Few-shot learning with KRR

Size: px
Start display at page:

Download "Few-shot learning with KRR"

Transcription

1 Few-shot learning with KRR Prudencio Tossou Groupe de Recherche en Apprentissage Automatique Départment d informatique et de génie logiciel Université Laval April 6, 2018 Prudencio Tossou (UL) Few-shot learning with KRR April 6, / 25

2 Motivation Plan 1 Motivation 2 Problem statement 3 Our approach: MetaKRR 4 Experiments 5 Future works and conclusion Prudencio Tossou (UL) Few-shot learning with KRR April 6, / 25

3 Motivation The future of ML Prudencio Tossou (UL) Few-shot learning with KRR April 6, / 25

4 Motivation What few learning is trying to do? By leveraging past learning experiences Distribution T T Family F = {T 1, T 2,..., T i...} T Meta-train {D 1, D 2,..., D M } Through META-LEARNING T T k Meta-learning algorithm The past gives a strong prior knowledge Training data D train Meta-model or learning algorithm A Input x Model h If one use it, things can be done more efficiently in the present Output h(x) Prudencio Tossou (UL) Few-shot learning with KRR April 6, / 25

5 Motivation Few-shot regression Recent works focus on classification and reinforcement learning Not much experiments with regression datasets Versus classification: harder to generalize from few examples Applications: drug discovery > Drugs at lower costs recommender systems > Deal with products with few ratings Prudencio Tossou (UL) Few-shot learning with KRR April 6, / 25

6 Problem statement Plan 1 Motivation 2 Problem statement 3 Our approach: MetaKRR 4 Experiments 5 Future works and conclusion Prudencio Tossou (UL) Few-shot learning with KRR April 6, / 25

7 Problem statement The objective Distribution T T Family F = {T 1, T 2,..., T i...} T The optimal meta-model Meta-train {D 1, D 2,..., D M } A = argmin A E T T E D train T k E L(A(D train)(x), y) (x,y) T T T k Meta-learning algorithm Few-shot regression Quadratic loss L(y, y ) = ( y y ) 2 Training data D train Meta-model or learning algorithm A D train 20 Input x Model h Output h(x) Prudencio Tossou (UL) Few-shot learning with KRR April 6, / 25

8 Problem statement In practice (1) Distribution T T Family F = {T 1, T 2,..., T i...} T The meta-datasets Sample a distribution T i from F For each T i sample a D i Split the resulting collection of datasets in 3 partitions: D meta train for training D meta valid for hyper-parameter selection D meta test for unbiased evaluation of the meta-model T T k Training data D train Input x Meta-train {D 1, D 2,..., D M } Meta-learning algorithm Meta-model or learning algorithm A Model h Output h(x) Prudencio Tossou (UL) Few-shot learning with KRR April 6, / 25

9 Problem statement In practice (2) Episodic training Initialize Θ Loop Distribution T T Family F = {T 1, T 2,..., T i...} T Meta-train {D 1, D 2,..., D M } Sample an D i from D meta train Sample D train and D test of k examples each from D i Compute h := A(D train, Θ) Estimate the loss of h on D test T T k Training data D train Meta-learning algorithm Meta-model or learning algorithm A Update Θ Input x Model h An episode A pair of D train and D test from a D i Output h(x) Prudencio Tossou (UL) Few-shot learning with KRR April 6, / 25

10 Our approach: MetaKRR Plan 1 Motivation 2 Problem statement 3 Our approach: MetaKRR 4 Experiments 5 Future works and conclusion Prudencio Tossou (UL) Few-shot learning with KRR April 6, / 25

11 Our approach: MetaKRR The meta-model Tandem combination Feature extractor φ : X K shared by all tasks Regression Algorithm > h(x) = w φ(x), w K Feature extractor Could be anything CNN for images LSTM for sequences FC for vectors, etc Parameters to be found during the episodic training Prudencio Tossou (UL) Few-shot learning with KRR April 6, / 25

12 Our approach: MetaKRR The model (1) The regression algorithm should aim for generalization (SRM) [4] Given D train, w D train = argmin w The optimal solution is given by KRR[3] (x,y) D train (w φ(x) y) 2 + λ w 2 2, w = k α i φ(x i ), with α = (α 1, α 2,..., α k ) T = (K + λi ) 1 y, i=1 K ij = φ(x i ) φ(x j ), where i = 1... k, j = 1... k Prudencio Tossou (UL) Few-shot learning with KRR April 6, / 25

13 Our approach: MetaKRR The model (2) Advantages of KRR Closed form Few-shot > solving the dual system is highly advantageous over the primal Drawbacks Fine tuning regularizer and kernel hyper-parameters Cross-validation and validation set: costly and need more data Prudencio Tossou (UL) Few-shot learning with KRR April 6, / 25

