Reports. Table I. Identification of specimen studied. Ultrastructural description of a "cylinder organelle" in the outer plexiform layer

Size: px
Start display at page:

Download "Reports. Table I. Identification of specimen studied. Ultrastructural description of a "cylinder organelle" in the outer plexiform layer"

Transcription

1 Reports Ultrastructural description of a "cylinder organelle" in the outer plexiform layer of human retinas. JOSEPH CRAT, DANIEL M. ALBERT, AND TED W. REID. A cylinder-like organelle ("cylinder organelle") present in the outer plexiform layer of the retina and apparently confined to the horizontal cell processes is described. This structure was studied in detail in three normal human retinas from eyes enucleated for ciliary body melanomas. The cylinder organelle, when cut longitudinally, showed an electron-lucent area bound by two bands of electron-dense filaments. In transverse section, the cylinder organelle revealed a circular profile of electron-dense crisscrossing filaments about an electron-lucent matrix. Since this structure was only found in the rod spherule synaptic complex, it is hypothesized that it may be involved, in transmitting impulses. The purpose of this paper is to describe cylinder-like structures (hereafter termed cylinder organelles) found in the synaptic complex of the rod. The ultrastructural characteristics and location of this organelle have been studied. This structure has received only incidental mention in previous examinations of the human retina 1 ' - and has been noted in one report in a dog retina. 3 This cylinder organelle is morphologically distinct from various other organelles reported in retina cell processes. 1 " 7 Materials and methods. The retinas of three of four human eyes examined by electron microscopy contained the cylinder organelle described in this report. Identification of the eyes is given in Table I. Immediately following enucleation, portions of retina from between the posterior pole and equator which clinically and grossly appeared normal, were removed and placed in 3 per cent glutaraldehyde in 0.1 M cacodylate buffer at ph 7.4. The retinas were divided while in glutaraldehyde into 2 to 3 mm. portions and fixed for a total of one hour. The specimens were then washed in 0.1 M. cacodylate buffer at ph 7.4 for one hour with continuous agitation in the Reichert EM tissue processor. The specimens were postfixed in 2 per cent osmium tetroxide in 0.1 M cacodylate buffer. The dehydration, en bloc uranyl acetate staining, and initial plastic infiltration were carried out in the Reichert EM tissue processor, following which the specimens were removed and embedded in Epon-812. Ultrathin sections were cut with a DuPont Diamond Knife on an LKB Ultramicrotome and stained 923 Table I. Identification of specimen studied Initials and accession No. MK Y235 AH Y243 MB Y245 DC Age Sex Reason for enculeation spindle B-cell type epithelioid cell type mixed cell type Ependymoblastoma with lead citrate. The sections were examined with the Siemens Elmiskop 1 electron microscope using an 80 kv. accelerating voltage and a 50 U. objective aperture. They were optically enlarged for the final desired size. Results. Electron microscopic examination revealed the samples of the four specimens to be well preserved. The ultrastructural findings in the outer nuclear and outer plexiform layers conformed to the previous descriptions and the usual cytoplasmic structures were identified. Kolmer's crystalloid was present in the horizontal cells. Most of the cell processes showed the typical structural organelles including well-fonned synaptic vesicles, coated vesicles, synaptic ribbons, arciform densities, mitochondria, smooth endoplasmic reticulum, and occasional membranebound dense granules together with filaments. An additional finding was that of cylinder-like structures in retina horizontal cell processes (igs. 1 through 3). After the structure was initially observed (re: Table I, MK Y235) approximately one hundred additional sections were examined from this case. About 12 other cylinder organelles were observed at this time. Subsequently, approximately 100 sections of each of three additional retinas (re: Table I) were similarly examined and, in two of the three (AH Y243 and MB Y245), cylinder organelles were easily identified in multiple areas. Several variations in the structure of the cylinder organelles were observed in the transverse sections, including small ring forms (ig. 2, A) and a relatively more solid appearing type (ig. 2, A). On consecutive sections of some cell processes two separate (ig. 2, B) organelles were seen. Well preserved cylinder organelles are seen in ig. 3 with transverse and longitudinal sections juxtaposed. The overall length of the cylinder organelles is approximately 1.7 n, while the overall width of the above is about 0.7 p. (ig. 3). In longitudinal form the cylinder organelles reveal an electron-

2 924 Reports hioestigatioc Ophthalmology December 1975 ig. 1. A, general view of a rod spherule showing the horizontal cell processes and rudiments of the cylinder organelle (arrow). The nucleus is also seen (N) {x8,000). B, higher magnification of the beginning of a longitudinal section of the cylinder organelle. Synaptic vesicles (SV), synaptic ribbon (SR), and the synaptic cleft is indicated at the arrows (x36,000). C, oblique section of the cylinder-like organelles (x33,000).

3 Volume 14 Number 12 Reports 925 ig. 2. A, transverse section of several incomplete ring forms (small arrows) and a complete form (large arrow) of the cylinder organelle seen in the horizontal cell processes. Also seen are synaptic ribbon (SR), synaptic cleft (arrow) and the arciform density (AD) (x54,000). B, transverse section of the cylinder organelle seen in two different cell processes (x33,000).

4 926 Reports Investigative Ophthalmology December 1975 t ig. 3. Transverse and longitudinal section of the cylinder organelle seen in the horizontal cell processes within the rod spherule showing the electron-lucent matrix (M) and bands of filaments (B). Also seen are synaptic ribbons (SR), synaptic vesicles (SV), arcifomi density, and coated vesicles are indicated at the arrows {x42,000). lucent matrix having a diameter of 2,400 A bounded by two outer bands of electron-dense filament-like structures, each band measuring 2,400 A across {ig. 3). One filament within the band measures 130 A in diameter. The fila- ments are separated from each other by a less electron-dense layer of about 230 A. In transverse section, the cylinder structure as seen in ig. 3 has a "doughnut" appearance, with striations of small filaments or tubes intermeshed

