Generalized Zero-Shot Learning with Deep Calibration Network

Size: px
Start display at page:

Download "Generalized Zero-Shot Learning with Deep Calibration Network"

Transcription

1 Generalized Zero-Shot Learning with Deep Calibration Network Shichen Liu, Mingsheng Long, Jianmin Wang, and Michael I.Jordan School of Software, Tsinghua University, China KLiss, MOE; BNRist; Research Center for Big Data, Tsinghua University, China University of California, Berkeley, Berkeley, USA Youngnam Kim Machine Learning Group Department of Computer Science and Engineering Pohang University of Science and Technology

2 Preliminary Class semantic representation Class semantic representation have information on the class such as hand-labeled attribute vectors or text descriptions. Figure: Attribute vectors on AWA dataset (Xian et al., 2017)

3 Preliminary Class semantic representation Class semantic representation have information on the class such as hand-labeled attribute vectors or text descriptions. Figure: Text description on CUP dataset (Annonymous, 2018)

4 Preliminary Zero-shot learning Seen class dataset D s = {(x (s) i i-th example s label y (s) i, y (s) i )} Ns i=1, {1,..., C s } and semantic representations S s = {s (s) i Unseen class dataset D u = {x (u) i } Nu semantic representations S u = {s (u) i } Cs i=1 i=1 and } Cu i=1 where N s is the number of seen class examples, C s is the number of seen classes, N u is the number of unseen class examples and C u is the number of unseen classes. S s and S u are disjoint

5 Preliminary Zero-shot learning Train a model (φ, ψ) using seen class dataset D s and semantic representations S s Define f c (x) = sim(φ(x), ψ(s (u) c )) Prediction: y (u) i = argmax c f c (x (u) i ) Sometimes people use unseen class semantic representations S u (Liu et al., 2018) or even unseen class examples D u (Zhao et al., 2018)

6 Preliminary Generalized zero-shot learning Standard zero-shot learning: Predict sample s label over only unseen classes. Generalized zero-shot learning: Predict sample s label over both seen and unseen classes. For all semantic representations S = {s i } Cs+Cu i=1 Define f c (x) = sim(φ(x), ψ(s c )) Predict y i = argmax c f c (x i )

7 Motivation Deep learning models are likely to overfit to seen classes examples and have overconfidence to seen classes examples (almost close to 1) Model s prediction becomes uncertain when unseen classes are introduced at test time. Over-confidence on seen class samples and uncertainty on unseen class samples hurt zero-shot learning accuracy

8 Motivation

9 Prediction function Embedding of a sample x i ; φ(x i ) R k Embedding of a semantic representation s c ; ψ(s c ) R k Define f c (x i ) = sim(φ(x i ), ψ(s c )); similarity measure like inner product and cosine similarity Prediction; y i = argmax c f c (x i ) φ is a CNN (e.g. GoogLeNet-v2, ResNet-101) and ψ is a MLP

10 Loss function Sample x s class probability q over seen classes, τ is temperature exp (f c (x)/τ) q(y = c x) = Cs c =1 exp (f c (x)/τ) (1) Let ground truth class probability p(y = c x) Cross entropy loss L L = E x [ Ey x p [ log q(y x) ]] (2) Using τ < 1 to mitigate overconfidence problem over seen classes samples

11 Multi class hinge loss Most zero-shot learning methods used multi-class hinge loss; (y i, c) is 0 when y i equals to c and 1 otherwise. N s C s max(0, (y i, c) + f c (x i ) f yi (x i )) (3) i=1 c=1 If f yi (x i ) f c (x i ) < (y i, c), than [ min fc (x i ) f yi (x i ) ] (4) φ,ψ This paper shows that cross entropy loss has an advantage on zero-shot classification accuracy, compared to multi-class hinge loss.

12 Uncertainty calibration Samples x s class probability q c (u) over unseen classes S u ; f c (u) (x) is simmilarity between embedding of unseen class c and embedding of sample x Entropy loss H q (u) c (y = c x) = exp(f c (u) (x)/τ) (u) exp(f c (x)/τ) Cu c =1 (5) Total loss function of DCN [ [ (u) H = E x Ey x q (u) log q c (y x) ]] (6) c min L + λh + γω(φ, ψ) (7) φ,ψ

13 Experiments Datasets Animals with Attributes (AwA); coarse-grained and medium-scale. Caltech-UCSD-Birds (CUB); fine-grained and medium-scale. SUN Attribute (SUN); fine-graiend and medium-scale. Attribute Pascal and Yahoo (apy) coarse-grained and small-scale

14 Experiments

15 Evaluation protocol Per-class classification accuracy ACC C = 1 #correctly predicted samples in class c C #samples in class c c C (8) Generalized zero-shot learning ACC H = 2ACC unseen ACC seen ACC unseen + ACC unseen (9)

16 Experimental results DCN w/o ET; DCN without entropy loss and temperature calibration DCN w E; DCN without entropy loss