14 Our approach: MetaKRR Selection of regression hyper-parameters Option 1: Episode dependant FC network g to predict the right values inputs = sufficient statistics of the training examples of D train statistics = mean, std, max, min of {y 1, y 2,..., y k } and {φ(x 1 ), φ(x 2 ),..., φ(x k )} For example, for a given D train, the KRR regularizer is given by: a if x < a exp (HardTanh a,b (g(d train ))), with HardTanh a,b (x) = x if a x b b if x > b Option 2: Same for all episodes Associate a parameter to each Hp Find the right value during back propagation Prudencio Tossou (UL) Few-shot learning with KRR April 6, / 25

15 Our approach: MetaKRR MetaKRR: the training with option 1 Pseudo-code Initialize Θ of φ and Λ of g Loop Sample an D i from D meta train Sample a D train and D test from D i Transform all inputs with φ Compute λ train with g Solve KRR to find w, thus h Compute the quadratic loss of h on D test Back-propagate the loss and update Θ and Λ Other details Train for 20K episodes Use D meta valid to select the best model Prudencio Tossou (UL) Few-shot learning with KRR April 6, / 25

16 Experiments Plan 1 Motivation 2 Problem statement 3 Our approach: MetaKRR 4 Experiments 5 Future works and conclusion Prudencio Tossou (UL) Few-shot learning with KRR April 6, / 25

17 Experiments Datasets MHC class II peptides Task: predict the binding energy of a peptide to a protein (MHC II complex). Collection of 14 datasets, one per protein Each dataset has from 500 to 5K examples Input = peptide (string) Output=energy to a MHC protein 14 few-shot regression tasks CNN feature extractor Binding molecules Task: predict the binding affinity of small molecules to a protein Collection of 3741 regression task each related to a protein and an organism Input = molecule SMILES (string) Output = binding affinity Meta-train, meta-valid and meta-test contain 2104, 702 and 935 tasks CNN feature extractor Prudencio Tossou (UL) Few-shot learning with KRR April 6, / 25

18 Experiments Results on MHC class II peptides MetaKRR-g MetaKRR-u MAML[1] MANN[2] pretrain Test complex DRB1* DRB1* DRB1* DRB1* DRB1* DRB1* DRB1* DRB1* DRB1* DRB1* DRB1* DRB3* DRB4* DRB5* Average Prudencio Tossou (UL) Few-shot learning with KRR April 6, / 25

19 Experiments Results on BindingDB MetaKRR versus MAML MetaKRR versus MANN Prudencio Tossou (UL) Few-shot learning with KRR April 6, / 25

20 Experiments Discussion MAML MANN Hard to find the best initialization point. Easy to classify with but harder for regression Prudencio Tossou (UL) Few-shot learning with KRR April 6, / 25

21 Future works and conclusion Plan 1 Motivation 2 Problem statement 3 Our approach: MetaKRR 4 Experiments 5 Future works and conclusion Prudencio Tossou (UL) Few-shot learning with KRR April 6, / 25

22 Future works and conclusion Future works Select the right values with the network g within a grid of hyper-parameters Include in our experiments a recommender system dataset : Netflix challenge Prudencio Tossou (UL) Few-shot learning with KRR April 6, / 25

23 Future works and conclusion Conclusion We have introduced MetaKRR, a few-shot regression algorithm State of the art performances Three key ideas: Leverage past experiences to find the most appropriate mapping function Use the structural risk minimization to enforce generalization Leverage past experiences to choose adequately the trade-off inside the SRM Not new ideas but they graciously combine together to give the MetaKRR Prudencio Tossou (UL) Few-shot learning with KRR April 6, / 25

24 Future works and conclusion References [1] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks. arxiv preprint arxiv: , [2] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-learning with memory-augmented neural networks. In International conference on machine learning, pages , [3] C. Saunders, A. Gammerman, and V. Vovk. Ridge regression learning algorithm in dual variables [4] V. Vapnik. Principles of risk minimization for learning theory. In Advances in neural information processing systems, pages , Prudencio Tossou (UL) Few-shot learning with KRR April 6, / 25

25 Questions Thanks for your attention Prudencio Tossou (UL) Few-shot learning with KRR April 6, / 25

Reptile: a Scalable Metalearning Algorithm

Reptile: a Scalable Metalearning Algorithm Reptile: a Scalable Metalearning Algorithm Alex Nichol and John Schulman OpenAI {alex, joschu}@openai.com Abstract This paper considers metalearning problems, where there is a distribution of tasks, and

More information

Visual meta-learning for planning and control

Visual meta-learning for planning and control Visual meta-learning for planning and control Seminar on Current Works in Computer Vision @ Chair of Pattern Recognition and Image Processing. Samuel Roth Winter Semester 2018/19 Albert-Ludwigs-Universität