5 Volume 14 Number 12 Reports 927 around the central matrix. The outer diameters of the circular profile of filaments seen surrounding the electron-lucent matrix in transverse sections were the same as in the longitudinal section, with the single exception of the smaller incomplete forms (ig. 2, A). The outer diameters in this case were approximately 740 A. It is interesting to note that the cylinder structures were always enveloped by the cell processes. Discussion. The organization of the vertebrate retina has become increasingly well recognized in recent years. 1 ' " The present paper describes in detail for the first time the ultrastructural characteristics of cylinder-like structures (termed the cylinder organelle) present in the horizontal cell processes. Previous reports of this structure in the human retina have included only a partial description of its ultrastructural detail. 1-2 Certain other specialized structures in this area have been described but appear morphologically distinct from the cylinder organelle: Evans 1 found parallel fibers of electron-dense material in chick rod endings. In 1967, Matsusaka 5 described a structure in the synaptic cytoplasm of chick retina cone. He found stacks of paired membranes and called them lamellar bodies. In serial sections, Mountford" described a structure in the receptorbipolar synaptic area of the guinea pig retina and described it as spindle-shaped with cross striations. Pedler and Tilly 7 observed a banded structure in Rhesus macaque monkeys; they reported that it extended for approximately 37 sections, having a length of approximately 3 /*. In a study by Leuenberger s paracrystalline inclusions were observed within the inner segments and the synaptic pedicles of the human photoreceptor cells. These inclusions are formed by microfilaments, 150 A in diameter and showing regular spacing. We would speculate that the cylinder structure apparently has gone unnoticed in previous studies, perhaps in part because of different orientations of the specimen block. The structure may also be more observable under certain pathologic conditions, and there may be some significance in the fact that all of the present specimens having the cylinder structure were from eyes with melanomas. In the present cases, however, the melanomas were distant from the areas where the cylinder organelles were seen. We do not believe the cylinder organelles to be artifacts, as we have not seen it in many other animal or human retinas, other ocular tissues or tumors similarly processed. At the present time the origin and function of the cylinder-like structure is unknown. Its close physical relationship with the synaptic vesicles might suggest that it is involved in the synaptic functions of the retina rod cells or horizontal cell processes. rom the Section of Tumor Research and Pathology, Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Conn. Supported in part by National Institutes of Health Crant EY Submitted for publication Aug. 12, Reprint requests: J. Craft, Department of Ophthalmology and Visual Science, Yale University School of Medicine, 333 Cedar St., New Haven, Conn REERENCES 1. Hogan, M. J., Alvarado, J. A., and Weddell, ]. E.: Histology of the Human Eye, Philadelphia, 1971, W. B. Saunders Company. 2. Radnot, M., and Lovas, B.: Die Ultrastruktur der Photoreceptor-Synapsen in einem alle von Sehnervenatrophie, Albrecht v. Craefes Arch. Klin. Exp. Ophthalmol. 173: 56, Hebel, R.: Uber ein Korperchen mit regelmassiger Innenstruktur in einer. Synapse der ausseren plexiformen Schicht des Hundeauges, Albrecht v. Graefes Arch. Klin. Exp. Ophthalmol. 180: 38, Evans, E. M.: On the infrastructure of the synaptic region of visual receptors in certain vertebrates, Z. Zellforsch. Mikrosk. Anat. 71: 499, Matsusaka, T.: Lamellar bodies in the synaptic cytoplasm of the accessory cone from the chick retina as revealed by electron microscopy, J. Ultrastr. Res. 18: 55, Mountford, S.: ilamentous organelles in receptor-bipolar synapses of the retina, J. Ultrastr. Res. 10: 207, Pedler, C. M. H., and Tilly, R.: Eye Structure, Eleventh Symposium, Stuttgart, 1965, Schattaver Verlag. 8. Leuenberger, P. M.: Mikrofibrillare Kristallartige Einschliisse in den Photoreceptorsynapsen der menschlichen Netzhaut, J. Microscopic 15: 79, Dowling, J. E.: Organization of vertebrate retinas, INVEST. OPHTHALMOL. 9: 655, Crossing axons in the third nerve nucleus. DON C. BIENANG. The research presented in this paper studied the pathway taken by the crossed fibers of the third nerve nucleus in an animal whose nucleus has been well mapped and found to correlate well with higher mammals and man. Autoradiography using tritiated amino acid labeled the cell bodies and axons of the left side of the oculomotor nucleus of the cat. Axons so labeled could be seen emerging from the ventral portion of the left nucleus through the median longitudinal fasciculus (mlf) to join the left oculomotor nerve. Labeled axons were also seen to emerge from the medial border of the caudal left nucleus, cross the midline, and pass through the right nucleus and the right mlf to pin the right oculomotor nerve. These latter axons must be the crossed axons of the superior

Aberrant Mitochondria with Longitudinal Cristae Observed in the Normal Rat Hepatic Parenchymal Cell. Takuma Saito and Kazuo Ozawa

Aberrant Mitochondria with Longitudinal Cristae Observed in the Normal Rat Hepatic Parenchymal Cell. Takuma Saito and Kazuo Ozawa Okajimas Fol. anat. jap., 44 : 357-363, 1968 Aberrant Mitochondria with Longitudinal Cristae Observed in the Normal Rat Hepatic Parenchymal Cell By Takuma Saito and Kazuo Ozawa Department of Anatomy, Kansai

More information

Fine structure of the retina of black bass, Micropterus salmoides (Centrarchidae, Teleostei)

Fine structure of the retina of black bass, Micropterus salmoides (Centrarchidae, Teleostei) Histol Histopathol (1 999) 14: 1053-1 065 http://www.ehu.es/histoi-hlstopathol Histology and Histopathology Fine structure of the retina of black bass, Micropterus salmoides (Centrarchidae, Teleostei)

More information

Relation Between Superficial Capillaries and Foveal Structures in the Human Retina

Relation Between Superficial Capillaries and Foveal Structures in the Human Retina Relation Between Superficial Capillaries and Foveal Structures in the Human Retina Masayuki Iwasaki and Hajime Inomara When examining semithin Epon sections of human retinas, it became evident that superficial

More information

Miiller's cells and the "middle limiting membrane" of the human retina. An electron microscopic study. Ben S. Fine* and Lorenz E.