17 Experimental results

18 Experimental results

19 Analysis Temperature calibration mitigates overconfidence problem

20 Other zero-shot learning papers Stacked semantic-guided attention model for fine-grained zero-shot learning (Yu et al., 2018) Domain-invariant projection learning for zero-shot recognition (Zhao et al., 2018) Feature generating networks for zero-shot learning (Xian et al., 2018) Corelation network: meta learning for zero-shot learning (Annonymous, 2018)

21 References Annonymous. Correction networks: Meta-learning for zero-shot learning S. Liu, M. Long, J. Wang, and M. Jordan. Generalized zero-shot learning with deep calibration network. NIPS, Y. Xian, B. Schiele, and Z. Akata. Zero-shot learning-the good, the bad and the ugly. arxiv preprint arxiv: , Y. Xian, T. Lorenz, B. Schiele, and Z. Akata. Feature generating networks for zero-shot learning. In Proceedings of the IEEE conference on computer vision and pattern recognition, Y. Yu, Z. Ji, Y. Fu, J. Guo, Y. Pang, and Z. Zhang. Stacked semantic-guided attention model for fine-grained zero-shot learning. arxiv preprint arxiv: , A. Zhao, M. Ding, J. Guan, Z. Lu, T. Xiang, and J.-R. Wen. Domain-invariant projection learning for zero-shot recognition. arxiv preprint arxiv: , 2018.

Memory-Augmented Attention Model for Scene Text Recognition

Memory-Augmented Attention Model for Scene Text Recognition Memory-Augmented Attention Model for Scene Text Recognition Cong Wang 1,2, Fei Yin 1,2, Cheng-Lin Liu 1,2,3 1 National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences

More information

DIVERSITY REGULARIZATION IN DEEP ENSEMBLES

DIVERSITY REGULARIZATION IN DEEP ENSEMBLES Workshop track - ICLR 8 DIVERSITY REGULARIZATION IN DEEP ENSEMBLES Changjian Shui, Azadeh Sadat Mozafari, Jonathan Marek, Ihsen Hedhli, Christian Gagné Computer Vision and Systems Laboratory / REPARTI

More information

Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net

Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net Supplementary Material Xingang Pan 1, Ping Luo 1, Jianping Shi 2, and Xiaoou Tang 1 1 CUHK-SenseTime Joint Lab, The Chinese University

More information

A Simple Exponential Family Framework for Zero-Shot Learning

A Simple Exponential Family Framework for Zero-Shot Learning A Simple Exponential Family Framework for Zero-Shot Learning Vinay Kumar Verma and Piyush Rai Dept. of Computer Science & Engineering, IIT Kanpur, India {vkverma,piyush}@cse.iitk.ac.in Abstract. We present

More information

Visual meta-learning for planning and control

Visual meta-learning for planning and control Visual meta-learning for planning and control Seminar on Current Works in Computer Vision @ Chair of Pattern Recognition and Image Processing. Samuel Roth Winter Semester 2018/19 Albert-Ludwigs-Universität

More information

Differentiable Fine-grained Quantization for Deep Neural Network Compression

Differentiable Fine-grained Quantization for Deep Neural Network Compression Differentiable Fine-grained Quantization for Deep Neural Network Compression Hsin-Pai Cheng hc218@duke.edu Yuanjun Huang University of Science and Technology of China Anhui, China yjhuang@mail.ustc.edu.cn

More information

Toward Correlating and Solving Abstract Tasks Using Convolutional Neural Networks Supplementary Material

Toward Correlating and Solving Abstract Tasks Using Convolutional Neural Networks Supplementary Material Toward Correlating and Solving Abstract Tasks Using Convolutional Neural Networks Supplementary Material Kuan-Chuan Peng Cornell University kp388@cornell.edu Tsuhan Chen Cornell University tsuhan@cornell.edu

More information

Domain adaptation for deep learning

Domain adaptation for deep learning What you saw is not what you get Domain adaptation for deep learning Kate Saenko Successes of Deep Learning in AI A Learning Advance in Artificial Intelligence Rivals Human Abilities Deep Learning for

More information

Tensor network vs Machine learning. Song Cheng ( 程嵩 ) IOP, CAS

Tensor network vs Machine learning. Song Cheng ( 程嵩 ) IOP, CAS Tensor network vs Machine learning Song Cheng ( 程嵩 ) IOP, CAS physichengsong@iphy.ac.cn Outline Tensor network in a nutshell TN concepts in machine learning TN methods in machine learning Outline Tensor

More information

Active Learning with Cross-class Similarity Transfer

Active Learning with Cross-class Similarity Transfer Active Learning with Cross-class Similarity Transfer Yuchen Guo, Guiguang Ding, Yue Gao, Jungong Han Tsinghua National Laboratory for Information Science and Technology (TNList School of Software, Tsinghua

More information

Bayesian Deep Learning

Bayesian Deep Learning Bayesian Deep Learning Mohammad Emtiyaz Khan AIP (RIKEN), Tokyo http://emtiyaz.github.io emtiyaz.khan@riken.jp June 06, 2018 Mohammad Emtiyaz Khan 2018 1 What will you learn? Why is Bayesian inference