More information

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM 1 Support Vector Machines (SVM) in bioinformatics Day 1: Introduction to SVM Jean-Philippe Vert Bioinformatics Center, Kyoto University, Japan Jean-Philippe.Vert@mines.org Human Genome Center, University

More information

Domain-Adversarial Neural Networks

Domain-Adversarial Neural Networks Domain-Adversarial Neural Networks Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand Département d informatique et de génie logiciel, Université Laval, Québec, Canada Département

More information

Outline. Motivation. Mapping the input space to the feature space Calculating the dot product in the feature space

Outline. Motivation. Mapping the input space to the feature space Calculating the dot product in the feature space to The The A s s in to Fabio A. González Ph.D. Depto. de Ing. de Sistemas e Industrial Universidad Nacional de Colombia, Bogotá April 2, 2009 to The The A s s in 1 Motivation Outline 2 The Mapping the

More information

Kernel methods, kernel SVM and ridge regression

Kernel methods, kernel SVM and ridge regression Kernel methods, kernel SVM and ridge regression Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Collaborative Filtering 2 Collaborative Filtering R: rating matrix; U: user factor;

More information

Support Vector Machines: Kernels

Support Vector Machines: Kernels Support Vector Machines: Kernels CS6780 Advanced Machine Learning Spring 2015 Thorsten Joachims Cornell University Reading: Murphy 14.1, 14.2, 14.4 Schoelkopf/Smola Chapter 7.4, 7.6, 7.8 Non-Linear Problems

More information

Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Linear classifier Which classifier? x 2 x 1 2 Linear classifier Margin concept x 2

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines Hsuan-Tien Lin Learning Systems Group, California Institute of Technology Talk in NTU EE/CS Speech Lab, November 16, 2005 H.-T. Lin (Learning Systems Group) Introduction

More information

Applied Machine Learning Annalisa Marsico

Applied Machine Learning Annalisa Marsico Applied Machine Learning Annalisa Marsico OWL RNA Bionformatics group Max Planck Institute for Molecular Genetics Free University of Berlin 29 April, SoSe 2015 Support Vector Machines (SVMs) 1. One of

More information

Chapter 9. Support Vector Machine. Yongdai Kim Seoul National University

Chapter 9. Support Vector Machine. Yongdai Kim Seoul National University Chapter 9. Support Vector Machine Yongdai Kim Seoul National University 1. Introduction Support Vector Machine (SVM) is a classification method developed by Vapnik (1996). It is thought that SVM improved

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 8: Optimization Cho-Jui Hsieh UC Davis May 9, 2017 Optimization Numerical Optimization Numerical Optimization: min X f (X ) Can be applied

More information

The Equivalence between Row and Column Linear Regression: A Surprising Feature of Linear Regression Updated Version 2.

The Equivalence between Row and Column Linear Regression: A Surprising Feature of Linear Regression Updated Version 2. The Equivalence between Row and Column Linear Regression: A Surprising Feature of Linear Regression Updated Version 2.0, October 2005 Volker Tresp Siemens Corporate Technology Department of Information

More information

Spatial Transformer Networks

Spatial Transformer Networks BIL722 - Deep Learning for Computer Vision Spatial Transformer Networks Max Jaderberg Andrew Zisserman Karen Simonyan Koray Kavukcuoglu Contents Introduction to Spatial Transformers Related Works Spatial

More information

Support Vector Machines.

Support Vector Machines. Support Vector Machines www.cs.wisc.edu/~dpage 1 Goals for the lecture you should understand the following concepts the margin slack variables the linear support vector machine nonlinear SVMs the kernel

More information

CSC321 Lecture 2: Linear Regression

CSC321 Lecture 2: Linear Regression CSC32 Lecture 2: Linear Regression Roger Grosse Roger Grosse CSC32 Lecture 2: Linear Regression / 26 Overview First learning algorithm of the course: linear regression Task: predict scalar-valued targets,

More information

Introduction to Machine Learning Midterm Exam

Introduction to Machine Learning Midterm Exam 10-701 Introduction to Machine Learning Midterm Exam Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes, but

More information

Probabilistic Mixture of Model-Agnostic Meta-Learners

Probabilistic Mixture of Model-Agnostic Meta-Learners Probabilistic Mixture of Model-Agnostic Meta-Learners Prasanna Sattigeri psattig@us.ibm.com Soumya Ghosh ghoshso@us.ibm.com Abhishe Kumar abhishe@inductivebias.net Karthieyan Natesan Ramamurthy natesa@us.ibm.com

More information

Neural Networks. Prof. Dr. Rudolf Kruse. Computational Intelligence Group Faculty for Computer Science

