - Vijay Chakilam Learning Deep Architectures for AI - Yoshua Bengio Part II - Vijay Chakilam Limitations of Perceptron x1 W, b 0,1 1,1 y x2 weight plane output =1 output =0 There is no value for W and b such that the model

More information

Deep Learning: Self-Taught Learning and Deep vs. Shallow Architectures. Lecture 04

Deep Learning: Self-Taught Learning and Deep vs. Shallow Architectures. Lecture 04 Deep Learning: Self-Taught Learning and Deep vs. Shallow Architectures Lecture 04 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Self-Taught Learning 1. Learn

More information

An overview of deep learning methods for genomics

An overview of deep learning methods for genomics An overview of deep learning methods for genomics Matthew Ploenzke STAT115/215/BIO/BIST282 Harvard University April 19, 218 1 Snapshot 1. Brief introduction to convolutional neural networks What is deep

More information

Tutorial on Methods for Interpreting and Understanding Deep Neural Networks. Part 3: Applications & Discussion

Tutorial on Methods for Interpreting and Understanding Deep Neural Networks. Part 3: Applications & Discussion Tutorial on Methods for Interpreting and Understanding Deep Neural Networks W. Samek, G. Montavon, K.-R. Müller Part 3: Applications & Discussion ICASSP 2017 Tutorial W. Samek, G. Montavon & K.-R. Müller

More information

Convolutional Neural Networks. Srikumar Ramalingam

Convolutional Neural Networks. Srikumar Ramalingam Convolutional Neural Networks Srikumar Ramalingam Reference Many of the slides are prepared using the following resources: neuralnetworksanddeeplearning.com (mainly Chapter 6) http://cs231n.github.io/convolutional-networks/

More information

CENG 783. Special topics in. Deep Learning. AlchemyAPI. Week 8. Sinan Kalkan

CENG 783. Special topics in. Deep Learning. AlchemyAPI. Week 8. Sinan Kalkan CENG 783 Special topics in Deep Learning AlchemyAPI Week 8 Sinan Kalkan Loss functions Many correct labels case: Binary prediction for each label, independently: L i = σ j max 0, 1 y ij f j y ij = +1 if

More information

arxiv: v4 [cs.cv] 6 Sep 2017

arxiv: v4 [cs.cv] 6 Sep 2017 Deep Pyramidal Residual Networks Dongyoon Han EE, KAIST dyhan@kaist.ac.kr Jiwhan Kim EE, KAIST jhkim89@kaist.ac.kr Junmo Kim EE, KAIST junmo.kim@kaist.ac.kr arxiv:1610.02915v4 [cs.cv] 6 Sep 2017 Abstract

More information

SGD and Deep Learning

SGD and Deep Learning SGD and Deep Learning Subgradients Lets make the gradient cheating more formal. Recall that the gradient is the slope of the tangent. f(w 1 )+rf(w 1 ) (w w 1 ) Non differentiable case? w 1 Subgradients

More information

Deep Learning for Gravitational Wave Analysis Results with LIGO Data

Deep Learning for Gravitational Wave Analysis Results with LIGO Data Link to these slides: http://tiny.cc/nips arxiv:1711.03121 Deep Learning for Gravitational Wave Analysis Results with LIGO Data Daniel George & E. A. Huerta NCSA Gravity Group - http://gravity.ncsa.illinois.edu/

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Neural Networks: A brief touch Yuejie Chi Department of Electrical and Computer Engineering Spring 2018 1/41 Outline

More information

Towards a Data-driven Approach to Exploring Galaxy Evolution via Generative Adversarial Networks

Towards a Data-driven Approach to Exploring Galaxy Evolution via Generative Adversarial Networks Towards a Data-driven Approach to Exploring Galaxy Evolution via Generative Adversarial Networks Tian Li tian.li@pku.edu.cn EECS, Peking University Abstract Since laboratory experiments for exploring astrophysical

More information

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang Deep Learning Basics Lecture 7: Factor Analysis Princeton University COS 495 Instructor: Yingyu Liang Supervised v.s. Unsupervised Math formulation for supervised learning Given training data x i, y i

More information

Deep Learning for NLP

Deep Learning for NLP Deep Learning for NLP Instructor: Wei Xu Ohio State University CSE 5525 Many slides from Greg Durrett Outline Motivation for neural networks Feedforward neural networks Applying feedforward neural networks

More information

Convolutional Networks 2: Training, deep convolutional networks

Convolutional Networks 2: Training, deep convolutional networks Convoutiona Networks 2: Training, deep convoutiona networks Hakan Bien Machine Learning Practica MLP Lecture 8 30 October / 6 November 2018 MLP Lecture 8 / 30 October / 6 November 2018 Convoutiona Networks

More information

DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY

DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY 1 On-line Resources http://neuralnetworksanddeeplearning.com/index.html Online book by Michael Nielsen http://matlabtricks.com/post-5/3x3-convolution-kernelswith-online-demo

More information

Dynamic Data Modeling, Recognition, and Synthesis. Rui Zhao Thesis Defense Advisor: Professor Qiang Ji

Dynamic Data Modeling, Recognition, and Synthesis. Rui Zhao Thesis Defense Advisor: Professor Qiang Ji Dynamic Data Modeling, Recognition, and Synthesis Rui Zhao Thesis Defense Advisor: Professor Qiang Ji Contents Introduction Related Work Dynamic Data Modeling & Analysis Temporal localization Insufficient

More information

Machine Learning Lecture 14

Machine Learning Lecture 14 Machine Learning Lecture 14 Tricks of the Trade 07.12.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Fundamentals Bayes Decision Theory Probability

