Correlation Autoencoder Hashing for Supervised Cross-Modal Search

Size: px
Start display at page:

Download "Correlation Autoencoder Hashing for Supervised Cross-Modal Search"

Transcription

1 Correlation Autoencoder Hashing for Supervised Cross-Modal Search Yue Cao, Mingsheng Long, Jianmin Wang, and Han Zhu School of Software Tsinghua University The Annual ACM International Conference on Multimedia Retrieval ICMR 2016 Y Cao et al (Tsinghua University) Correlation Autoencoder Hashing ICMR / 23

2 Motivation Cross-Modal Retrieval Background In the big data era, the amount of multimedia data has exploded An object or topic can be described by data of multiple modalities Y Cao et al (Tsinghua University) Correlation Autoencoder Hashing ICMR / 23

3 Motivation Cross-Modal Retrieval Cross-Modal Similarity Search Use a query from one modality to search for semantically relevant items from another modality eg search for animal images using textual tags bear, deer Building Blue Sky Downtown Deer Grass Green Bear Grass Green Animal Building Building Night Blue Y Cao et al (Tsinghua University) Correlation Autoencoder Hashing ICMR / 23

4 Motivation Cross-Modal Retrieval Challenges Trillions of images and texts are generated Features from different modalities are heterogeneous Different dimensions Distinct distributions Image Tags Bear Soil Grass Green [03, 05, -02,, 04] [0, 0, 1,, 0, 1,, 0] Y Cao et al (Tsinghua University) Correlation Autoencoder Hashing ICMR / 23

5 Motivation Hashing Methods Cross-Modal Hashing Deer Grass Green generate image descriptors SIFT GIST DeCAF generate image hash codes Semantic Correlations Tag 1 generate tag Occurrence Word2Vec generate tag descriptors hash codes Approximate Nearest Neighbor Retrieval Memory 128-d float : 512 bytes 16 bytes 1 billion items : 512 GB 16 GB Time Computation: x10 - x100 faster Transmission (disk / web): x30 faster Y Cao et al (Tsinghua University) Correlation Autoencoder Hashing ICMR / 23

6 Method Model Homogeneous Architecture Key Points Homogeneous Architecture: image and text can use the same deep architecture Ŷ ˆX Decoder Reconstruction Reconstruction Decoder Hash Code h x (x) Hash Code h y (y) Encoder Representation Representation Encoder X Y Y Cao et al (Tsinghua University) Correlation Autoencoder Hashing ICMR / 23

7 Method Model Feature Correlations Key Points Feature correlations can be maximized to reduce heterogeneity across modalities, using pairwise correlations (solid lines) Ŷ Pairwise ˆX Decoder Reconstruction Reconstruction Decoder Hash Code h x (x) Hash Code h y (y) Encoder Representation X Correlation S Y Representation Encoder Y Cao et al (Tsinghua University) Correlation Autoencoder Hashing ICMR / 23

8 Method Model Feature Correlation Maximization Key Points Use pairwise correlations for reconstructive embedding Within-modal Reconstructive Embedding n ( min xi V x h x (x i ) 2 V x,v 2 + y i V y h y (y i ) 2 ) 2, (1) y i=1 Cross-modal Reconstructive Embedding min L = n ( xi V x h y (y i ) 2 V + y x,v 2 i V y h x (x i ) 2 ) 2, (2) y i=1 Y Cao et al (Tsinghua University) Correlation Autoencoder Hashing ICMR / 23

9 Method Model Semantic Correlations Key Points Due to semantic gap, semantic correlations (dashed lines) need to be maximized Decoder Reconstruction Ŷ Semantic ˆX Reconstruction Decoder Hash Code h x (x) Hash Code h y (y) Encoder Representation X Correlation S Y Representation Encoder Y Cao et al (Tsinghua University) Correlation Autoencoder Hashing ICMR / 23

10 Method Model Semantic Correlation Maximization Key Points Construct a Nearest Neighbor Affinity Matrix A Nearest Neighbor Affinity Matrix d ( { ( ) ) x i N k xj xj N k (x i ) x i, y j, if li = l j ( ) A ij = y i N k yj yj N k (y i ) 0, otherwise, (3) d (x i, y j ) = e x i x j 2 2 /2σ2 x + e y i y j 2 2 /2σ2 y (4) where N k (x) represents the k-nearest neighbors of x Y Cao et al (Tsinghua University) Correlation Autoencoder Hashing ICMR / 23

11 Method Model Semantic Correlation Maximization Key Points Construct a within-category and a between-category similarity matrix Similarity Matrices { A ij (1/n 1/n c ), S b if l i = l j = c ij = A ij /n, if l i l j, { S w A ij /n c, if l i = l j = c ij = 0, if l i l j, where n c is the number of objects within the c-th category (5) Y Cao et al (Tsinghua University) Correlation Autoencoder Hashing ICMR / 23

12 Method Model Semantic Correlation Maximization Key Points Maximize the inter-category separation margin Circumvent the large intra-class variance Cross-modal Semantic Correlation min R = n n S ij h x (x i ) h y (y j ) 2, (6) W 2 x,w y S ij = i=1j=1 { A ij (2/n c 1/n), if l i = l j = c A ij /n, if l i l j (7) Y Cao et al (Tsinghua University) Correlation Autoencoder Hashing ICMR / 23