More information

Correlation Autoencoder Hashing for Supervised Cross-Modal Search

Correlation Autoencoder Hashing for Supervised Cross-Modal Search Correlation Autoencoder Hashing for Supervised Cross-Modal Search Yue Cao, Mingsheng Long, Jianmin Wang, and Han Zhu School of Software Tsinghua University The Annual ACM International Conference on Multimedia

More information

Introduction to Convolutional Neural Networks 2018 / 02 / 23

Introduction to Convolutional Neural Networks 2018 / 02 / 23 Introduction to Convolutional Neural Networks 2018 / 02 / 23 Buzzword: CNN Convolutional neural networks (CNN, ConvNet) is a class of deep, feed-forward (not recurrent) artificial neural networks that

More information

Face Recognition Using Global Gabor Filter in Small Sample Case *

Face Recognition Using Global Gabor Filter in Small Sample Case * ISSN 1673-9418 CODEN JKYTA8 E-mail: fcst@public2.bta.net.cn Journal of Frontiers of Computer Science and Technology http://www.ceaj.org 1673-9418/2010/04(05)-0420-06 Tel: +86-10-51616056 DOI: 10.3778/j.issn.1673-9418.2010.05.004

More information

Asaf Bar Zvi Adi Hayat. Semantic Segmentation

Asaf Bar Zvi Adi Hayat. Semantic Segmentation Asaf Bar Zvi Adi Hayat Semantic Segmentation Today s Topics Fully Convolutional Networks (FCN) (CVPR 2015) Conditional Random Fields as Recurrent Neural Networks (ICCV 2015) Gaussian Conditional random

More information

Beyond finite layer neural network

Beyond finite layer neural network Beyond finite layer neural network Bridging Numerical Dynamic System And Deep Neural Networks arxiv:1710.10121 Joint work with Bin Dong, Quanzheng Li, Aoxiao Zhong Yiping Lu Peiking University School Of

More information

Fine-grained Classification

Fine-grained Classification Fine-grained Classification Marcel Simon Department of Mathematics and Computer Science, Germany marcel.simon@uni-jena.de http://www.inf-cv.uni-jena.de/ Seminar Talk 23.06.2015 Outline 1 Motivation 2 3

More information

Few-shot learning with KRR

Few-shot learning with KRR Few-shot learning with KRR Prudencio Tossou Groupe de Recherche en Apprentissage Automatique Départment d informatique et de génie logiciel Université Laval April 6, 2018 Prudencio Tossou (UL) Few-shot

More information

arxiv: v1 [cs.cv] 11 May 2015 Abstract

arxiv: v1 [cs.cv] 11 May 2015 Abstract Training Deeper Convolutional Networks with Deep Supervision Liwei Wang Computer Science Dept UIUC lwang97@illinois.edu Chen-Yu Lee ECE Dept UCSD chl260@ucsd.edu Zhuowen Tu CogSci Dept UCSD ztu0@ucsd.edu

More information

Prediction of Citations for Academic Papers

Prediction of Citations for Academic Papers 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

RAGAV VENKATESAN VIJETHA GATUPALLI BAOXIN LI NEURAL DATASET GENERALITY

RAGAV VENKATESAN VIJETHA GATUPALLI BAOXIN LI NEURAL DATASET GENERALITY RAGAV VENKATESAN VIJETHA GATUPALLI BAOXIN LI NEURAL DATASET GENERALITY SIFT HOG ALL ABOUT THE FEATURES DAISY GABOR AlexNet GoogleNet CONVOLUTIONAL NEURAL NETWORKS VGG-19 ResNet FEATURES COMES FROM DATA

More information

Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization

Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization Shai Shalev-Shwartz and Tong Zhang School of CS and Engineering, The Hebrew University of Jerusalem Optimization for Machine

More information

2017 Fall ECE 692/599: Binary Representation Learning for Large Scale Visual Data

2017 Fall ECE 692/599: Binary Representation Learning for Large Scale Visual Data 2017 Fall ECE 692/599: Binary Representation Learning for Large Scale Visual Data Liu Liu Instructor: Dr. Hairong Qi University of Tennessee, Knoxville lliu25@vols.utk.edu September 21, 2017 Liu Liu (UTK)

More information

Finite-time hybrid synchronization of time-delay hyperchaotic Lorenz system

Finite-time hybrid synchronization of time-delay hyperchaotic Lorenz system ISSN 1746-7659 England UK Journal of Information and Computing Science Vol. 10 No. 4 2015 pp. 265-270 Finite-time hybrid synchronization of time-delay hyperchaotic Lorenz system Haijuan Chen 1 * Rui Chen

More information

CS4495/6495 Introduction to Computer Vision. 8C-L3 Support Vector Machines

CS4495/6495 Introduction to Computer Vision. 8C-L3 Support Vector Machines CS4495/6495 Introduction to Computer Vision 8C-L3 Support Vector Machines Discriminative classifiers Discriminative classifiers find a division (surface) in feature space that separates the classes Several

More information

Very Deep Residual Networks with Maxout for Plant Identification in the Wild Milan Šulc, Dmytro Mishkin, Jiří Matas