Neural Networks. Prof. Dr. Rudolf Kruse. Computational Intelligence Group Faculty for Computer Science Neural Networks Prof. Dr. Rudolf Kruse Computational Intelligence Group Faculty for Computer Science kruse@iws.cs.uni-magdeburg.de Rudolf Kruse Neural Networks 1 Supervised Learning / Support Vector Machines

More information

Support Vector Machine

Support Vector Machine Support Vector Machine Fabrice Rossi SAMM Université Paris 1 Panthéon Sorbonne 2018 Outline Linear Support Vector Machine Kernelized SVM Kernels 2 From ERM to RLM Empirical Risk Minimization in the binary

More information

Reward-modulated inference

Reward-modulated inference Buck Shlegeris Matthew Alger COMP3740, 2014 Outline Supervised, unsupervised, and reinforcement learning Neural nets RMI Results with RMI Types of machine learning supervised unsupervised reinforcement

More information

Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers

Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers Erin Allwein, Robert Schapire and Yoram Singer Journal of Machine Learning Research, 1:113-141, 000 CSE 54: Seminar on Learning

More information

Introduction to Machine Learning Midterm Exam Solutions

Introduction to Machine Learning Midterm Exam Solutions 10-701 Introduction to Machine Learning Midterm Exam Solutions Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes,

More information

Machine Learning And Applications: Supervised Learning-SVM

Machine Learning And Applications: Supervised Learning-SVM Machine Learning And Applications: Supervised Learning-SVM Raphaël Bournhonesque École Normale Supérieure de Lyon, Lyon, France raphael.bournhonesque@ens-lyon.fr 1 Supervised vs unsupervised learning Machine

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2016 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

More information

PAC Learning Introduction to Machine Learning. Matt Gormley Lecture 14 March 5, 2018

PAC Learning Introduction to Machine Learning. Matt Gormley Lecture 14 March 5, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University PAC Learning Matt Gormley Lecture 14 March 5, 2018 1 ML Big Picture Learning Paradigms:

More information

CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning

CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning Lei Lei Ruoxuan Xiong December 16, 2017 1 Introduction Deep Neural Network

More information

Classifier Complexity and Support Vector Classifiers

Classifier Complexity and Support Vector Classifiers Classifier Complexity and Support Vector Classifiers Feature 2 6 4 2 0 2 4 6 8 RBF kernel 10 10 8 6 4 2 0 2 4 6 Feature 1 David M.J. Tax Pattern Recognition Laboratory Delft University of Technology D.M.J.Tax@tudelft.nl

More information

Machine Learning to Automatically Detect Human Development from Satellite Imagery

Machine Learning to Automatically Detect Human Development from Satellite Imagery Technical Disclosure Commons Defensive Publications Series April 24, 2017 Machine Learning to Automatically Detect Human Development from Satellite Imagery Matthew Manolides Follow this and additional

More information

Kernel Methods. Outline

Kernel Methods. Outline Kernel Methods Quang Nguyen University of Pittsburgh CS 3750, Fall 2011 Outline Motivation Examples Kernels Definitions Kernel trick Basic properties Mercer condition Constructing feature space Hilbert

More information

Lecture 2 Machine Learning Review

Lecture 2 Machine Learning Review Lecture 2 Machine Learning Review CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago March 29, 2017 Things we will look at today Formal Setup for Supervised Learning Things

More information

A Magiv CV Theory for Large-Margin Classifiers

A Magiv CV Theory for Large-Margin Classifiers A Magiv CV Theory for Large-Margin Classifiers Hui Zou School of Statistics, University of Minnesota June 30, 2018 Joint work with Boxiang Wang Outline 1 Background 2 Magic CV formula 3 Magic support vector

More information

The Kernel Trick, Gram Matrices, and Feature Extraction. CS6787 Lecture 4 Fall 2017

The Kernel Trick, Gram Matrices, and Feature Extraction. CS6787 Lecture 4 Fall 2017 The Kernel Trick, Gram Matrices, and Feature Extraction CS6787 Lecture 4 Fall 2017 Momentum for Principle Component Analysis CS6787 Lecture 3.1 Fall 2017 Principle Component Analysis Setting: find the

More information

Perceptron Revisited: Linear Separators. Support Vector Machines

Perceptron Revisited: Linear Separators. Support Vector Machines Support Vector Machines Perceptron Revisited: Linear Separators Binary classification can be viewed as the task of separating classes in feature space: w T x + b > 0 w T x + b = 0 w T x + b < 0 Department

More information

Linear, threshold units. Linear Discriminant Functions and Support Vector Machines. Biometrics CSE 190 Lecture 11. X i : inputs W i : weights