13 Method Model Correlation Autoencoder Hashing Key Points enhances feature correlation by cross-modal reconstruct embedding maximizes the inter-category separation margin for learning more discriminative hash codes minimizes the intra-category variance by further exploring the cross-modal locality information Hash Code h x (x) Decoder Reconstruction Ŷ Pairwise Semantic ˆX Reconstruction Decoder Hash Code h y (y) Encoder Representation X Correlation S Representation Encoder Y Cao et al (Tsinghua University) Correlation Autoencoder Hashing ICMR / 23 Y

14 Method Model Correlation Autoencoder Hashing Unified Optimization Problem min O = L + λr V x,v y,w x,w y h x (x) = sgn ( W T xx ), h y (y) = sgn ( W T y y ), where λ is a penalty parameter for trading off the relative importance of feature correlation and semantic correlation (8) Learning Algorithm By back-propagation (BP) using mini-batch SGD O(x i, y i ) W x pq = L(y i) W x pq + λ R(x i), (9) W x pq Y Cao et al (Tsinghua University) Correlation Autoencoder Hashing ICMR / 23

15 Method Model Deep Architecture Key Points A three-layer stacked auto-encoder architecture The feature correlations and semantic correlations are distilled in each layer and can be strengthened layer by layer Use hyperbolic tangent function tanh as the activation function to reduce the large binarization loss sign ( ) h x 3 x sign h y 3 (y) tanh tanh h y 2 (y) tanh tanh h 1 x (x) h 1 y (y) Y Cao et al (Tsinghua University) Correlation Autoencoder Hashing ICMR / 23

16 Experiment Setup Experiment Setup Datasets: Nus-wide, Wiki and MIR-Flickr Protocols: Mean Average s, - Curves Parameter selection: cross-validation Comparison Methods Unsupervised Shallow Hashing: Supervised Shallow Hashing: Unsupervised Deep Hashing: + Sign Supervised Deep Hashing: Our approach Variants only with feature correlation (-F) without using data locality (-L) Y Cao et al (Tsinghua University) Correlation Autoencoder Hashing ICMR / 23

17 Experiment Results Results and Discussion [Nus-wide] outperforms unsupervised deep hashing (), supervised hashing () and unsupervised shallow hashing () also outperforms -F and -L, verifying the vital importance of every component newly-crafted in this paper Dataset Nuswide Method I T T I 8 bits 16 bits 32 bits 64 bits 8 bits 16 bits 32 bits 64 bits F L (a) I 16 bits (b) I 32 bits (c) T 16 bits (d) T 32 bits Y Cao et al (Tsinghua University) Correlation Autoencoder Hashing ICMR / 23

18 Experiment Results Results and Discussion [Wiki] The low quality of the image modality leads to that task I T is more difficult than task T I Almost all the methods achieve better results on task T I Dataset Wiki Method I T T I 8 bits 16 bits 32 bits 64 bits 8 bits 16 bits 32 bits 64 bits F L (e) I 16 bits (f) I 32 bits (g) T 16 bits (h) T 32 bits Y Cao et al (Tsinghua University) Correlation Autoencoder Hashing ICMR / 23

19 Experiment Results Results and Discussion [MIR-Flickr] also achieve the state-of-the-art results on large-scale dataset Dataset Flickr Method I T T I 8 bits 16 bits 32 bits 64 bits 8 bits 16 bits 32 bits 64 bits F L (i) I 16 bits (j) I 32 bits (k) T 16 bits (l) T 32 bits Y Cao et al (Tsinghua University) Correlation Autoencoder Hashing ICMR / 23

20 Experiment Results Quantization Error Quantization error: search quality loss due to binarization from continuous features to binary codes (black bars) incurs significantly less loss on search quality than other two baselines, due to that sgn (x) tanh (x) is a more accurate surrogate than the widely-adopted spectral relaxation sgn (x) x I T T I 06 I T T I MAP 03 MAP Wiki Nus Wide (m) Quantization Error on Wiki (n) Quantization Error on NUS-WIDE Y Cao et al (Tsinghua University) Correlation Autoencoder Hashing ICMR / 23

21 Experiment Results Parameter Sensitivity consistently outperforms the strongest baseline on all datasets when λ is varied in a large range [01, 2] MAP 04 MAP NUS WIDE Wiki Flickr1M λ 01 NUS WIDE Wiki Flickr1M λ (o) I 32 bits (p) T 32 bits Y Cao et al (Tsinghua University) Correlation Autoencoder Hashing ICMR / 23

22 Summary Summary Correlation Autoencoder Hashing () for cross-modal search Three key points Explore the feature correlations by reconstructing feature vectors of one modality from corresponding hash codes of another modality Explore the semantic correlations by maximizing the inter-category separation margin and minimizing the intra-category variance Enhance both cross-modal correlations in a deep architecture, which will make the embedded hash codes generalize better across different modalities Future work Hybrid Deep Architecture: Use Convolutional Neural Net to model images, and use Autoencoder to model texts Y Cao et al (Tsinghua University) Correlation Autoencoder Hashing ICMR / 23

23 Summary Thanks for your listening! Q & A Y Cao et al (Tsinghua University) Correlation Autoencoder Hashing ICMR / 23

Artificial Neural Networks D B M G. Data Base and Data Mining Group of Politecnico di Torino. Elena Baralis. Politecnico di Torino

Artificial Neural Networks D B M G. Data Base and Data Mining Group of Politecnico di Torino. Elena Baralis. Politecnico di Torino Artificial Neural Networks Data Base and Data Mining Group of Politecnico di Torino Elena Baralis Politecnico di Torino Artificial Neural Networks Inspired to the structure of the human brain Neurons as