Miiller's cells and the middle limiting membrane of the human retina. An electron microscopic study. Ben S. Fine* and Lorenz E. Miiller's cells and the "middle limiting membrane" of the human retina An electron microscopic study Ben S. Fine* and Lorenz E. Zimmerman Electron microscopy of 3 normal human retinas has provided evidence

More information

Tokuhiro JSHIHARA, Chotatsu TSUKAYAMA, Fumiya UCHINO

Tokuhiro JSHIHARA, Chotatsu TSUKAYAMA, Fumiya UCHINO (39) JOURNAL OF ELECTRON MICROSCOPY 39 Vol. 22, No. I, 39-44, 1973 Intramitochondrial Filamentous Structures in Human Reticulum Cells in the Bone Marrow Tokuhiro JSHIHARA, Chotatsu TSUKAYAMA, Fumiya UCHINO

More information

infrastructure of Remnant Photoreceptors in Advanced Hereditary Retinal Degeneration

infrastructure of Remnant Photoreceptors in Advanced Hereditary Retinal Degeneration Articles infrastructure of Remnant Photoreceptors in Advanced Hereditary Retinal Degeneration John R. Cotter* and Werner K. Noellf The outer layers of the retinas of pigmented rats affected with hereditary

More information

LI ow-resistance intercellular pathways

LI ow-resistance intercellular pathways Interreceptoral junctions in the teleost retina P. Witkovsky, M. Shakib, and H. Ripps Junctions between photoreceptors of carp and catfish were examined to determine the potential pathways for interaction

More information

Transmission Electron Microscope Technique for Risk Assessment of Manufactured Nanomaterials

Transmission Electron Microscope Technique for Risk Assessment of Manufactured Nanomaterials Transmission Electron Microscope Technique for Risk Assessment of Manufactured Nanomaterials Kazuhiro Yamamoto and Miyabi Makino National Institute of Advanced Industrial Science and Technology (AIST),

More information

CONTRACTION BANDS AT SHORT SARCOMERE LENGTH IN CHICK MUSCLE

CONTRACTION BANDS AT SHORT SARCOMERE LENGTH IN CHICK MUSCLE CONTRACTION BANDS AT SHORT SARCOMERE LENGTH IN CHICK MUSCLE MARTIN HAGOPIAN. From the Department of Pathology, New York Medical College, New York 10029 INTRODUCTION The sliding filament model for contraction

More information

Reports 677 REFERENCES. Origin of ghost cell in Coats' disease.

Reports 677 REFERENCES. Origin of ghost cell in Coats' disease. Reports 677 which are unique to /?n is highly variable among the primates, as it is among other species. A further point which may be significant to the area of human cataractogenesis is the presence in

More information

UNUSUAL MITOCHONDRIAL CRISTAE IN THE VINEGAR EELWORM

UNUSUAL MITOCHONDRIAL CRISTAE IN THE VINEGAR EELWORM UNUSUAL MITOCHONDRIAL CRISTAE IN THE VINEGAR EELWORM BERT M. ZUCKERMAN, MARIAN KISIEL, and STANLEY HIMMELHOCH. From the Laboratory of Experimental Biology, University of Massachusetts, East Wareham, Massachusetts

More information

Morphological abnormalities in lymphocyte

Morphological abnormalities in lymphocyte Morphological abnormalities in lymphocyte mitochondria associated with iron-deficiency anaemia J. H. JARVIS AND A. JACOBS J. clin. Path.,1974, 27, 973-979 From the Department of Haematology, Welsh National

More information

Cells. Steven McLoon Department of Neuroscience University of Minnesota

Cells. Steven McLoon Department of Neuroscience University of Minnesota Cells Steven McLoon Department of Neuroscience University of Minnesota 1 Microscopy Methods of histology: Treat the tissue with a preservative (e.g. formaldehyde). Dissect the region of interest. Embed

More information

678 Reports Invest. Ophthalmol. Visual Sci. REFERENCES

678 Reports Invest. Ophthalmol. Visual Sci. REFERENCES 678 Reports Invest. Ophthalmol. Visual Sci. July 1977 REFERENCES 1. Schmidt, S. Y., Berson, E. L., and Hayes, K. C: Retinal degeneration in cats fed casein. I. Taurine deficiency, INVEST. OPHTHALMOL. 15:47,

More information

THE BEHAVIOUR OF CHLOROPLASTS DURING CELL DIVISION OF ISOETES LACUSTRIS L.

THE BEHAVIOUR OF CHLOROPLASTS DURING CELL DIVISION OF ISOETES LACUSTRIS L. New Phytol (1974) 73, 139-142. THE BEHAVIOUR OF CHLOROPLASTS DURING CELL DIVISION OF ISOETES LACUSTRIS L. BY JEAN M. WHATLEY Botany School, University of Oxford (Received 2 July 1973) SUMMARY Cells in

More information

Module 2: Foundations in biology

Module 2: Foundations in biology alevelbiology.co.uk Module 2: Foundations in biology SPECIFICATION 2.1.1 Cell structure Learners should be able to demonstrate and apply their knowledge and understanding of: (a) The use of microscopy

More information

Chapter 4. Table of Contents. Section 1 The History of Cell Biology. Section 2 Introduction to Cells. Section 3 Cell Organelles and Features

Chapter 4. Table of Contents. Section 1 The History of Cell Biology. Section 2 Introduction to Cells. Section 3 Cell Organelles and Features Cell Structure and Function Table of Contents Section 1 The History of Cell Biology Section 2 Introduction to Cells Section 3 Cell Organelles and Features Section 4 Unique Features of Plant Cells Section

More information

Identify the structure labelled 1.