Very Deep Residual Networks with Maxout for Plant Identification in the Wild Milan Šulc, Dmytro Mishkin, Jiří Matas Very Deep Residual Networks with Maxout for Plant Identification in the Wild Milan Šulc, Dmytro Mishkin, Jiří Matas Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering

More information

Linear classifiers: Logistic regression

Linear classifiers: Logistic regression Linear classifiers: Logistic regression STAT/CSE 416: Machine Learning Emily Fox University of Washington April 19, 2018 How confident is your prediction? The sushi & everything else were awesome! The

More information

arxiv: v1 [cs.lg] 25 Jul 2017

arxiv: v1 [cs.lg] 25 Jul 2017 Partial Transfer Learning with Selective Adversarial Networks arxiv:177.791v1 [cs.lg] 25 Jul 17 Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Michael I. Jordan KLiss, MOE; TNList; School of Software,

More information

CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning

CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning Lei Lei Ruoxuan Xiong December 16, 2017 1 Introduction Deep Neural Network

More information

Lecture 10: Support Vector Machine and Large Margin Classifier

Lecture 10: Support Vector Machine and Large Margin Classifier Lecture 10: Support Vector Machine and Large Margin Classifier Applied Multivariate Analysis Math 570, Fall 2014 Xingye Qiao Department of Mathematical Sciences Binghamton University E-mail: qiao@math.binghamton.edu

More information

HeadNet: Pedestrian Head Detection Utilizing Body in Context

HeadNet: Pedestrian Head Detection Utilizing Body in Context HeadNet: Pedestrian Head Detection Utilizing Body in Context Gang Chen 1,2, Xufen Cai 1, Hu Han,1, Shiguang Shan 1,2,3 and Xilin Chen 1,2 1 Key Laboratory of Intelligent Information Processing of Chinese

More information

Machine learning - HT Maximum Likelihood

Machine learning - HT Maximum Likelihood Machine learning - HT 2016 3. Maximum Likelihood Varun Kanade University of Oxford January 27, 2016 Outline Probabilistic Framework Formulate linear regression in the language of probability Introduce

More information

SVMC An introduction to Support Vector Machines Classification

SVMC An introduction to Support Vector Machines Classification SVMC An introduction to Support Vector Machines Classification 6.783, Biomedical Decision Support Lorenzo Rosasco (lrosasco@mit.edu) Department of Brain and Cognitive Science MIT A typical problem We have

More information

Interpreting Deep Classifiers

Interpreting Deep Classifiers Ruprecht-Karls-University Heidelberg Faculty of Mathematics and Computer Science Seminar: Explainable Machine Learning Interpreting Deep Classifiers by Visual Distillation of Dark Knowledge Author: Daniela

More information

Quantum Convolutional Neural Networks

Quantum Convolutional Neural Networks Quantum Convolutional Neural Networks Iris Cong Soonwon Choi Mikhail D. Lukin arxiv:1810.03787 Berkeley Quantum Information Seminar October 16 th, 2018 Why quantum machine learning? Machine learning: interpret

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Info 59/259 Lecture 4: Text classification 3 (Sept 5, 207) David Bamman, UC Berkeley . https://www.forbes.com/sites/kevinmurnane/206/04/0/what-is-deep-learning-and-how-is-it-useful

More information

Based on the original slides of Hung-yi Lee

Based on the original slides of Hung-yi Lee Based on the original slides of Hung-yi Lee Google Trends Deep learning obtains many exciting results. Can contribute to new Smart Services in the Context of the Internet of Things (IoT). IoT Services

More information

Machine Learning Basics Lecture 7: Multiclass Classification. Princeton University COS 495 Instructor: Yingyu Liang

Machine Learning Basics Lecture 7: Multiclass Classification. Princeton University COS 495 Instructor: Yingyu Liang Machine Learning Basics Lecture 7: Multiclass Classification Princeton University COS 495 Instructor: Yingyu Liang Example: image classification indoor Indoor outdoor Example: image classification (multiclass)

More information

What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1

What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1 What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1 Multi-layer networks Steve Renals Machine Learning Practical MLP Lecture 3 7 October 2015 MLP Lecture 3 Multi-layer networks 2 What Do Single

More information

Aspect Term Extraction with History Attention and Selective Transformation 1

Aspect Term Extraction with History Attention and Selective Transformation 1 Aspect Term Extraction with History Attention and Selective Transformation 1 Xin Li 1, Lidong Bing 2, Piji Li 1, Wai Lam 1, Zhimou Yang 3 Presenter: Lin Ma 2 1 The Chinese University of Hong Kong 2 Tencent

More information

Learning with multiple models. Boosting.