More information

arxiv: v1 [cs.cv] 8 Oct 2018

arxiv: v1 [cs.cv] 8 Oct 2018 Deep LDA Hashing Di Hu School of Computer Science Northwestern Polytechnical University Feiping Nie School of Computer Science Northwestern Polytechnical University arxiv:1810.03402v1 [cs.cv] 8 Oct 2018

More information

Dimensionality Reduction and Principle Components Analysis

Dimensionality Reduction and Principle Components Analysis Dimensionality Reduction and Principle Components Analysis 1 Outline What is dimensionality reduction? Principle Components Analysis (PCA) Example (Bishop, ch 12) PCA vs linear regression PCA as a mixture

More information

Composite Quantization for Approximate Nearest Neighbor Search

Composite Quantization for Approximate Nearest Neighbor Search Composite Quantization for Approximate Nearest Neighbor Search Jingdong Wang Lead Researcher Microsoft Research http://research.microsoft.com/~jingdw ICML 104, joint work with my interns Ting Zhang from

More information

Collaborative Quantization for Cross-Modal Similarity Search

Collaborative Quantization for Cross-Modal Similarity Search Collaborative Quantization for Cross-Modal Similarity Search ing Zhang 1 Jingdong Wang 2 1 University of Science and echnology, China 2 Microsoft Research, Beijing, China 1 zting@mail.ustc.edu.cn 2 jingdw@microsoft.com

More information

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, 2017 Spis treści Website Acknowledgments Notation xiii xv xix 1 Introduction 1 1.1 Who Should Read This Book?

More information

Do Neural Network Cross-Modal Mappings Really Bridge Modalities?

Do Neural Network Cross-Modal Mappings Really Bridge Modalities? Do Neural Network Cross-Modal Mappings Really Bridge Modalities? Language Intelligence and Information Retrieval group (LIIR) Department of Computer Science Story Collell, G., Zhang, T., Moens, M.F. (2017)

More information

2017 Fall ECE 692/599: Binary Representation Learning for Large Scale Visual Data

2017 Fall ECE 692/599: Binary Representation Learning for Large Scale Visual Data 2017 Fall ECE 692/599: Binary Representation Learning for Large Scale Visual Data Liu Liu Instructor: Dr. Hairong Qi University of Tennessee, Knoxville lliu25@vols.utk.edu September 21, 2017 Liu Liu (UTK)

More information

Spectral Hashing: Learning to Leverage 80 Million Images

Spectral Hashing: Learning to Leverage 80 Million Images Spectral Hashing: Learning to Leverage 80 Million Images Yair Weiss, Antonio Torralba, Rob Fergus Hebrew University, MIT, NYU Outline Motivation: Brute Force Computer Vision. Semantic Hashing. Spectral

More information

Stochastic Generative Hashing

Stochastic Generative Hashing Stochastic Generative Hashing B. Dai 1, R. Guo 2, S. Kumar 2, N. He 3 and L. Song 1 1 Georgia Institute of Technology, 2 Google Research, NYC, 3 University of Illinois at Urbana-Champaign Discussion by

More information

Part-of-Speech Tagging + Neural Networks 3: Word Embeddings CS 287

Part-of-Speech Tagging + Neural Networks 3: Word Embeddings CS 287 Part-of-Speech Tagging + Neural Networks 3: Word Embeddings CS 287 Review: Neural Networks One-layer multi-layer perceptron architecture, NN MLP1 (x) = g(xw 1 + b 1 )W 2 + b 2 xw + b; perceptron x is the

More information

Agenda. Digit Classification using CNN Digit Classification using SAE Visualization: Class models, filters and saliency 2 DCT

Agenda. Digit Classification using CNN Digit Classification using SAE Visualization: Class models, filters and saliency 2 DCT versus 1 Agenda Deep Learning: Motivation Learning: Backpropagation Deep architectures I: Convolutional Neural Networks (CNN) Deep architectures II: Stacked Auto Encoders (SAE) Caffe Deep Learning Toolbox:

More information

RegML 2018 Class 8 Deep learning

RegML 2018 Class 8 Deep learning RegML 2018 Class 8 Deep learning Lorenzo Rosasco UNIGE-MIT-IIT June 18, 2018 Supervised vs unsupervised learning? So far we have been thinking of learning schemes made in two steps f(x) = w, Φ(x) F, x

More information

Lecture 5 Neural models for NLP

Lecture 5 Neural models for NLP CS546: Machine Learning in NLP (Spring 2018) http://courses.engr.illinois.edu/cs546/ Lecture 5 Neural models for NLP Julia Hockenmaier juliahmr@illinois.edu 3324 Siebel Center Office hours: Tue/Thu 2pm-3pm

More information

UNSUPERVISED LEARNING

UNSUPERVISED LEARNING UNSUPERVISED LEARNING Topics Layer-wise (unsupervised) pre-training Restricted Boltzmann Machines Auto-encoders LAYER-WISE (UNSUPERVISED) PRE-TRAINING Breakthrough in 2006 Layer-wise (unsupervised) pre-training

More information

CS 6501: Deep Learning for Computer Graphics. Basics of Neural Networks. Connelly Barnes

CS 6501: Deep Learning for Computer Graphics. Basics of Neural Networks. Connelly Barnes CS 6501: Deep Learning for Computer Graphics Basics of Neural Networks Connelly Barnes Overview Simple neural networks Perceptron Feedforward neural networks Multilayer perceptron and properties Autoencoders