Identify the structure labelled 1. Identify the structure labelled 1. Identify the structure labelled 1. Cornea Identify the structure labelled 2. Identify the structure labelled 2. Sclera 1 2 Identify the structure labelled 1. Pupil Identify

More information

AN ATYPICAL CRISTA RESEMBLING A "TIGHT JUNCTION" IN BEAN ROOT MITOCHONDRIA

AN ATYPICAL CRISTA RESEMBLING A TIGHT JUNCTION IN BEAN ROOT MITOCHONDRIA Published Online: 1 October, 1968 Supp Info: http://doi.org/10.1083/jcb.39.1.35 Downloaded from jcb.rupress.org on December 24, 2018 AN ATYPICAL CRISTA RESEMBLING A "TIGHT JUNCTION" IN BEAN ROOT MITOCHONDRIA

More information

The formation of zymogen granules in the pancreas of the mouse By S. K. MALHOTRA

The formation of zymogen granules in the pancreas of the mouse By S. K. MALHOTRA The formation of zymogen granules in the pancreas of the mouse By S. K. MALHOTRA (From the Cytological Laboratory, Department of Zoology, Oxford) With 3 plates (figs, i to 3) Summary Electron-dense, granular

More information

A difference between rods and cones in the renewal of outer segment protein. Richard W. Young

A difference between rods and cones in the renewal of outer segment protein. Richard W. Young A difference between rods and cones in the renewal of outer segment protein Richard W. Young The renewal of protein has been studied in the retinal rods and cones of the adult frog by electron microscope

More information

of the Sipunculan Phascolosoma granulatum

of the Sipunculan Phascolosoma granulatum CELL STRUCTURE AND FUNCTION 15: 73-77 (1990) 1990 by Japan Society for Cell Biology Three Types of Thick Myofilaments in the Nephridial Muscle Cells of the Sipunculan Phascolosoma granulatum M. Teresa

More information

Atypical mitochondria in the ellipsoid of the photoreceptor cells of vertebrate retinas

Atypical mitochondria in the ellipsoid of the photoreceptor cells of vertebrate retinas Atypical mitochondria in the ellipsoid of the photoreceptor cells of vertebrate retinas Toyoko Ishikawa and Eichi Yamada The fine structure of ellipsoids in a number of vertebrate retinas was studied in

More information

Uptake of Tritioted Thymidine in Mitochondria of the Retina

Uptake of Tritioted Thymidine in Mitochondria of the Retina Investigative Ophthalmology & Visual Science, Vol. 30, No. 12, December 1989 Copyright Association for Research in Vision and Ophthalmology Reports Uptake of Tritioted Thymidine in Mitochondria of the

More information

ANUMBER of electron microscope studies have been made on Amoeba

ANUMBER of electron microscope studies have been made on Amoeba An Electron Microscope Study of a Small Free-living Amoeba (Hartmanella astronyxis) By K. DEUTSCH and M. M. SWANN (From the Department of Zoology, University of Edinburgh) With two plates (figs. I and

More information

Parenchyma Cell. Magnification 2375X

Parenchyma Cell. Magnification 2375X Parenchyma Cell The large size of parenchyma cells is due in part to their relatively large vacuole (V) and in part also to the large number of chloroplasts (Cp) they contain. From a crimson clover, Trifolium

More information

Dr. Dina A. A. Hassan Associate Professor, Pharmacology

Dr. Dina A. A. Hassan Associate Professor, Pharmacology Cytology Dr. Dina A. A. Hassan Associate Professor, Pharmacology Email: da.hassan@psau.edu.sa Cells All living things are made up of cells Basic building blocks of life It is the smallest functional and

More information

Concept 6.1 To study cells, biologists use microscopes and the tools of biochemistry

Concept 6.1 To study cells, biologists use microscopes and the tools of biochemistry Name Period Chapter 6: A Tour of the Cell Concept 6.1 To study cells, biologists use microscopes and the tools of biochemistry 1. The study of cells has been limited by their small size, and so they were

More information

Landolt's club in the amphibian retina: A Golgi and electron microscope study. Anita Hendrickson

Landolt's club in the amphibian retina: A Golgi and electron microscope study. Anita Hendrickson Landolt's club in the amphibian retina: A Golgi and electron microscope study Anita Hendrickson Landolt's club process has been studied in the adult newt retina. In Golgi preparations this process has

More information

* ra. VOL. 53, 1965 ANATOMY: D. BODIAN 419. FIG. 1.-Synaptic contact in spinal motoneuron of a chimpanzee. Large dendrite (D) shows

* ra. VOL. 53, 1965 ANATOMY: D. BODIAN 419. FIG. 1.-Synaptic contact in spinal motoneuron of a chimpanzee. Large dendrite (D) shows A SUGGESTIVE RELATIONSHIP OF NERVE CELL RNA WITh1 SPECIFIC SYNAPTIC SITES* BY DAVID BODIAN DEPARTMENT OF ANATOMY, JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE Communicated December 29, 1964 In a previous

More information

(From The Rockefeller Institute for Medical Research)

(From The Rockefeller Institute for Medical Research) MORPHOLOGY OF THE OMMATIDIA OF THE COMPOUND EYE OF LIMULUS* BY WILLIAM H. MILLER, M.D. (From The Rockefeller Institute for Medical Research) PLATES 126 TO 129 (Received for publication, November 13, 1956)

More information

Complete the table by stating the function associated with each organelle. contains the genetic material.... lysosome ribosome... Table 6.

Complete the table by stating the function associated with each organelle. contains the genetic material.... lysosome ribosome... Table 6. 1 (a) Table 6.1 gives the functions of certain organelles in a eukaryotic cell. Complete the table by stating the function associated with each organelle. The first row has been completed for you. Organelle

More information

Guided Reading Activities

Guided Reading Activities Name Period Chapter 4: A Tour of the Cell Guided Reading Activities Big Idea: Introduction to the Cell Answer the following questions as you read Modules 4.1 4.4: 1. A(n) uses a beam of light to illuminate

More information

Chapter 6: A Tour of the Cell

Chapter 6: A Tour of the Cell Chapter 6: A Tour of the Cell 1. The study of cells has been limited by their small size, and so they were not seen and described until 1665, when Robert Hooke first looked at dead cells from an oak tree.

More information

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p.