Learning with multiple models. Boosting. CS 2750 Machine Learning Lecture 21 Learning with multiple models. Boosting. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Learning with multiple models: Approach 2 Approach 2: use multiple models

More information

Encoder Based Lifelong Learning - Supplementary materials

Encoder Based Lifelong Learning - Supplementary materials Encoder Based Lifelong Learning - Supplementary materials Amal Rannen Rahaf Aljundi Mathew B. Blaschko Tinne Tuytelaars KU Leuven KU Leuven, ESAT-PSI, IMEC, Belgium firstname.lastname@esat.kuleuven.be

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2014 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Fault prediction of power system distribution equipment based on support vector machine

Fault prediction of power system distribution equipment based on support vector machine Fault prediction of power system distribution equipment based on support vector machine Zhenqi Wang a, Hongyi Zhang b School of Control and Computer Engineering, North China Electric Power University,

More information

Tutorial on Methods for Interpreting and Understanding Deep Neural Networks. Part 3: Applications & Discussion

Tutorial on Methods for Interpreting and Understanding Deep Neural Networks. Part 3: Applications & Discussion Tutorial on Methods for Interpreting and Understanding Deep Neural Networks W. Samek, G. Montavon, K.-R. Müller Part 3: Applications & Discussion ICASSP 2017 Tutorial W. Samek, G. Montavon & K.-R. Müller

More information

Linear classifiers: Overfitting and regularization

Linear classifiers: Overfitting and regularization Linear classifiers: Overfitting and regularization Emily Fox University of Washington January 25, 2017 Logistic regression recap 1 . Thus far, we focused on decision boundaries Score(x i ) = w 0 h 0 (x

More information

Is Robustness the Cost of Accuracy? A Comprehensive Study on the Robustness of 18 Deep Image Classification Models

Is Robustness the Cost of Accuracy? A Comprehensive Study on the Robustness of 18 Deep Image Classification Models Is Robustness the Cost of Accuracy? A Comprehensive Study on the Robustness of 18 Deep Image Classification Models Dong Su 1*, Huan Zhang 2*, Hongge Chen 3, Jinfeng Yi 4, Pin-Yu Chen 1, and Yupeng Gao

More information

Towards a Data-driven Approach to Exploring Galaxy Evolution via Generative Adversarial Networks

Towards a Data-driven Approach to Exploring Galaxy Evolution via Generative Adversarial Networks Towards a Data-driven Approach to Exploring Galaxy Evolution via Generative Adversarial Networks Tian Li tian.li@pku.edu.cn EECS, Peking University Abstract Since laboratory experiments for exploring astrophysical

More information

Multiscale methods for neural image processing. Sohil Shah, Pallabi Ghosh, Larry S. Davis and Tom Goldstein Hao Li, Soham De, Zheng Xu, Hanan Samet

Multiscale methods for neural image processing. Sohil Shah, Pallabi Ghosh, Larry S. Davis and Tom Goldstein Hao Li, Soham De, Zheng Xu, Hanan Samet Multiscale methods for neural image processing Sohil Shah, Pallabi Ghosh, Larry S. Davis and Tom Goldstein Hao Li, Soham De, Zheng Xu, Hanan Samet A TALK IN TWO ACTS Part I: Stacked U-nets The globalization

More information

The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems

The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems Weinan E 1 and Bing Yu 2 arxiv:1710.00211v1 [cs.lg] 30 Sep 2017 1 The Beijing Institute of Big Data Research,

More information

Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning

Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning Sangdoo Yun 1 Jongwon Choi 1 Youngjoon Yoo 2 Kimin Yun 3 and Jin Young Choi 1 1 ASRI, Dept. of Electrical and Computer Eng.,

More information

Analyzing the Performance of Multilayer Neural Networks for Object Recognition

Analyzing the Performance of Multilayer Neural Networks for Object Recognition Analyzing the Performance of Multilayer Neural Networks for Object Recognition Pulkit Agrawal, Ross Girshick, Jitendra Malik {pulkitag,rbg,malik}@eecs.berkeley.edu University of California Berkeley Supplementary

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines Hsuan-Tien Lin Learning Systems Group, California Institute of Technology Talk in NTU EE/CS Speech Lab, November 16, 2005 H.-T. Lin (Learning Systems Group) Introduction

More information

Deep Learning: Approximation of Functions by Composition

Deep Learning: Approximation of Functions by Composition Deep Learning: Approximation of Functions by Composition Zuowei Shen Department of Mathematics National University of Singapore Outline 1 A brief introduction of approximation theory 2 Deep learning: approximation

More information

Binary Convolutional Neural Network on RRAM

Binary Convolutional Neural Network on RRAM Binary Convolutional Neural Network on RRAM Tianqi Tang, Lixue Xia, Boxun Li, Yu Wang, Huazhong Yang Dept. of E.E, Tsinghua National Laboratory for Information Science and Technology (TNList) Tsinghua

More information

Introduction to Deep Neural Networks

Introduction to Deep Neural Networks Introduction to Deep Neural Networks Presenter: Chunyuan Li Pattern Classification and Recognition (ECE 681.01) Duke University April, 2016 Outline 1 Background and Preliminaries Why DNNs? Model: Logistic

More information

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima.