More information

Apprentissage, réseaux de neurones et modèles graphiques (RCP209) Neural Networks and Deep Learning

Apprentissage, réseaux de neurones et modèles graphiques (RCP209) Neural Networks and Deep Learning Apprentissage, réseaux de neurones et modèles graphiques (RCP209) Neural Networks and Deep Learning Nicolas Thome Prenom.Nom@cnam.fr http://cedric.cnam.fr/vertigo/cours/ml2/ Département Informatique Conservatoire

More information

Deep Feedforward Networks

Deep Feedforward Networks Deep Feedforward Networks Liu Yang March 30, 2017 Liu Yang Short title March 30, 2017 1 / 24 Overview 1 Background A general introduction Example 2 Gradient based learning Cost functions Output Units 3

More information

Machine Learning Techniques

Machine Learning Techniques Machine Learning Techniques ( 機器學習技法 ) Lecture 13: Deep Learning Hsuan-Tien Lin ( 林軒田 ) htlin@csie.ntu.edu.tw Department of Computer Science & Information Engineering National Taiwan University ( 國立台灣大學資訊工程系

More information

DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY

DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY 1 On-line Resources http://neuralnetworksanddeeplearning.com/index.html Online book by Michael Nielsen http://matlabtricks.com/post-5/3x3-convolution-kernelswith-online-demo

More information

Collaborative Quantization for Cross-Modal Similarity Search

Collaborative Quantization for Cross-Modal Similarity Search Collaborative Quantization for Cross-Modal Similarity Search ing Zhang 1 Jingdong Wang 2 1 University of Science and echnology of China, China 2 Microsoft Research, China 1 zting@mail.ustc.edu.cn 2 jingdw@microsoft.com

More information

Artificial Neural Networks. Introduction to Computational Neuroscience Tambet Matiisen

Artificial Neural Networks. Introduction to Computational Neuroscience Tambet Matiisen Artificial Neural Networks Introduction to Computational Neuroscience Tambet Matiisen 2.04.2018 Artificial neural network NB! Inspired by biology, not based on biology! Applications Automatic speech recognition

More information

Ruslan Salakhutdinov Joint work with Geoff Hinton. University of Toronto, Machine Learning Group

Ruslan Salakhutdinov Joint work with Geoff Hinton. University of Toronto, Machine Learning Group NON-LINEAR DIMENSIONALITY REDUCTION USING NEURAL NETORKS Ruslan Salakhutdinov Joint work with Geoff Hinton University of Toronto, Machine Learning Group Overview Document Retrieval Present layer-by-layer

More information

Learning to Hash with Partial Tags: Exploring Correlation Between Tags and Hashing Bits for Large Scale Image Retrieval

Learning to Hash with Partial Tags: Exploring Correlation Between Tags and Hashing Bits for Large Scale Image Retrieval Learning to Hash with Partial Tags: Exploring Correlation Between Tags and Hashing Bits for Large Scale Image Retrieval Qifan Wang 1, Luo Si 1, and Dan Zhang 2 1 Department of Computer Science, Purdue

More information

Multi-Label Informed Latent Semantic Indexing

Multi-Label Informed Latent Semantic Indexing Multi-Label Informed Latent Semantic Indexing Shipeng Yu 12 Joint work with Kai Yu 1 and Volker Tresp 1 August 2005 1 Siemens Corporate Technology Department of Neural Computation 2 University of Munich

More information

Relevance Aggregation Projections for Image Retrieval

Relevance Aggregation Projections for Image Retrieval Relevance Aggregation Projections for Image Retrieval CIVR 2008 Wei Liu Wei Jiang Shih-Fu Chang wliu@ee.columbia.edu Syllabus Motivations and Formulation Our Approach: Relevance Aggregation Projections

More information

Deep unsupervised learning

Deep unsupervised learning Deep unsupervised learning Advanced data-mining Yongdai Kim Department of Statistics, Seoul National University, South Korea Unsupervised learning In machine learning, there are 3 kinds of learning paradigm.

More information

Memory-Augmented Attention Model for Scene Text Recognition

Memory-Augmented Attention Model for Scene Text Recognition Memory-Augmented Attention Model for Scene Text Recognition Cong Wang 1,2, Fei Yin 1,2, Cheng-Lin Liu 1,2,3 1 National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences

More information

RECENT years have witnessed the explosive growth of

RECENT years have witnessed the explosive growth of IEEE TRANSACTIONS ON CYBERNETICS 1 Semi-Paired Discrete Hashing: Learning Latent Hash Codes for Semi-Paired Cross-View Retrieval Xiaobo Shen, Fumin Shen, Quan-Sen Sun, Yang Yang, Yun-Hao Yuan, and Heng

More information

Deep Learning Srihari. Deep Belief Nets. Sargur N. Srihari

Deep Learning Srihari. Deep Belief Nets. Sargur N. Srihari Deep Belief Nets Sargur N. Srihari srihari@cedar.buffalo.edu Topics 1. Boltzmann machines 2. Restricted Boltzmann machines 3. Deep Belief Networks 4. Deep Boltzmann machines 5. Boltzmann machines for continuous

More information

Learning Deep Architectures for AI. Part II - Vijay Chakilam

Learning Deep Architectures for AI. Part II - Vijay Chakilam Learning Deep Architectures for AI - Yoshua Bengio Part II - Vijay Chakilam Limitations of Perceptron x1 W, b 0,1 1,1 y x2 weight plane output =1 output =0 There is no value for W and b such that the model