More information

Machine Learning for Physicists Lecture 1

Machine Learning for Physicists Lecture 1 Machine Learning for Physicists Lecture 1 Summer 2017 University of Erlangen-Nuremberg Florian Marquardt (Image generated by a net with 20 hidden layers) OUTPUT INPUT (Picture: Wikimedia Commons) OUTPUT

More information

Global Optimality in Matrix and Tensor Factorization, Deep Learning & Beyond

Global Optimality in Matrix and Tensor Factorization, Deep Learning & Beyond Global Optimality in Matrix and Tensor Factorization, Deep Learning & Beyond Ben Haeffele and René Vidal Center for Imaging Science Mathematical Institute for Data Science Johns Hopkins University This

More information

TTIC 31230, Fundamentals of Deep Learning, Winter David McAllester. The Fundamental Equations of Deep Learning

TTIC 31230, Fundamentals of Deep Learning, Winter David McAllester. The Fundamental Equations of Deep Learning TTIC 31230, Fundamentals of Deep Learning, Winter 2019 David McAllester The Fundamental Equations of Deep Learning 1 Early History 1943: McCullock and Pitts introduced the linear threshold neuron. 1962:

More information

Spatial Transformer Networks

Spatial Transformer Networks BIL722 - Deep Learning for Computer Vision Spatial Transformer Networks Max Jaderberg Andrew Zisserman Karen Simonyan Koray Kavukcuoglu Contents Introduction to Spatial Transformers Related Works Spatial

More information

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /9/17

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /9/17 3/9/7 Neural Networks Emily Fox University of Washington March 0, 207 Slides adapted from Ali Farhadi (via Carlos Guestrin and Luke Zettlemoyer) Single-layer neural network 3/9/7 Perceptron as a neural

More information

EVERYTHING YOU NEED TO KNOW TO BUILD YOUR FIRST CONVOLUTIONAL NEURAL NETWORK (CNN)

EVERYTHING YOU NEED TO KNOW TO BUILD YOUR FIRST CONVOLUTIONAL NEURAL NETWORK (CNN) EVERYTHING YOU NEED TO KNOW TO BUILD YOUR FIRST CONVOLUTIONAL NEURAL NETWORK (CNN) TARGETED PIECES OF KNOWLEDGE Linear regression Activation function Multi-Layers Perceptron (MLP) Stochastic Gradient Descent

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

Neural Networks and Introduction to Deep Learning

Neural Networks and Introduction to Deep Learning 1 Neural Networks and Introduction to Deep Learning Neural Networks and Introduction to Deep Learning 1 Introduction Deep learning is a set of learning methods attempting to model data with complex architectures

More information

Deep learning attracts lots of attention.

Deep learning attracts lots of attention. Deep Learning Deep learning attracts lots of attention. I believe you have seen lots of exciting results before. Deep learning trends at Google. Source: SIGMOD/Jeff Dean Ups and downs of Deep Learning

More information

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight)

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight) CSCE 636 Neural Networks Instructor: Yoonsuck Choe Deep Learning What Is Deep Learning? Learning higher level abstractions/representations from data. Motivation: how the brain represents sensory information

More information

Deep Learning Lab Course 2017 (Deep Learning Practical)

Deep Learning Lab Course 2017 (Deep Learning Practical) Deep Learning Lab Course 207 (Deep Learning Practical) Labs: (Computer Vision) Thomas Brox, (Robotics) Wolfram Burgard, (Machine Learning) Frank Hutter, (Neurorobotics) Joschka Boedecker University of

More information

Neural Networks and Deep Learning

Neural Networks and Deep Learning Neural Networks and Deep Learning Professor Ameet Talwalkar November 12, 2015 Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 1 / 16 Outline 1 Review of last lecture AdaBoost

More information

Maxout Networks. Hien Quoc Dang

Maxout Networks. Hien Quoc Dang Maxout Networks Hien Quoc Dang Outline Introduction Maxout Networks Description A Universal Approximator & Proof Experiments with Maxout Why does Maxout work? Conclusion 10/12/13 Hien Quoc Dang Machine

More information

Generative Adversarial Networks, and Applications

Generative Adversarial Networks, and Applications Generative Adversarial Networks, and Applications Ali Mirzaei Nimish Srivastava Kwonjoon Lee Songting Xu CSE 252C 4/12/17 2/44 Outline: Generative Models vs Discriminative Models (Background) Generative

More information

Binary Convolutional Neural Network on RRAM

Binary Convolutional Neural Network on RRAM Binary Convolutional Neural Network on RRAM Tianqi Tang, Lixue Xia, Boxun Li, Yu Wang, Huazhong Yang Dept. of E.E, Tsinghua National Laboratory for Information Science and Technology (TNList) Tsinghua

More information

CSC321 Lecture 16: ResNets and Attention

CSC321 Lecture 16: ResNets and Attention CSC321 Lecture 16: ResNets and Attention Roger Grosse Roger Grosse CSC321 Lecture 16: ResNets and Attention 1 / 24 Overview Two topics for today: Topic 1: Deep Residual Networks (ResNets) This is the state-of-the

More information

arxiv: v1 [astro-ph.im] 29 Aug 2017

arxiv: v1 [astro-ph.im] 29 Aug 2017 Fast Automated Analysis of Strong Gravitational Lenses with Convolutional Neural Networks Yashar D. Hezaveh *, Laurence Perreault Levasseur, Philip J. Marshall arxiv:1708.08842v1 [astro-ph.im] 29 Aug 2017

More information