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima. http://goo.gl/xilnmn Course website KYOTO UNIVERSITY Statistical Machine Learning Theory From Multi-class Classification to Structured Output Prediction Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT

More information

Spatial Transformer Networks

Spatial Transformer Networks BIL722 - Deep Learning for Computer Vision Spatial Transformer Networks Max Jaderberg Andrew Zisserman Karen Simonyan Koray Kavukcuoglu Contents Introduction to Spatial Transformers Related Works Spatial

More information

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College Distributed Estimation, Information Loss and Exponential Families Qiang Liu Department of Computer Science Dartmouth College Statistical Learning / Estimation Learning generative models from data Topic

More information

CS798: Selected topics in Machine Learning

CS798: Selected topics in Machine Learning CS798: Selected topics in Machine Learning Support Vector Machine Jakramate Bootkrajang Department of Computer Science Chiang Mai University Jakramate Bootkrajang CS798: Selected topics in Machine Learning

More information

with Local Dependencies

with Local Dependencies CS11-747 Neural Networks for NLP Structured Prediction with Local Dependencies Xuezhe Ma (Max) Site https://phontron.com/class/nn4nlp2017/ An Example Structured Prediction Problem: Sequence Labeling Sequence

More information

Time Series Data Cleaning

Time Series Data Cleaning Time Series Data Cleaning Shaoxu Song http://ise.thss.tsinghua.edu.cn/sxsong/ Dirty Time Series Data Unreliable Readings Sensor monitoring GPS trajectory J. Freire, A. Bessa, F. Chirigati, H. T. Vo, K.

More information

Joint distribution optimal transportation for domain adaptation

Joint distribution optimal transportation for domain adaptation Optimal Transport for Domain Adaptation (TPAMI 2016) Joint distribution optimal transportation for domain adaptation (NIPS 2017) Joint distribution optimal transportation for domain adaptation Nicolas

More information

INF 5860 Machine learning for image classification. Lecture 14: Reinforcement learning May 9, 2018

INF 5860 Machine learning for image classification. Lecture 14: Reinforcement learning May 9, 2018 Machine learning for image classification Lecture 14: Reinforcement learning May 9, 2018 Page 3 Outline Motivation Introduction to reinforcement learning (RL) Value function based methods (Q-learning)

More information

Large-Margin Thresholded Ensembles for Ordinal Regression

Large-Margin Thresholded Ensembles for Ordinal Regression Large-Margin Thresholded Ensembles for Ordinal Regression Hsuan-Tien Lin and Ling Li Learning Systems Group, California Institute of Technology, U.S.A. Conf. on Algorithmic Learning Theory, October 9,

More information

Large-Margin Thresholded Ensembles for Ordinal Regression

Large-Margin Thresholded Ensembles for Ordinal Regression Large-Margin Thresholded Ensembles for Ordinal Regression Hsuan-Tien Lin (accepted by ALT 06, joint work with Ling Li) Learning Systems Group, Caltech Workshop Talk in MLSS 2006, Taipei, Taiwan, 07/25/2006

More information

ParaGraphE: A Library for Parallel Knowledge Graph Embedding

ParaGraphE: A Library for Parallel Knowledge Graph Embedding ParaGraphE: A Library for Parallel Knowledge Graph Embedding Xiao-Fan Niu, Wu-Jun Li National Key Laboratory for Novel Software Technology Department of Computer Science and Technology, Nanjing University,

More information

Supplementary Material for Superpixel Sampling Networks

Supplementary Material for Superpixel Sampling Networks Supplementary Material for Superpixel Sampling Networks Varun Jampani 1, Deqing Sun 1, Ming-Yu Liu 1, Ming-Hsuan Yang 1,2, Jan Kautz 1 1 NVIDIA 2 UC Merced {vjampani,deqings,mingyul,jkautz}@nvidia.com,

More information

Efficient DNN Neuron Pruning by Minimizing Layer-wise Nonlinear Reconstruction Error

Efficient DNN Neuron Pruning by Minimizing Layer-wise Nonlinear Reconstruction Error Efficient DNN Neuron Pruning by Minimizing Layer-wise Nonlinear Reconstruction Error Chunhui Jiang, Guiying Li, Chao Qian, Ke Tang Anhui Province Key Lab of Big Data Analysis and Application, University

More information

Zero-Shot Learning via Class-Conditioned Deep Generative Models

Zero-Shot Learning via Class-Conditioned Deep Generative Models Zero-Shot Learning via Class-Conditioned Deep Generative Models Wenlin Wang Joint with Yunchen Pu, Vinay Kumar Verma, Kai Fan, Yizhe Zhang, Changyou Chen, Piyush Rai, Lawrence Carin Duke University, IIT

More information

Multiple Wavelet Coefficients Fusion in Deep Residual Networks for Fault Diagnosis

Multiple Wavelet Coefficients Fusion in Deep Residual Networks for Fault Diagnosis Multiple Wavelet Coefficients Fusion in Deep Residual Networks for Fault Diagnosis Minghang Zhao, Myeongsu Kang, Baoping Tang, Michael Pecht 1 Backgrounds Accurate fault diagnosis is important to ensure