More information

Compressed Fisher vectors for LSVR

Compressed Fisher vectors for LSVR XRCE@ILSVRC2011 Compressed Fisher vectors for LSVR Florent Perronnin and Jorge Sánchez* Xerox Research Centre Europe (XRCE) *Now with CIII, Cordoba University, Argentina Our system in a nutshell High-dimensional

More information

Convolution and Pooling as an Infinitely Strong Prior

Convolution and Pooling as an Infinitely Strong Prior Convolution and Pooling as an Infinitely Strong Prior Sargur Srihari srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics in Convolutional

More information

Deep Feedforward Networks

Deep Feedforward Networks Deep Feedforward Networks Liu Yang March 30, 2017 Liu Yang Short title March 30, 2017 1 / 24 Overview 1 Background A general introduction Example 2 Gradient based learning Cost functions Output Units 3

More information

Introduction to Deep Neural Networks

Introduction to Deep Neural Networks Introduction to Deep Neural Networks Presenter: Chunyuan Li Pattern Classification and Recognition (ECE 681.01) Duke University April, 2016 Outline 1 Background and Preliminaries Why DNNs? Model: Logistic

More information

Lecture 14: Deep Generative Learning

Lecture 14: Deep Generative Learning Generative Modeling CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 14: Deep Generative Learning Density estimation Reconstructing probability density function using samples Bohyung Han

More information

Presented By: Omer Shmueli and Sivan Niv

Presented By: Omer Shmueli and Sivan Niv Deep Speaker: an End-to-End Neural Speaker Embedding System Chao Li, Xiaokong Ma, Bing Jiang, Xiangang Li, Xuewei Zhang, Xiao Liu, Ying Cao, Ajay Kannan, Zhenyao Zhu Presented By: Omer Shmueli and Sivan

More information

Neural networks and optimization

Neural networks and optimization Neural networks and optimization Nicolas Le Roux Criteo 18/05/15 Nicolas Le Roux (Criteo) Neural networks and optimization 18/05/15 1 / 85 1 Introduction 2 Deep networks 3 Optimization 4 Convolutional

More information

Bayesian Networks (Part I)

Bayesian Networks (Part I) 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Bayesian Networks (Part I) Graphical Model Readings: Murphy 10 10.2.1 Bishop 8.1,

More information

Deep Learning Autoencoder Models

Deep Learning Autoencoder Models Deep Learning Autoencoder Models Davide Bacciu Dipartimento di Informatica Università di Pisa Intelligent Systems for Pattern Recognition (ISPR) Generative Models Wrap-up Deep Learning Module Lecture Generative

More information

Convolutional Neural Networks II. Slides from Dr. Vlad Morariu

Convolutional Neural Networks II. Slides from Dr. Vlad Morariu Convolutional Neural Networks II Slides from Dr. Vlad Morariu 1 Optimization Example of optimization progress while training a neural network. (Loss over mini-batches goes down over time.) 2 Learning rate

More information

arxiv: v1 [cs.cv] 16 Dec 2016

arxiv: v1 [cs.cv] 16 Dec 2016 Deep Residual Hashing Sailesh Conjeti 1, Abhijit Guha Roy 1,2, Amin Katouzian 3, and Nassir Navab 1,4 arxiv:1612.05400v1 [cs.cv] 16 Dec 2016 1 Computer Aided Medical Procedures, Technische Universität

More information

Large-scale Image Annotation by Efficient and Robust Kernel Metric Learning

Large-scale Image Annotation by Efficient and Robust Kernel Metric Learning Large-scale Image Annotation by Efficient and Robust Kernel Metric Learning Supplementary Material Zheyun Feng Rong Jin Anil Jain Department of Computer Science and Engineering, Michigan State University,

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

Supervised Quantization for Similarity Search

Supervised Quantization for Similarity Search Supervised Quantization for Similarity Search Xiaojuan Wang 1 Ting Zhang 2 Guo-Jun Qi 3 Jinhui Tang 4 Jingdong Wang 5 1 Sun Yat-sen University, China 2 University of Science and Technology of China, China

More information

Comments. Assignment 3 code released. Thought questions 3 due this week. Mini-project: hopefully you have started. implement classification algorithms

Comments. Assignment 3 code released. Thought questions 3 due this week. Mini-project: hopefully you have started. implement classification algorithms Neural networks Comments Assignment 3 code released implement classification algorithms use kernels for census dataset Thought questions 3 due this week Mini-project: hopefully you have started 2 Example:

More information

Deep Learning Architectures and Algorithms

Deep Learning Architectures and Algorithms Deep Learning Architectures and Algorithms In-Jung Kim 2016. 12. 2. Agenda Introduction to Deep Learning RBM and Auto-Encoders Convolutional Neural Networks Recurrent Neural Networks Reinforcement Learning

More information

Introduction to Convolutional Neural Networks (CNNs)

Introduction to Convolutional Neural Networks (CNNs) Introduction to Convolutional Neural Networks (CNNs) nojunk@snu.ac.kr http://mipal.snu.ac.kr Department of Transdisciplinary Studies Seoul National University, Korea Jan. 2016 Many slides are from Fei-Fei

More information

Google s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

Google s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation Google s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation Y. Wu, M. Schuster, Z. Chen, Q.V. Le, M. Norouzi, et al. Google arxiv:1609.08144v2 Reviewed by : Bill