Linear, threshold units. Linear Discriminant Functions and Support Vector Machines. Biometrics CSE 190 Lecture 11. X i : inputs W i : weights Linear Discriminant Functions and Support Vector Machines Linear, threshold units CSE19, Winter 11 Biometrics CSE 19 Lecture 11 1 X i : inputs W i : weights θ : threshold 3 4 5 1 6 7 Courtesy of University

More information

Optimization in the Big Data Regime 2: SVRG & Tradeoffs in Large Scale Learning. Sham M. Kakade

Optimization in the Big Data Regime 2: SVRG & Tradeoffs in Large Scale Learning. Sham M. Kakade Optimization in the Big Data Regime 2: SVRG & Tradeoffs in Large Scale Learning. Sham M. Kakade Machine Learning for Big Data CSE547/STAT548 University of Washington S. M. Kakade (UW) Optimization for

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines Shivani Agarwal Support Vector Machines (SVMs) Algorithm for learning linear classifiers Motivated by idea of maximizing margin Efficient extension to non-linear

More information

CMU-Q Lecture 24:

CMU-Q Lecture 24: CMU-Q 15-381 Lecture 24: Supervised Learning 2 Teacher: Gianni A. Di Caro SUPERVISED LEARNING Hypotheses space Hypothesis function Labeled Given Errors Performance criteria Given a collection of input

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Support Vector Machines Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique

More information

Statistical learning theory, Support vector machines, and Bioinformatics

Statistical learning theory, Support vector machines, and Bioinformatics 1 Statistical learning theory, Support vector machines, and Bioinformatics Jean-Philippe.Vert@mines.org Ecole des Mines de Paris Computational Biology group ENS Paris, november 25, 2003. 2 Overview 1.

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Le Song Machine Learning I CSE 6740, Fall 2013 Naïve Bayes classifier Still use Bayes decision rule for classification P y x = P x y P y P x But assume p x y = 1 is fully factorized

More information

Links between Perceptrons, MLPs and SVMs

Links between Perceptrons, MLPs and SVMs Links between Perceptrons, MLPs and SVMs Ronan Collobert Samy Bengio IDIAP, Rue du Simplon, 19 Martigny, Switzerland Abstract We propose to study links between three important classification algorithms:

More information

A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery

A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery AtomNet A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery Izhar Wallach, Michael Dzamba, Abraham Heifets Victor Storchan, Institute for Computational and

More information

Large-scale Stochastic Optimization

Large-scale Stochastic Optimization Large-scale Stochastic Optimization 11-741/641/441 (Spring 2016) Hanxiao Liu hanxiaol@cs.cmu.edu March 24, 2016 1 / 22 Outline 1. Gradient Descent (GD) 2. Stochastic Gradient Descent (SGD) Formulation

More information

Kernel Learning via Random Fourier Representations

Kernel Learning via Random Fourier Representations Kernel Learning via Random Fourier Representations L. Law, M. Mider, X. Miscouridou, S. Ip, A. Wang Module 5: Machine Learning L. Law, M. Mider, X. Miscouridou, S. Ip, A. Wang Kernel Learning via Random

More information

Linear vs Non-linear classifier. CS789: Machine Learning and Neural Network. Introduction

Linear vs Non-linear classifier. CS789: Machine Learning and Neural Network. Introduction Linear vs Non-linear classifier CS789: Machine Learning and Neural Network Support Vector Machine Jakramate Bootkrajang Department of Computer Science Chiang Mai University Linear classifier is in the

More information

Outline. Basic concepts: SVM and kernels SVM primal/dual problems. Chih-Jen Lin (National Taiwan Univ.) 1 / 22

Outline. Basic concepts: SVM and kernels SVM primal/dual problems. Chih-Jen Lin (National Taiwan Univ.) 1 / 22 Outline Basic concepts: SVM and kernels SVM primal/dual problems Chih-Jen Lin (National Taiwan Univ.) 1 / 22 Outline Basic concepts: SVM and kernels Basic concepts: SVM and kernels SVM primal/dual problems

More information

CSCI567 Machine Learning (Fall 2014)

CSCI567 Machine Learning (Fall 2014) CSCI567 Machine Learning (Fall 24) Drs. Sha & Liu {feisha,yanliu.cs}@usc.edu October 2, 24 Drs. Sha & Liu ({feisha,yanliu.cs}@usc.edu) CSCI567 Machine Learning (Fall 24) October 2, 24 / 24 Outline Review

More information

Generalization to a zero-data task: an empirical study

Generalization to a zero-data task: an empirical study Generalization to a zero-data task: an empirical study Université de Montréal 20/03/2007 Introduction Introduction and motivation What is a zero-data task? task for which no training data are available

More information

Machine Learning : Support Vector Machines

Machine Learning : Support Vector Machines Machine Learning Support Vector Machines 05/01/2014 Machine Learning : Support Vector Machines Linear Classifiers (recap) A building block for almost all a mapping, a partitioning of the input space into

More information

Support Vector Machines Explained

Support Vector Machines Explained December 23, 2008 Support Vector Machines Explained Tristan Fletcher www.cs.ucl.ac.uk/staff/t.fletcher/ Introduction This document has been written in an attempt to make the Support Vector Machines (SVM),

More information

Regression and Classification" with Linear Models" CMPSCI 383 Nov 15, 2011!