More information

RegML 2018 Class 8 Deep learning

RegML 2018 Class 8 Deep learning RegML 2018 Class 8 Deep learning Lorenzo Rosasco UNIGE-MIT-IIT June 18, 2018 Supervised vs unsupervised learning? So far we have been thinking of learning schemes made in two steps f(x) = w, Φ(x) F, x

More information

SUPPORT VECTOR MACHINE

SUPPORT VECTOR MACHINE SUPPORT VECTOR MACHINE Mainly based on https://nlp.stanford.edu/ir-book/pdf/15svm.pdf 1 Overview SVM is a huge topic Integration of MMDS, IIR, and Andrew Moore s slides here Our foci: Geometric intuition

More information

Mitosis Detection in Breast Cancer Histology Images with Multi Column Deep Neural Networks

Mitosis Detection in Breast Cancer Histology Images with Multi Column Deep Neural Networks Mitosis Detection in Breast Cancer Histology Images with Multi Column Deep Neural Networks IDSIA, Lugano, Switzerland dan.ciresan@gmail.com Dan C. Cireşan and Alessandro Giusti DNN for Visual Pattern Recognition

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Explainable AI Marc Toussaint University of Stuttgart Winter 2018/19 Explainable AI General Concept of Explaination Data, Objective, Method, & Input Counterfactuals & Pearl Fitting

More information

Multiple Similarities Based Kernel Subspace Learning for Image Classification

Multiple Similarities Based Kernel Subspace Learning for Image Classification Multiple Similarities Based Kernel Subspace Learning for Image Classification Wang Yan, Qingshan Liu, Hanqing Lu, and Songde Ma National Laboratory of Pattern Recognition, Institute of Automation, Chinese

More information

2. Preliminaries. 3. Additive Margin Softmax Definition

2. Preliminaries. 3. Additive Margin Softmax Definition Additive Margin Softmax for Face Verification Feng Wang UESTC feng.wff@gmail.com Weiyang Liu Georgia Tech wyliu@gatech.edu Haijun Liu UESTC haijun liu@126.com Jian Cheng UESTC chengjian@uestc.edu.cn Abstract

More information

MIRA, SVM, k-nn. Lirong Xia

MIRA, SVM, k-nn. Lirong Xia MIRA, SVM, k-nn Lirong Xia Linear Classifiers (perceptrons) Inputs are feature values Each feature has a weight Sum is the activation activation w If the activation is: Positive: output +1 Negative, output

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2015 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model

Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model Xingjian Shi 1 Zhihan Gao 1 Leonard Lausen 1 Hao Wang 1 Dit-Yan Yeung 1 Wai-kin Wong 2 Wang-chun Woo 2 1 Department of Computer Science

More information

Machine Learning. Classification, Discriminative learning. Marc Toussaint University of Stuttgart Summer 2015

Machine Learning. Classification, Discriminative learning. Marc Toussaint University of Stuttgart Summer 2015 Machine Learning Classification, Discriminative learning Structured output, structured input, discriminative function, joint input-output features, Likelihood Maximization, Logistic regression, binary

More information

Do Neural Network Cross-Modal Mappings Really Bridge Modalities?

Do Neural Network Cross-Modal Mappings Really Bridge Modalities? Do Neural Network Cross-Modal Mappings Really Bridge Modalities? Language Intelligence and Information Retrieval group (LIIR) Department of Computer Science Story Collell, G., Zhang, T., Moens, M.F. (2017)

More information

Classification Based on Logical Concept Analysis

Classification Based on Logical Concept Analysis Classification Based on Logical Concept Analysis Yan Zhao and Yiyu Yao Department of Computer Science, University of Regina, Regina, Saskatchewan, Canada S4S 0A2 E-mail: {yanzhao, yyao}@cs.uregina.ca Abstract.

More information

Making Deep Learning Understandable for Analyzing Sequential Data about Gene Regulation

Making Deep Learning Understandable for Analyzing Sequential Data about Gene Regulation Making Deep Learning Understandable for Analyzing Sequential Data about Gene Regulation Dr. Yanjun Qi Department of Computer Science University of Virginia Tutorial @ ACM BCB-2018 8/29/18 Yanjun Qi / UVA

More information

Axiomatic Attribution of Neural Networks

Axiomatic Attribution of Neural Networks Axiomatic Attribution of Neural Networks Mukund Sundararajan* 1, Ankur Taly* 1, Qiqi Yan* 1 1 Google Inc. Presenter: Arshdeep Sekhon Mukund Sundararajan*, Ankur Taly*, Qiqi Yan*Axiomatic Attribution of

More information

CSCI-567: Machine Learning (Spring 2019)

CSCI-567: Machine Learning (Spring 2019) CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Mar. 19, 2019 March 19, 2019 1 / 43 Administration March 19, 2019 2 / 43 Administration TA3 is due this week March

More information

Introduction to Machine Learning Lecture 13. Mehryar Mohri Courant Institute and Google Research

Introduction to Machine Learning Lecture 13. Mehryar Mohri Courant Institute and Google Research Introduction to Machine Learning Lecture 13 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Multi-Class Classification Mehryar Mohri - Introduction to Machine Learning page 2 Motivation