More information

NEURAL LANGUAGE MODELS

NEURAL LANGUAGE MODELS COMP90042 LECTURE 14 NEURAL LANGUAGE MODELS LANGUAGE MODELS Assign a probability to a sequence of words Framed as sliding a window over the sentence, predicting each word from finite context to left E.g.,

More information

Fantope Regularization in Metric Learning

Fantope Regularization in Metric Learning Fantope Regularization in Metric Learning CVPR 2014 Marc T. Law (LIP6, UPMC), Nicolas Thome (LIP6 - UPMC Sorbonne Universités), Matthieu Cord (LIP6 - UPMC Sorbonne Universités), Paris, France Introduction

More information

Lecture 16 Deep Neural Generative Models

Lecture 16 Deep Neural Generative Models Lecture 16 Deep Neural Generative Models CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago May 22, 2017 Approach so far: We have considered simple models and then constructed

More information

arxiv: v2 [cs.cl] 1 Jan 2019

arxiv: v2 [cs.cl] 1 Jan 2019 Variational Self-attention Model for Sentence Representation arxiv:1812.11559v2 [cs.cl] 1 Jan 2019 Qiang Zhang 1, Shangsong Liang 2, Emine Yilmaz 1 1 University College London, London, United Kingdom 2

More information

Accelerated Manhattan hashing via bit-remapping with location information

Accelerated Manhattan hashing via bit-remapping with location information DOI 1.17/s1142-15-3217-x Accelerated Manhattan hashing via bit-remapping with location information Wenshuo Chen 1 Guiguang Ding 1 Zijia Lin 2 Jisheng Pei 2 Received: 2 May 215 / Revised: 2 December 215

More information

Minimal Loss Hashing for Compact Binary Codes

Minimal Loss Hashing for Compact Binary Codes Mohammad Norouzi David J. Fleet Department of Computer Science, University of oronto, Canada norouzi@cs.toronto.edu fleet@cs.toronto.edu Abstract We propose a method for learning similaritypreserving hash

More information

For Review Only. Codebook-free Compact Descriptor for Scalable Visual Search

For Review Only. Codebook-free Compact Descriptor for Scalable Visual Search Page of 0 0 0 0 0 0 Codebook-free Compact Descriptor for Scalable Visual Search Yuwei u, Feng Gao, Yicheng Huang, Jie Lin Member, IEEE, Vijay Chandrasekhar Member, IEEE, Junsong Yuan Senior Member, IEEE,

More information

Improved Local Coordinate Coding using Local Tangents

Improved Local Coordinate Coding using Local Tangents Improved Local Coordinate Coding using Local Tangents Kai Yu NEC Laboratories America, 10081 N. Wolfe Road, Cupertino, CA 95129 Tong Zhang Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

LOCALITY PRESERVING HASHING. Electrical Engineering and Computer Science University of California, Merced Merced, CA 95344, USA

LOCALITY PRESERVING HASHING. Electrical Engineering and Computer Science University of California, Merced Merced, CA 95344, USA LOCALITY PRESERVING HASHING Yi-Hsuan Tsai Ming-Hsuan Yang Electrical Engineering and Computer Science University of California, Merced Merced, CA 95344, USA ABSTRACT The spectral hashing algorithm relaxes

More information

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1. Erkun Yang, Cheng Deng, Member, IEEE, Chao Li, Wei Liu, Jie Li, and Dacheng Tao

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1. Erkun Yang, Cheng Deng, Member, IEEE, Chao Li, Wei Liu, Jie Li, and Dacheng Tao IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1 Shared Predictive Cross-Modal Deep Quantization Erkun Yang, Cheng Deng, Member, IEEE, Chao Li, Wei Liu, Jie Li, and Dacheng Tao, Fellow, IEEE

More information

Neural Networks. Mark van Rossum. January 15, School of Informatics, University of Edinburgh 1 / 28

Neural Networks. Mark van Rossum. January 15, School of Informatics, University of Edinburgh 1 / 28 1 / 28 Neural Networks Mark van Rossum School of Informatics, University of Edinburgh January 15, 2018 2 / 28 Goals: Understand how (recurrent) networks behave Find a way to teach networks to do a certain

More information

Homework 3 COMS 4705 Fall 2017 Prof. Kathleen McKeown

Homework 3 COMS 4705 Fall 2017 Prof. Kathleen McKeown Homework 3 COMS 4705 Fall 017 Prof. Kathleen McKeown The assignment consists of a programming part and a written part. For the programming part, make sure you have set up the development environment as

More information

Long-Short Term Memory and Other Gated RNNs

Long-Short Term Memory and Other Gated RNNs Long-Short Term Memory and Other Gated RNNs Sargur Srihari srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics in Sequence Modeling

More information

Iterative Laplacian Score for Feature Selection

Iterative Laplacian Score for Feature Selection Iterative Laplacian Score for Feature Selection Linling Zhu, Linsong Miao, and Daoqiang Zhang College of Computer Science and echnology, Nanjing University of Aeronautics and Astronautics, Nanjing 2006,

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 11, NOVEMBER

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 11, NOVEMBER IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 11, NOVEMBER 2017 2545 Lei Ma Learning Efficient Binary Codes From High-Level Feature Representations for Multilabel Image Retrieval, Hongliang Li, Senior