Regression and Classification with Linear Models CMPSCI 383 Nov 15, 2011! Regression and Classification" with Linear Models" CMPSCI 383 Nov 15, 2011! 1 Todayʼs topics" Learning from Examples: brief review! Univariate Linear Regression! Batch gradient descent! Stochastic gradient

More information

arxiv: v1 [q-bio.qm] 31 Jul 2012

arxiv: v1 [q-bio.qm] 31 Jul 2012 Learning a peptide-protein binding affinity predictor with kernel ridge regression arxiv:107.753v1 [q-bio.qm] 31 Jul 01 Sébastien Giguère 1, Mario Marchand 1, François Laviolette 1, Alexandre Drouin 1,

More information

Empirical Risk Minimization

Empirical Risk Minimization Empirical Risk Minimization Fabrice Rossi SAMM Université Paris 1 Panthéon Sorbonne 2018 Outline Introduction PAC learning ERM in practice 2 General setting Data X the input space and Y the output space

More information

Brief Introduction to Machine Learning

Brief Introduction to Machine Learning Brief Introduction to Machine Learning Yuh-Jye Lee Lab of Data Science and Machine Intelligence Dept. of Applied Math. at NCTU August 29, 2016 1 / 49 1 Introduction 2 Binary Classification 3 Support Vector

More information

Trading Convexity for Scalability

Trading Convexity for Scalability Trading Convexity for Scalability Léon Bottou leon@bottou.org Ronan Collobert, Fabian Sinz, Jason Weston ronan@collobert.com, fabee@tuebingen.mpg.de, jasonw@nec-labs.com NEC Laboratories of America A Word

More information

Introduction to (Convolutional) Neural Networks

Introduction to (Convolutional) Neural Networks Introduction to (Convolutional) Neural Networks Philipp Grohs Summer School DL and Vis, Sept 2018 Syllabus 1 Motivation and Definition 2 Universal Approximation 3 Backpropagation 4 Stochastic Gradient

More information

arxiv: v3 [cs.lg] 6 Nov 2018

arxiv: v3 [cs.lg] 6 Nov 2018 TADAM: Task dependent adaptive metric for improved few-shot learning arxiv:1805.10123v3 [cs.lg] 6 Nov 2018 Boris N. Oreshkin Element AI boris@elementai.com Pau Rodriguez Element AI, CVC-UAB pau.rodriguez@elementai.com

More information

A Pseudo-Boolean Set Covering Machine

A Pseudo-Boolean Set Covering Machine A Pseudo-Boolean Set Covering Machine Pascal Germain, Sébastien Giguère, Jean-Francis Roy, Brice Zirakiza, François Laviolette, and Claude-Guy Quimper Département d informatique et de génie logiciel, Université

More information

CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS

CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS LAST TIME Intro to cudnn Deep neural nets using cublas and cudnn TODAY Building a better model for image classification Overfitting

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2010 Lecture 22: Nearest Neighbors, Kernels 4/18/2011 Pieter Abbeel UC Berkeley Slides adapted from Dan Klein Announcements On-going: contest (optional and FUN!)

More information

Support Vector Machine for Classification and Regression

Support Vector Machine for Classification and Regression Support Vector Machine for Classification and Regression Ahlame Douzal AMA-LIG, Université Joseph Fourier Master 2R - MOSIG (2013) November 25, 2013 Loss function, Separating Hyperplanes, Canonical Hyperplan

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 4: ML Models (Overview) Cho-Jui Hsieh UC Davis April 17, 2017 Outline Linear regression Ridge regression Logistic regression Other finite-sum

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Kernel Methods Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574 1 / 21

More information

ECS171: Machine Learning

ECS171: Machine Learning ECS171: Machine Learning Lecture 3: Linear Models I (LFD 3.2, 3.3) Cho-Jui Hsieh UC Davis Jan 17, 2018 Linear Regression (LFD 3.2) Regression Classification: Customer record Yes/No Regression: predicting

More information

Machine Learning. Support Vector Machines. Manfred Huber

Machine Learning. Support Vector Machines. Manfred Huber Machine Learning Support Vector Machines Manfred Huber 2015 1 Support Vector Machines Both logistic regression and linear discriminant analysis learn a linear discriminant function to separate the data