More information

PRUNING CONVOLUTIONAL NEURAL NETWORKS. Pavlo Molchanov Stephen Tyree Tero Karras Timo Aila Jan Kautz

PRUNING CONVOLUTIONAL NEURAL NETWORKS. Pavlo Molchanov Stephen Tyree Tero Karras Timo Aila Jan Kautz PRUNING CONVOLUTIONAL NEURAL NETWORKS Pavlo Molchanov Stephen Tyree Tero Karras Timo Aila Jan Kautz 2017 WHY WE CAN PRUNE CNNS? 2 WHY WE CAN PRUNE CNNS? Optimization failures : Some neurons are "dead":

More information

Quantifying Fingerprint Evidence using Bayesian Alignment

Quantifying Fingerprint Evidence using Bayesian Alignment Quantifying Fingerprint Evidence using Bayesian Alignment Peter Forbes Joint work with Steffen Lauritzen and Jesper Møller Department of Statistics University of Oxford UCL CSML Lunch Talk 14 February

More information

Linear vs Non-linear classifier. CS789: Machine Learning and Neural Network. Introduction

Linear vs Non-linear classifier. CS789: Machine Learning and Neural Network. Introduction Linear vs Non-linear classifier CS789: Machine Learning and Neural Network Support Vector Machine Jakramate Bootkrajang Department of Computer Science Chiang Mai University Linear classifier is in the

More information

COMPLEX INPUT CONVOLUTIONAL NEURAL NETWORKS FOR WIDE ANGLE SAR ATR

COMPLEX INPUT CONVOLUTIONAL NEURAL NETWORKS FOR WIDE ANGLE SAR ATR COMPLEX INPUT CONVOLUTIONAL NEURAL NETWORKS FOR WIDE ANGLE SAR ATR Michael Wilmanski #*1, Chris Kreucher *2, & Alfred Hero #3 # University of Michigan 500 S State St, Ann Arbor, MI 48109 1 wilmansk@umich.edu,

More information

Hou, Ch. et al. IEEE Transactions on Neural Networks March 2011

Hou, Ch. et al. IEEE Transactions on Neural Networks March 2011 Hou, Ch. et al. IEEE Transactions on Neural Networks March 2011 Semi-supervised approach which attempts to incorporate partial information from unlabeled data points Semi-supervised approach which attempts

More information

Deep Residual. Variations

Deep Residual. Variations Deep Residual Network and Its Variations Diyu Yang (Originally prepared by Kaiming He from Microsoft Research) Advantages of Depth Degradation Problem Possible Causes? Vanishing/Exploding Gradients. Overfitting

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING 5: Vector Data: Support Vector Machine Instructor: Yizhou Sun yzsun@cs.ucla.edu October 18, 2017 Homework 1 Announcements Due end of the day of this Thursday (11:59pm)

More information

Recurrent Autoregressive Networks for Online Multi-Object Tracking. Presented By: Ishan Gupta

Recurrent Autoregressive Networks for Online Multi-Object Tracking. Presented By: Ishan Gupta Recurrent Autoregressive Networks for Online Multi-Object Tracking Presented By: Ishan Gupta Outline Multi Object Tracking Recurrent Autoregressive Networks (RANs) RANs for Online Tracking Other State

More information

Machine Learning Basics Lecture 2: Linear Classification. Princeton University COS 495 Instructor: Yingyu Liang

Machine Learning Basics Lecture 2: Linear Classification. Princeton University COS 495 Instructor: Yingyu Liang Machine Learning Basics Lecture 2: Linear Classification Princeton University COS 495 Instructor: Yingyu Liang Review: machine learning basics Math formulation Given training data x i, y i : 1 i n i.i.d.

More information

Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence

Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence oé LAMDA Group H ŒÆOŽÅ Æ EâX ^ #EâI[ : liwujun@nju.edu.cn Dec 10, 2016 Wu-Jun Li (http://cs.nju.edu.cn/lwj)

More information

Juergen Gall. Analyzing Human Behavior in Video Sequences

Juergen Gall. Analyzing Human Behavior in Video Sequences Juergen Gall Analyzing Human Behavior in Video Sequences 09. 10. 2 01 7 Juer gen Gall Instit u t e of Com puter Science III Com puter Vision Gr oup 2 Analyzing Human Behavior Analyzing Human Behavior Human

More information

An EoS-meter of QCD transition from deep learning

An EoS-meter of QCD transition from deep learning An EoS-meter of QCD transition from deep learning Nan Su Frankfurt Institute for Advanced Studies with Long-Gang Pang, Kai Zhou (FIAS), Hannah Petersen, Horst Stöcker (FIAS/Uni Frankfurt/GSI), Xin-Nian

More information

Spatial Transformer. Ref: Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu, Spatial Transformer Networks, NIPS, 2015

Spatial Transformer. Ref: Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu, Spatial Transformer Networks, NIPS, 2015 Spatial Transormer Re: Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu, Spatial Transormer Networks, NIPS, 2015 Spatial Transormer Layer CNN is not invariant to scaling and rotation

More information