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. 5 Signaling in Nerve Cells p. 9 Cellular and Molecular Biology of Neurons

More information

THE ROLE OF THE PIGMENT EPITHELIUM IN THE ETIOLOGY OF INHERITED RETINAL DYSTROPHY IN THE RAT

THE ROLE OF THE PIGMENT EPITHELIUM IN THE ETIOLOGY OF INHERITED RETINAL DYSTROPHY IN THE RAT THE ROLE OF THE PIGMENT EPITHELIUM IN THE ETIOLOGY OF INHERITED RETINAL DYSTROPHY IN THE RAT DEAN BOK and MICHAEL O. HALL From the Department of Anatomy and the Jules Stein Eye Institute, University of

More information

Electron and Light Microscope Studies of Endamoeba terrapinae

Electron and Light Microscope Studies of Endamoeba terrapinae Proceedings of the Iowa Academy of Science Volume 68 Annual Issue Article 81 1961 Electron and Light Microscope Studies of Endamoeba terrapinae Marilyn Driml Cornell College Copyright Copyright 1961 by

More information

Ultrastructural changes in moist chamber corneas. E. M. Schaeffer"

Ultrastructural changes in moist chamber corneas. E. M. Schaeffer Ultrastructural changes in moist chamber corneas E. M. Schaeffer" Crossly normal human corneas received through the Iowa Eye Bank and stored in cold moist chambers for 12, 24, 36, 72, and 96 hours were

More information

K. W. JEON and M. S. JEON. From the Department of Zoology, University of Tennessee, Knoxville, Tennessee 37916

K. W. JEON and M. S. JEON. From the Department of Zoology, University of Tennessee, Knoxville, Tennessee 37916 VOLUME CYTOPLASMIC FILAMENTS AND CELLULAR WOUND HEALING IN AMOEBA PROTEUS K. W. JEON and M. S. JEON. From the Department of Zoology, University of Tennessee, Knoxville, Tennessee 37916 The flexibility

More information

Bio 111 Study Guide Chapter 6 Tour of the Cell

Bio 111 Study Guide Chapter 6 Tour of the Cell Bio 111 Study Guide Chapter 6 Tour of the Cell BEFORE CLASS: Reading: Read the whole chapter from p. 93-121, mostly skimming Concept 6.1 on microscopy. Figure 6.8 on pp. 100-101 is really helpful in showing

More information

Biology. 7-2 Eukaryotic Cell Structure 10/29/2013. Eukaryotic Cell Structures

Biology. 7-2 Eukaryotic Cell Structure 10/29/2013. Eukaryotic Cell Structures Biology Biology 1of 49 2of 49 Eukaryotic Cell Structures Eukaryotic Cell Structures Structures within a eukaryotic cell that perform important cellular functions are known as organelles. Cell biologists

More information

HELICOIDS IN THE T SYSTEM AND STRIATIONS OF FROG SKELETAL MUSCLE FIBERS SEEN

HELICOIDS IN THE T SYSTEM AND STRIATIONS OF FROG SKELETAL MUSCLE FIBERS SEEN HELICOIDS IN THE T SYSTEM AND STRIATIONS OF FROG SKELETAL MUSCLE FIBERS SEEN BY HIGH VOLTAGE ELECTRON MICROSCOPY LEE D. PEACHEY, Department ofbiology, University of Pennsylvania, Philadelphia, Pennsylvania

More information

2. small / 70s ribosomes box; (2) Feature also present ( ) or absent ( ) in chloroplasts

2. small / 70s ribosomes box; (2) Feature also present ( ) or absent ( ) in chloroplasts 1(a)(i) 1. circular DNA box ; 2. small / 70s ribosomes box; (2) 1(a)(ii) Features present in mitochondria Surrounded by a double membrane Feature also present () or absent () in chloroplasts Crista present

More information

3.1 Cell Theory. KEY CONCEPT Cells are the Basic unit of life.

3.1 Cell Theory. KEY CONCEPT Cells are the Basic unit of life. 3.1 Cell Theory KEY CONCEPT Cells are the Basic unit of life. 3.1 Cell Theory The cell theory grew out of the work of many scientists and improvements in the microscope. Many scientists contributed to

More information

(From Departamento de Ultraestructura Celular, Instituto de Investigaci6n de Ciencias Biol6gicas, Montevideo, Uruguay)

(From Departamento de Ultraestructura Celular, Instituto de Investigaci6n de Ciencias Biol6gicas, Montevideo, Uruguay) Published Online: 25 May, 1956 Supp nfo: http://doi.org/10.1083/jcb.2.3.319 Downloaded from jcb.rupress.org on July 5, 2018 ELECTRON MCROSCOPE OBSERVATONS ON THE SUBMCROSCOPC ORGANZATON OF THE RETNAL RODS*

More information

Unit 4: Cells. Biology 309/310. Name: Review Guide

Unit 4: Cells. Biology 309/310. Name: Review Guide Unit 4: Cells Review Guide LEARNING TARGETS Place a checkmark next to the learning targets you feel confident on. Then go back and focus on the learning targets that are not checked. Identify the parts

More information

amphibia and the lower vertebrate retinae with their development. Society of the United Kingdom in 1932.

amphibia and the lower vertebrate retinae with their development. Society of the United Kingdom in 1932. RE rinal VISUAL CELLS THE RETINAL VISUAL CELLS IN MAN AND FRESH-WATER FISH BY M. S. MAYOU LONDON WHILST trying to discover some differential stain for the rods and cones I found that Mallory's connective

More information

CHARACTERISTICS OF LIFE ORGANIZATION OF LIFE CELL THEORY TIMELINE

CHARACTERISTICS OF LIFE ORGANIZATION OF LIFE CELL THEORY TIMELINE CHARACTERISTICS OF LIFE 1. composed of cells either uni/multi 2. reproduce sexual and/or asexual 3. contain DNA in cells 4. grow and develop 5. use material/energy in metabolic reactions 6. respond to

More information

Some Observations on the Fine Structure of the Giant Nerve Fibers of the Earthworm, Eisenia foetida*

Some Observations on the Fine Structure of the Giant Nerve Fibers of the Earthworm, Eisenia foetida* Some Observations on the Fine Structure of the Giant Nerve Fibers of the Earthworm, Eisenia foetida* By KIYOSHI HAMA,~ M.D. (From the Department of Anatomy, School of Medicine, University of Washington,

More information

2.1 CELL STRUCTURE. The cell is the smallest unit of living organisms that shows the characteristics of life.

2.1 CELL STRUCTURE. The cell is the smallest unit of living organisms that shows the characteristics of life. 2.1.1 Microscopy The cell is the smallest unit of living organisms that shows the characteristics of life. A general introduction to the microscope. The light microscope All cells are microscopic which

More information

Chapter 4 Active Reading Guide A Tour of the Cell

Chapter 4 Active Reading Guide A Tour of the Cell Name: AP Biology Mr. Croft Chapter 4 Active Reading Guide A Tour of the Cell Section 1 1. The study of cells has been limited by their small size, and so they were not seen and described until 1665, when