More information

Support Vector Machines. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Support Vector Machines. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Support Vector Machines CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 A Linearly Separable Problem Consider the binary classification

More information

GWAS IV: Bayesian linear (variance component) models

GWAS IV: Bayesian linear (variance component) models GWAS IV: Bayesian linear (variance component) models Dr. Oliver Stegle Christoh Lippert Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen Summer 2011 Oliver Stegle GWAS IV: Bayesian

More information

Lecture Support Vector Machine (SVM) Classifiers

Lecture Support Vector Machine (SVM) Classifiers Introduction to Machine Learning Lecturer: Amir Globerson Lecture 6 Fall Semester Scribe: Yishay Mansour 6.1 Support Vector Machine (SVM) Classifiers Classification is one of the most important tasks in

More information

LECTURE NOTE #8 PROF. ALAN YUILLE. Can we find a linear classifier that separates the position and negative examples?

LECTURE NOTE #8 PROF. ALAN YUILLE. Can we find a linear classifier that separates the position and negative examples? LECTURE NOTE #8 PROF. ALAN YUILLE 1. Linear Classifiers and Perceptrons A dataset contains N samples: { (x µ, y µ ) : µ = 1 to N }, y µ {±1} Can we find a linear classifier that separates the position

More information

Machine Learning. Kernels. Fall (Kernels, Kernelized Perceptron and SVM) Professor Liang Huang. (Chap. 12 of CIML)

Machine Learning. Kernels. Fall (Kernels, Kernelized Perceptron and SVM) Professor Liang Huang. (Chap. 12 of CIML) Machine Learning Fall 2017 Kernels (Kernels, Kernelized Perceptron and SVM) Professor Liang Huang (Chap. 12 of CIML) Nonlinear Features x4: -1 x1: +1 x3: +1 x2: -1 Concatenated (combined) features XOR:

More information

OPTIMIZATION METHODS IN DEEP LEARNING

OPTIMIZATION METHODS IN DEEP LEARNING Tutorial outline OPTIMIZATION METHODS IN DEEP LEARNING Based on Deep Learning, chapter 8 by Ian Goodfellow, Yoshua Bengio and Aaron Courville Presented By Nadav Bhonker Optimization vs Learning Surrogate

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2014 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Stochastic Gradient Descent. CS 584: Big Data Analytics

Stochastic Gradient Descent. CS 584: Big Data Analytics Stochastic Gradient Descent CS 584: Big Data Analytics Gradient Descent Recap Simplest and extremely popular Main Idea: take a step proportional to the negative of the gradient Easy to implement Each iteration

More information

6.867 Machine learning

6.867 Machine learning 6.867 Machine learning Mid-term eam October 8, 6 ( points) Your name and MIT ID: .5.5 y.5 y.5 a).5.5 b).5.5.5.5 y.5 y.5 c).5.5 d).5.5 Figure : Plots of linear regression results with different types of

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

Class Prior Estimation from Positive and Unlabeled Data

Class Prior Estimation from Positive and Unlabeled Data IEICE Transactions on Information and Systems, vol.e97-d, no.5, pp.1358 1362, 2014. 1 Class Prior Estimation from Positive and Unlabeled Data Marthinus Christoffel du Plessis Tokyo Institute of Technology,

More information

Machine Learning. Model Selection and Validation. Fabio Vandin November 7, 2017

Machine Learning. Model Selection and Validation. Fabio Vandin November 7, 2017 Machine Learning Model Selection and Validation Fabio Vandin November 7, 2017 1 Model Selection When we have to solve a machine learning task: there are different algorithms/classes algorithms have parameters

More information

Stat542 (F11) Statistical Learning. First consider the scenario where the two classes of points are separable.

Stat542 (F11) Statistical Learning. First consider the scenario where the two classes of points are separable. Linear SVM (separable case) First consider the scenario where the two classes of points are separable. It s desirable to have the width (called margin) between the two dashed lines to be large, i.e., have

More information

Overfitting, Bias / Variance Analysis

Overfitting, Bias / Variance Analysis Overfitting, Bias / Variance Analysis Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 8, 207 / 40 Outline Administration 2 Review of last lecture 3 Basic

More information

Memory-Augmented Attention Model for Scene Text Recognition

Memory-Augmented Attention Model for Scene Text Recognition Memory-Augmented Attention Model for Scene Text Recognition Cong Wang 1,2, Fei Yin 1,2, Cheng-Lin Liu 1,2,3 1 National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences

More information

Support Vector Machines for Classification: A Statistical Portrait

Support Vector Machines for Classification: A Statistical Portrait Support Vector Machines for Classification: A Statistical Portrait Yoonkyung Lee Department of Statistics The Ohio State University May 27, 2011 The Spring Conference of Korean Statistical Society KAIST,