More information

Probabilistic Hashing for Efficient Search and Learning

Probabilistic Hashing for Efficient Search and Learning Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 1 Probabilistic Hashing for Efficient Search and Learning Ping Li Department of Statistical Science Faculty of omputing

More information

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang Deep Learning Basics Lecture 7: Factor Analysis Princeton University COS 495 Instructor: Yingyu Liang Supervised v.s. Unsupervised Math formulation for supervised learning Given training data x i, y i

More information

Reading Group on Deep Learning Session 4 Unsupervised Neural Networks

Reading Group on Deep Learning Session 4 Unsupervised Neural Networks Reading Group on Deep Learning Session 4 Unsupervised Neural Networks Jakob Verbeek & Daan Wynen 206-09-22 Jakob Verbeek & Daan Wynen Unsupervised Neural Networks Outline Autoencoders Restricted) Boltzmann

More information

Administration. Registration Hw3 is out. Lecture Captioning (Extra-Credit) Scribing lectures. Questions. Due on Thursday 10/6

Administration. Registration Hw3 is out. Lecture Captioning (Extra-Credit) Scribing lectures. Questions. Due on Thursday 10/6 Administration Registration Hw3 is out Due on Thursday 10/6 Questions Lecture Captioning (Extra-Credit) Look at Piazza for details Scribing lectures With pay; come talk to me/send email. 1 Projects Projects

More information

Task-Oriented Dialogue System (Young, 2000)

Task-Oriented Dialogue System (Young, 2000) 2 Review Task-Oriented Dialogue System (Young, 2000) 3 http://rsta.royalsocietypublishing.org/content/358/1769/1389.short Speech Signal Speech Recognition Hypothesis are there any action movies to see

More information

Differentiable Fine-grained Quantization for Deep Neural Network Compression

Differentiable Fine-grained Quantization for Deep Neural Network Compression Differentiable Fine-grained Quantization for Deep Neural Network Compression Hsin-Pai Cheng hc218@duke.edu Yuanjun Huang University of Science and Technology of China Anhui, China yjhuang@mail.ustc.edu.cn

More information

Sum-Product Networks: A New Deep Architecture

Sum-Product Networks: A New Deep Architecture Sum-Product Networks: A New Deep Architecture Pedro Domingos Dept. Computer Science & Eng. University of Washington Joint work with Hoifung Poon 1 Graphical Models: Challenges Bayesian Network Markov Network

More information

Linear Spectral Hashing

Linear Spectral Hashing Linear Spectral Hashing Zalán Bodó and Lehel Csató Babeş Bolyai University - Faculty of Mathematics and Computer Science Kogălniceanu 1., 484 Cluj-Napoca - Romania Abstract. assigns binary hash keys to

More information

Diversity Regularization of Latent Variable Models: Theory, Algorithm and Applications

Diversity Regularization of Latent Variable Models: Theory, Algorithm and Applications Diversity Regularization of Latent Variable Models: Theory, Algorithm and Applications Pengtao Xie, Machine Learning Department, Carnegie Mellon University 1. Background Latent Variable Models (LVMs) are

More information

Metric Embedding of Task-Specific Similarity. joint work with Trevor Darrell (MIT)

Metric Embedding of Task-Specific Similarity. joint work with Trevor Darrell (MIT) Metric Embedding of Task-Specific Similarity Greg Shakhnarovich Brown University joint work with Trevor Darrell (MIT) August 9, 2006 Task-specific similarity A toy example: Task-specific similarity A toy

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

Compressing deep neural networks

Compressing deep neural networks From Data to Decisions - M.Sc. Data Science Compressing deep neural networks Challenges and theoretical foundations Presenter: Simone Scardapane University of Exeter, UK Table of contents Introduction

More information

Star-Structured High-Order Heterogeneous Data Co-clustering based on Consistent Information Theory

Star-Structured High-Order Heterogeneous Data Co-clustering based on Consistent Information Theory Star-Structured High-Order Heterogeneous Data Co-clustering based on Consistent Information Theory Bin Gao Tie-an Liu Wei-ing Ma Microsoft Research Asia 4F Sigma Center No. 49 hichun Road Beijing 00080

More information

IFT Lecture 7 Elements of statistical learning theory

IFT Lecture 7 Elements of statistical learning theory IFT 6085 - Lecture 7 Elements of statistical learning theory This version of the notes has not yet been thoroughly checked. Please report any bugs to the scribes or instructor. Scribe(s): Brady Neal and

More information

Unsupervised Machine Learning and Data Mining. DS 5230 / DS Fall Lecture 7. Jan-Willem van de Meent

Unsupervised Machine Learning and Data Mining. DS 5230 / DS Fall Lecture 7. Jan-Willem van de Meent Unsupervised Machine Learning and Data Mining DS 5230 / DS 4420 - Fall 2018 Lecture 7 Jan-Willem van de Meent DIMENSIONALITY REDUCTION Borrowing from: Percy Liang (Stanford) Dimensionality Reduction Goal:

More information

Neural networks and optimization

Neural networks and optimization Neural networks and optimization Nicolas Le Roux INRIA 8 Nov 2011 Nicolas Le Roux (INRIA) Neural networks and optimization 8 Nov 2011 1 / 80 1 Introduction 2 Linear classifier 3 Convolutional neural networks

More information

The XOR problem. Machine learning for vision. The XOR problem. The XOR problem. x 1 x 2. x 2. x 1. Fall Roland Memisevic