More information

New View of the Surface Projections of Chlamydia trachomatis

New View of the Surface Projections of Chlamydia trachomatis JOURNAL OF BACTERIOLOGY, OCt. 1985, P. 344-349 0021-9193/85/100344-06$02.00/0 Copyright 1985, American Society for Microbiology Vol. 164, No. 1 New View of the Surface Projections of Chlamydia trachomatis

More information

Observations on the rod and cone layer of the human retina

Observations on the rod and cone layer of the human retina Observations on the rod and cone layer of the human retina A light and electron microscopic study Ben S. Fine and Lorenz E. Zimmerman Electron microscopy combined with certain histochemical studies on

More information

PARTICIPATION OF THE RETINAL PIGMENT EPITHELIUM IN THE ROD OUTER SEGMENT RENEWAL PROCESS

PARTICIPATION OF THE RETINAL PIGMENT EPITHELIUM IN THE ROD OUTER SEGMENT RENEWAL PROCESS PARTICIPATION OF THE RETINAL PIGMENT EPITHELIUM IN THE ROD OUTER SEGMENT RENEWAL PROCESS RICHARD W. YOUNG and DEAN BOK From the Department of Anatomy and the Jules Stein Eye Institute, University of California

More information

AN ULTRASTRUCTURAL STUDY OF SEXUAL REPRODUCTION IN PYTHIUM ULTfMUM

AN ULTRASTRUCTURAL STUDY OF SEXUAL REPRODUCTION IN PYTHIUM ULTfMUM New Phytol. (1968) 67, 167-171. AN ULTRASTRUCTURAL STUDY OF SEXUAL REPRODUCTION IN PYTHIUM ULTfMUM BY R. MARCHANT Department of Botany, University College, London (Received 12 May 1967) SUMMARY The original

More information

Electron Microscopy (TEM and SEM)

Electron Microscopy (TEM and SEM) 7 Electron Microscopy (TEM and SEM) Paul Verkade Wolfson Bioimaging Facility, Physiology & Pharmacology and Biochemistry, University of Bristol, UK 7.1 Basic how-to-do and why-do section 7.1.1 Electron

More information

TUBULAR ELEMENTS-A NEW STRUCTURE IN BLUE-GREEN ALGAL CELLS

TUBULAR ELEMENTS-A NEW STRUCTURE IN BLUE-GREEN ALGAL CELLS J. Cell Sci. 38, 303-308 (i977) 303 Printed in Great Britain Company of Biologists Limited TUBULAR ELEMENTS-A NEW STRUCTURE IN BLUE-GREEN ALGAL CELLS Z. N. TAHMIDA KHAN AND M. B. E. GODWARD Department

More information

Biology: Life on Earth

Biology: Life on Earth Teresa Audesirk Gerald Audesirk Bruce E. Byers Biology: Life on Earth Eighth Edition Lecture for Chapter 4 Cell Structure and Function Copyright 2008 Pearson Prentice Hall, Inc. Chapter 4 Outline 4.1 What

More information

THE MECHANISM OF DENUCLEATION IN CIRCULATING ERYTHROBLASTS

THE MECHANISM OF DENUCLEATION IN CIRCULATING ERYTHROBLASTS Published Online: 1 October, 1967 Supp Info: http://doi.org/10.1083/jcb.35.1.237 Downloaded from jcb.rupress.org on October 12, 2018 THE MECHANISM OF DENUCLEATION IN CIRCULATING ERYTHROBLASTS CHARLES F.

More information

PROPERTY OF ELSEVIER SAMPLE CONTENT - NOT FINAL. The Nervous System and Muscle

PROPERTY OF ELSEVIER SAMPLE CONTENT - NOT FINAL. The Nervous System and Muscle The Nervous System and Muscle SECTION 2 2-1 Nernst Potential 2-2 Resting Membrane Potential 2-3 Axonal Action Potential 2-4 Neurons 2-5 Axonal Conduction 2-6 Morphology of Synapses 2-7 Chemical Synaptic

More information

Electron Microscopic Studies on Mode of Action of Polymyxin

Electron Microscopic Studies on Mode of Action of Polymyxin JOURNAL OF BACrERIOLOGY, Jan. 1969, p. 448452 Vol. 97, No. I Copyright 1969 American Society for Microbiology Printed In U.S.A. Electron Microscopic Studies on Mode of Action of Polymyxin M. KOIKE, K.

More information

Intercellular contacts at the epithelial-mesenchymal interface of the developing rat submandibular gland in vitro

Intercellular contacts at the epithelial-mesenchymal interface of the developing rat submandibular gland in vitro /. Embryol. exp. Morph. Vol. 39, pp. 71-77, 1977 71 Printed in Great Britain Intercellular contacts at the epithelial-mesenchymal interface of the developing rat submandibular gland in vitro By LESLIE

More information

Introduction to Cells

Introduction to Cells Life Science Introduction to Cells All life forms on our planet are made up of cells. In ALL organisms, cells have the same basic structure. The scientist Robert Hooke was the first to see cells under

More information

Introduction to Cells

Introduction to Cells Life Science Introduction to Cells All life forms on our planet are made up of cells. In ALL organisms, cells have the same basic structure. The scientist Robert Hooke was the first to see cells under

More information

Ultrastructural Observations on the Gill Filaments of Kuruma Prawn, Penaeus japonicus Bate Exposed to Air

Ultrastructural Observations on the Gill Filaments of Kuruma Prawn, Penaeus japonicus Bate Exposed to Air Ultrastructural Observations on Gill Filaments Kuruma Prawn, Penaeus japonicus Bate Exposed to Air Maher SAMET United Graduate school Kagoshima University, Faculty Fisheries, Shimoarata, 4-50-20, Kagoshima

More information

Biology 13A Lab #3: Cells and Tissues

Biology 13A Lab #3: Cells and Tissues Biology 13A Lab #3: Cells and Tissues Lab #3 Table of Contents: Expected Learning Outcomes.... 28 Introduction...... 28 Activity 1: Eukaryotic Cell Structure... 29 Activity 2: Perspectives on Tissue Preparations.

More information

Save My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at Microscopes.