More information

Support Vector Machines with a Reject Option

Support Vector Machines with a Reject Option Support Vector Machines with a Reject Option Yves Grandvalet, 2, Alain Rakotomamonjy 3, Joseph Keshet 2 and Stéphane Canu 3 Heudiasyc, UMR CNRS 6599 2 Idiap Research Institute Université de Technologie

More information

De Novo molecular design with Deep Reinforcement Learning

De Novo molecular design with Deep Reinforcement Learning De Novo molecular design with Deep Reinforcement Learning @olexandr Olexandr Isayev, Ph.D. University of North Carolina at Chapel Hill olexandr@unc.edu http://olexandrisayev.com About me Ph.D. in Chemistry

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Support vector machines (SVMs) are one of the central concepts in all of machine learning. They are simply a combination of two ideas: linear classification via maximum (or optimal

More information

Probabilistic Graphical Models & Applications

Probabilistic Graphical Models & Applications Probabilistic Graphical Models & Applications Learning of Graphical Models Bjoern Andres and Bernt Schiele Max Planck Institute for Informatics The slides of today s lecture are authored by and shown with

More information

Less is More: Computational Regularization by Subsampling

Less is More: Computational Regularization by Subsampling Less is More: Computational Regularization by Subsampling Lorenzo Rosasco University of Genova - Istituto Italiano di Tecnologia Massachusetts Institute of Technology lcsl.mit.edu joint work with Alessandro

More information

Support Vector Ordinal Regression using Privileged Information

Support Vector Ordinal Regression using Privileged Information Support Vector Ordinal Regression using Privileged Information Fengzhen Tang 1, Peter Tiňo 2, Pedro Antonio Gutiérrez 3 and Huanhuan Chen 4 1,2,4- The University of Birmingham, School of Computer Science,

More information

Sparse Kernel Machines - SVM

Sparse Kernel Machines - SVM Sparse Kernel Machines - SVM Henrik I. Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0280 hic@cc.gatech.edu Henrik I. Christensen (RIM@GT) Support

More information

VBM683 Machine Learning

VBM683 Machine Learning VBM683 Machine Learning Pinar Duygulu Slides are adapted from Dhruv Batra Bias is the algorithm's tendency to consistently learn the wrong thing by not taking into account all the information in the data

More information

Supervised Machine Learning: Learning SVMs and Deep Learning. Klaus-Robert Müller!!et al.!!

Supervised Machine Learning: Learning SVMs and Deep Learning. Klaus-Robert Müller!!et al.!! Supervised Machine Learning: Learning SVMs and Deep Learning Klaus-Robert Müller!!et al.!! Today s Tutorial Machine Learning introduction: ingredients for ML Kernel Methods and Deep networks with explaining

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1394 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1394 1 / 34 Table

More information

COMP 551 Applied Machine Learning Lecture 3: Linear regression (cont d)

COMP 551 Applied Machine Learning Lecture 3: Linear regression (cont d) COMP 551 Applied Machine Learning Lecture 3: Linear regression (cont d) Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless

More information

Deep Feedforward Networks

Deep Feedforward Networks Deep Feedforward Networks Liu Yang March 30, 2017 Liu Yang Short title March 30, 2017 1 / 24 Overview 1 Background A general introduction Example 2 Gradient based learning Cost functions Output Units 3

More information

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING DATE AND TIME: August 30, 2018, 14.00 19.00 RESPONSIBLE TEACHER: Niklas Wahlström NUMBER OF PROBLEMS: 5 AIDING MATERIAL: Calculator, mathematical

More information

UNSUPERVISED LEARNING

UNSUPERVISED LEARNING UNSUPERVISED LEARNING Topics Layer-wise (unsupervised) pre-training Restricted Boltzmann Machines Auto-encoders LAYER-WISE (UNSUPERVISED) PRE-TRAINING Breakthrough in 2006 Layer-wise (unsupervised) pre-training

More information

Introduction to Machine Learning. Regression. Computer Science, Tel-Aviv University,

Introduction to Machine Learning. Regression. Computer Science, Tel-Aviv University, 1 Introduction to Machine Learning Regression Computer Science, Tel-Aviv University, 2013-14 Classification Input: X Real valued, vectors over real. Discrete values (0,1,2,...) Other structures (e.g.,

More information

MLCC 2017 Regularization Networks I: Linear Models

MLCC 2017 Regularization Networks I: Linear Models MLCC 2017 Regularization Networks I: Linear Models Lorenzo Rosasco UNIGE-MIT-IIT June 27, 2017 About this class We introduce a class of learning algorithms based on Tikhonov regularization We study computational

More information