The XOR problem. Machine learning for vision. The XOR problem. The XOR problem. x 1 x 2. x 2. x 1. Fall Roland Memisevic The XOR problem Fall 2013 x 2 Lecture 9, February 25, 2015 x 1 The XOR problem The XOR problem x 1 x 2 x 2 x 1 (picture adapted from Bishop 2006) It s the features, stupid It s the features, stupid The

More information

Recurrent Neural Networks with Flexible Gates using Kernel Activation Functions

Recurrent Neural Networks with Flexible Gates using Kernel Activation Functions 2018 IEEE International Workshop on Machine Learning for Signal Processing (MLSP 18) Recurrent Neural Networks with Flexible Gates using Kernel Activation Functions Authors: S. Scardapane, S. Van Vaerenbergh,

More information

IMISOUND: An Unsupervised System for Sound Query by Vocal Imitation

IMISOUND: An Unsupervised System for Sound Query by Vocal Imitation IMISOUND: An Unsupervised System for Sound Query by Vocal Imitation Yichi Zhang and Zhiyao Duan Audio Information Research (AIR) Lab Department of Electrical and Computer Engineering University of Rochester

More information

Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center

Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center 1 Outline Part I - Applications Motivation and Introduction Patient similarity application Part II

More information

Efficient Storage and Decoding of SURF Feature Points

Efficient Storage and Decoding of SURF Feature Points Efficient Storage and Decoding of SURF Feature Points Kevin McGuinness, Kealan McCusker, Neil O Hare, and Noel E. O Connor CLARITY: Center for Sensor Web Technologies, Dublin City University Abstract.

More information

Generalized Zero-Shot Learning with Deep Calibration Network

Generalized Zero-Shot Learning with Deep Calibration Network Generalized Zero-Shot Learning with Deep Calibration Network Shichen Liu, Mingsheng Long, Jianmin Wang, and Michael I.Jordan School of Software, Tsinghua University, China KLiss, MOE; BNRist; Research

More information

Cluster Kernels for Semi-Supervised Learning

Cluster Kernels for Semi-Supervised Learning Cluster Kernels for Semi-Supervised Learning Olivier Chapelle, Jason Weston, Bernhard Scholkopf Max Planck Institute for Biological Cybernetics, 72076 Tiibingen, Germany {first. last} @tuebingen.mpg.de

More information

Semi Supervised Distance Metric Learning

Semi Supervised Distance Metric Learning Semi Supervised Distance Metric Learning wliu@ee.columbia.edu Outline Background Related Work Learning Framework Collaborative Image Retrieval Future Research Background Euclidean distance d( x, x ) =

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Spring 2018 http://vllab.ee.ntu.edu.tw/dlcv.html (primary) https://ceiba.ntu.edu.tw/1062dlcv (grade, etc.) FB: DLCV Spring 2018 Yu-Chiang Frank Wang 王鈺強, Associate Professor

More information

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann (Feed-Forward) Neural Networks 2016-12-06 Dr. Hajira Jabeen, Prof. Jens Lehmann Outline In the previous lectures we have learned about tensors and factorization methods. RESCAL is a bilinear model for

More information

An efficient way to learn deep generative models

An efficient way to learn deep generative models An efficient way to learn deep generative models Geoffrey Hinton Canadian Institute for Advanced Research & Department of Computer Science University of Toronto Joint work with: Ruslan Salakhutdinov, Yee-Whye

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data January 17, 2006 Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Multi-Layer Perceptrons Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole

More information

Causal Modeling with Generative Neural Networks

Causal Modeling with Generative Neural Networks Causal Modeling with Generative Neural Networks Michele Sebag TAO, CNRS INRIA LRI Université Paris-Sud Joint work: D. Kalainathan, O. Goudet, I. Guyon, M. Hajaiej, A. Decelle, C. Furtlehner https://arxiv.org/abs/1709.05321

More information

Learning Binary Codes with Neural Collaborative Filtering for Efficient Recommendation Systems

Learning Binary Codes with Neural Collaborative Filtering for Efficient Recommendation Systems Learning Binary Codes with Neural Collaborative Filtering for Efficient Recommendation Systems Yang Li a, Suhang Wang c, Quan Pan a, Haiyun Peng b, Tao Yang a, Erik Cambria b, a School of Automation, Northwestern

More information

Unsupervised Neural Nets

Unsupervised Neural Nets Unsupervised Neural Nets (and ICA) Lyle Ungar (with contributions from Quoc Le, Socher & Manning) Lyle Ungar, University of Pennsylvania Semi-Supervised Learning Hypothesis:%P(c x)%can%be%more%accurately%computed%using%

More information

Topics in AI (CPSC 532L): Multimodal Learning with Vision, Language and Sound. Lecture 3: Introduction to Deep Learning (continued)

Topics in AI (CPSC 532L): Multimodal Learning with Vision, Language and Sound. Lecture 3: Introduction to Deep Learning (continued) Topics in AI (CPSC 532L): Multimodal Learning with Vision, Language and Sound Lecture 3: Introduction to Deep Learning (continued) Course Logistics - Update on course registrations - 6 seats left now -

More information

Regression. Goal: Learn a mapping from observations (features) to continuous labels given a training set (supervised learning)

Regression. Goal: Learn a mapping from observations (features) to continuous labels given a training set (supervised learning) Linear Regression Regression Goal: Learn a mapping from observations (features) to continuous labels given a training set (supervised learning) Example: Height, Gender, Weight Shoe Size Audio features

More information