Save My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at   Microscopes. Microscopes Question Paper 2 Level International Level Subject iology Exam oard IE Topic Microscopes Sub Topic ooklet Multiple hoice Paper Type Question Paper 2 Time llowed : 44 minutes Score : / 36 Percentage

More information

P PROTEIN IN THE PHLOEM OF CUCURBITA. II. The P Protein of Mature Sieve Elements. JAMES CRONSHAW and KATHERINE ESAU

P PROTEIN IN THE PHLOEM OF CUCURBITA. II. The P Protein of Mature Sieve Elements. JAMES CRONSHAW and KATHERINE ESAU Published Online: 1 August, 1968 Supp Info: http://doi.org/10.1083/jcb.38.2.292 Downloaded from jcb.rupress.org on October 31, 2018 P PROTEIN IN THE PHLOEM OF CUCURBITA II. The P Protein of Mature Sieve

More information

Chapter 4: Cells: The Working Units of Life

Chapter 4: Cells: The Working Units of Life Name Period Chapter 4: Cells: The Working Units of Life 1. What are the three critical components of the cell theory? 2. What are the two important conceptual implications of the cell theory? 3. Which

More information

ELECTRON MNIICROSCOPY OF CELLULAR DIVISION IN ESCHERICHIA COLI

ELECTRON MNIICROSCOPY OF CELLULAR DIVISION IN ESCHERICHIA COLI ELECTRON MNIICROSCOPY OF CELLULAR DIVISION IN ESCHERICHIA COLI S. F. CONTII AND M. E. GETTNER' Biology Department, Brookhaven National Laboratory, Upton, New York Received for publication September 18,

More information

Biology Exam #1 Study Guide. True/False Indicate whether the statement is true or false. F 1. All living things are composed of many cells.

Biology Exam #1 Study Guide. True/False Indicate whether the statement is true or false. F 1. All living things are composed of many cells. Biology Exam #1 Study Guide True/False Indicate whether the statement is true or false. F 1. All living things are composed of many cells. T 2. Membranes are selectively permeable if they allow only certain

More information

The growth rate of sensory nerve fibres in the mammalian embryo

The growth rate of sensory nerve fibres in the mammalian embryo Development 00, 307-3 (987) Printed in Great Britain The Company of Biologists Limited 987 307 The growth rate of sensory nerve fibres in the mammalian embryo ALUN M. DAVIES Department of Anatomy, Si George's

More information

World of The Cell. How big is a cell?

World of The Cell. How big is a cell? World of The Cell Chapter 4 How big is a cell? The smallest cell is a Mycoplasmas (very small bacteria are barely bigger) Bacteria are just bigger than a single organelle of a animal cell Plant and animal

More information

Topic 3: Cells Ch. 6. Microscopes pp Microscopes. Microscopes. Microscopes. Microscopes

Topic 3: Cells Ch. 6. Microscopes pp Microscopes. Microscopes. Microscopes. Microscopes Topic 3: Cells Ch. 6 -All life is composed of cells and all cells have a plasma membrane, cytoplasm, and DNA. pp.105-107 - The development of the microscope was the key to understanding that all living

More information

R'etinal Mullerian cells have several

R'etinal Mullerian cells have several Comparative study of the fine structure of retinal Miiller cells in various vertebrates Shigekazu Uga and George K. Smelser A comparative study was made of the fine structure of Midler's cells in various

More information

To help you complete this review activity and to help you study for your test, you should read SC State Standards B

To help you complete this review activity and to help you study for your test, you should read SC State Standards B Name: Test Date: PAGE: Biology I: Unit 3 Cell Structure Review for Unit Test Directions: You should use this as a guide to help you study for your test. You should also read through your notes, worksheets,

More information

Microscope History Robert Hooke

Microscope History Robert Hooke 1 Microscope History Robert Hooke First described cells in 1665. He viewed thin slices of cork and compared the boxy partitions he observed to the cells (small rooms) in a monastery. (1635 1702) 2 Microscope

More information

ELECTRON MICROSCOPICAL OBSERVATIONS ON GAMETOGENESIS AND FERTILIZATION IN CULTURED PLASMODIUM FALCIPARUM

ELECTRON MICROSCOPICAL OBSERVATIONS ON GAMETOGENESIS AND FERTILIZATION IN CULTURED PLASMODIUM FALCIPARUM ELECTRON MICROSCOPICAL OBSERVATIONS ON GAMETOGENESIS AND FERTILIZATION IN CULTURED PLASMODIUM FALCIPARUM TADASUKE ONO1, TOSHIO NAKABAYASHI2 AND YOSHIHIRO OHNISHI1 Received November 6 1990/Accepted December

More information

Cells Under the Microscope Measuring Cell Structures

Cells Under the Microscope Measuring Cell Structures Copy into Note Packet and Return to Teacher Chapter 3 Cell Structure Section 1: Looking at Cells Objectives Describe how scientists measure the length of objects. Relate magnification and resolution in

More information

Cell Structure and Function Practice

Cell Structure and Function Practice Cell Structure and Function Practice 1. The National Aeronautics and Space Agency (NASA) has a command center in Houston, Texas, that directs space missions. Which part of a cell functions like this command

More information

Unicellular vs. Multicellular Organisms Worksheet

Unicellular vs. Multicellular Organisms Worksheet Name Date Unicellular vs. Multicellular Organisms Worksheet Instructions for VIVED Science 1. Open the Plant Cell Structures and Animal (Human) Cell Structures sessions and follow the instructions. 2.

More information

Introduction to Cells. Intro to Cells. Scientists who contributed to cell theory. Cell Theory. There are 2 types of cells: All Cells:

Introduction to Cells. Intro to Cells. Scientists who contributed to cell theory. Cell Theory. There are 2 types of cells: All Cells: Intro to Cells Key Concept: Cells are the basic unit of life. Introduction to Cells Cells are the basic units of organisms Cells can only be observed under microscope Basic types of cells: 1 Animal Cell

More information

Basic Structure of a Cell

Basic Structure of a Cell Basic Structure of a Cell Prokaryotic Cells No nucleus Archaea & Eubacteria One circular chromosome Extremely small Eukaryotic Cells Has a nucleus!!! Membrane-bound organelles Plants, Animals, Fungi, &

More information

1% osmium tetroxide in 0.1 M cacodylate buffer for 2 hr. The fixed eyes were rinsed

1% osmium tetroxide in 0.1 M cacodylate buffer for 2 hr. The fixed eyes were rinsed LOCALIZATION OF VITAMIN A IN THE EYE OF A PULMONATE SNAIL* BY RICHARD M. EAKIN AND JEAN L. BRANDENBURGER DEPARTMENT OF ZOOLOGY, UNIVERSITY OF CALIFORNIA, BERKELEY Communicated by Curt Stern, March 1, 1968

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Class: Date: Ch 7 Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Researchers use fluorescent labels and light microscopy to a. follow

More information

Association of Tobacco Rattle Virus with Mitochondria

Association of Tobacco Rattle Virus with Mitochondria J. gen. ViroL (I968), 3, I2I-I24 With 3 plates Printed in Great Britain I2I Association of Tobacco Rattle Virus with Mitochondria (Accepted 8 February I968) As part of a study of the way in which tobacco

More information

Human biology Cells: The Basic Units of Life. Dr. Rawaa Salim Hameed

Human biology Cells: The Basic Units of Life. Dr. Rawaa Salim Hameed Human biology Cells: The Basic Units of Life Dr. Rawaa Salim Hameed Reference Text book of human biology by John Kenneth Inglis 3 rd Ed (1985) Cells: The Basic Units of Life Cell theory Cell theory consists

More information

7 Characteristics of Life

7 Characteristics of Life 7 Characteristics of Life 1. Interdependence 2. Metabolism 3. Homeostasis 4. Cellular Structure and Function 5. Reproduction 6. Heredity 7. Evolution The Cell Theory All living things are composed of one

More information

The Cell Notes 1 of 11

The Cell Notes 1 of 11 The Cell The basic unit of structure and function in living things The smallest units in living things The smallest units in living things that show the characteristics of life Organisms can be made of

More information

Neurochemistry 1. Nervous system is made of neurons & glia, as well as other cells. Santiago Ramon y Cajal Nobel Prize 1906

Neurochemistry 1. Nervous system is made of neurons & glia, as well as other cells. Santiago Ramon y Cajal Nobel Prize 1906 Neurochemistry 1 Nervous system is made of neurons & glia, as well as other cells. Santiago Ramon y Cajal Nobel Prize 1906 How Many Neurons Do We Have? The human brain contains ~86 billion neurons and

More information

Exam: Introduction to Cells and Cell Function

Exam: Introduction to Cells and Cell Function Name: Date: Exam: Introduction to Cells and Cell Function Georgia Performance Standard SB1: Students will analyze the nature of the relationships between structures and functions in living cells. 1. What

More information

Chapter 7 Learning Targets Cell Structure & Function

Chapter 7 Learning Targets Cell Structure & Function Name: Chapter 7 Learning Targets Cell Structure & Function a. Define the word cell: 1. I know the history of the cell: b. Who discovered the cell? What did he observe? 2. I can list the three parts of

More information

Overview of Cells. Prokaryotes vs Eukaryotes The Cell Organelles The Endosymbiotic Theory

Overview of Cells. Prokaryotes vs Eukaryotes The Cell Organelles The Endosymbiotic Theory Overview of Cells Prokaryotes vs Eukaryotes The Cell Organelles The Endosymbiotic Theory Prokaryotic Cells Archaea Bacteria Come in many different shapes and sizes.5 µm 2 µm, up to 60 µm long Have large

More information

Cell structure and functions

Cell structure and functions Cell structure and functions Cells: The cell is the basic structural and functional unit of life. All living organisms are made up of cells. Cells make tissues, tissues make organs, organs make organ systems

More information

3.2. Eukaryotic Cells and Cell Organelles. Teacher Notes and Answers. section

3.2. Eukaryotic Cells and Cell Organelles. Teacher Notes and Answers. section section 3.2 Eukaryotic Cells and Cell Organelles Teacher Notes and Answers SECTION 2 Instant Replay 1. Answers will vary. An example answer is a shapeless bag. 2. store and protect the DNA 3. mitochondria

More information

II. Eukaryotic Cell Structure A. Boundaries 1. plasma membrane a. serves as a boundary b/w the cell and its environment b. controls movement of

II. Eukaryotic Cell Structure A. Boundaries 1. plasma membrane a. serves as a boundary b/w the cell and its environment b. controls movement of I. History of the cell theory A. Anton van Leeuwenhoek (1600s) - dutch lens maker could see things with his lenses that were invisible to the naked eye - developed the simple microscope B. Robert Hooke

More information

ASCOSPORE DEVELOPMENT IN THE

ASCOSPORE DEVELOPMENT IN THE J. Cell Sd. 56, 263-279 (1982) 263 Printed in Great Britain Company of Biologists Limited 1982 ASCOSPORE DEVELOPMENT IN THE FISSION YEASTS POMBE AND S. JAPONICUS SCHIZOSACCHAROMYCES KENJI TANAKA* AND AIKO

More information

BIOLOGY AND GEOLOGY 3º DE E.S.O. Chapter 1: The organisation of the human body

BIOLOGY AND GEOLOGY 3º DE E.S.O. Chapter 1: The organisation of the human body BIOLOGY AND GEOLOGY 3º DE E.S.O. Chapter 1: The organisation of the human body 1. INTRODUCTION: LEVELS OF ORGANISATION What is a cell? Definition of Cell A cell is the smallest unit that is capable of

More information

Laboratory-Based Cryogenic Soft X-ray Tomography and Correlative Microscopy: 3D Visualization Inside the Cell

Laboratory-Based Cryogenic Soft X-ray Tomography and Correlative Microscopy: 3D Visualization Inside the Cell Laboratory-Based Cryogenic Soft X-ray Tomography and Correlative Microscopy: 3D Visualization Inside the Cell David Carlson, Jeff Gelb, Vadim Palshin and James Evans Pacific Northwest National Laboratory

More information

An electron microscopic study of microorganisms: from influenza virus to deep-sea microorganisms

An electron microscopic study of microorganisms: from influenza virus to deep-sea microorganisms JSM Mycotoxins 65 2, 81-99 2015 http://dx.doi.org/10.2520/myco.65.81 Special Lecture JSM Mycotoxins www.jstage.jst.go.jp/browse/myco An electron microscopic study of microorganisms: from influenza virus

More information