SPATIOTEMPORAL ANALYSIS OF SYNCHRONIZATION OF NEURAL ENSEMBLES FOR SPATIAL DISCRIMINATIONS IN CAT STRIATE CORTEX

Size: px
Start display at page:

Download "SPATIOTEMPORAL ANALYSIS OF SYNCHRONIZATION OF NEURAL ENSEMBLES FOR SPATIAL DISCRIMINATIONS IN CAT STRIATE CORTEX"

Transcription

1 SPATIOTEMPORAL ANALYSIS OF SYNCHRONIZATION OF NEURAL ENSEMBLES FOR SPATIAL DISCRIMINATIONS IN CAT STRIATE CORTEX Jason M Samonds Department of Biomedical Engineering Vanderbilt University The auto-content wizard was not used in this presentation

2 Background 12 Preferred or Peak Orientation A B C Single-unit Responses area centralis Area 17 Visual Stimulus Average Firing Rate Bandwidth 25 Amplifiers Medial-Lateral Drifting Sinusoid Grating Posterior - Anterior 1 mm 1º Orientation ( )

3 Experimental Hypotheses 1. Based on the orientation-dependence of correlated firing 1, are visual cortical cells cooperative? (yes) 2. Does the cooperation grow with larger groups of cells? 3. Does the response timing depend on the orientation of the visual stimulus? (yes) 4. How is the temporal structure related to synchronization and cooperation in the cortex? 1. Snider RK, Kabara JF, Roig BR, and Bonds AB. Burst firing and modulation of functional connectivity in cat striate cortex. J Neurophysiol 8:73-744, 1998.

4 How do we measure cooperation? (type analysis KL distance) Stimulus Response Letters (k) Types (p(k)) Markov Order (D) (conditional types) Stimulus Repetition Probability of Letter Bin 3 Bin 2 Bin 1 Stimulus Repetition Time Bin Width Bin Probability of Letter 12 3 Bin 3 Bin 2 Bin 1 d( P P ) = 1 2 P( k k, k B K 1 1 b b 1 b 2 P1 ( kb, kb 1,..., kb D)*log2 b= 1 k= P2 ( kb kb 1, kb 2,..., k,..., k b D b D ) ) Neuron 1 Time Bin 123 Neuron 2 Johnson DH, Gruner CM, Baggerly K, and Seshagiri C. Information-theoretic analysis of neural coding. J Comp Neurosci, 1:47-69, 21.

5 Cooperation between area 17 neuron pairs enhances fine discrimination of orientation Samonds JM, Allison JD, Brown HA, Bonds AB. J Neurosci 23: , 23 Cooperation among neuron pairs Number of Pairs ± 4.4% Fine (<1 degrees) Gross (>1 degrees) 57.6 ± 31.9% >1 Synergy (%) Accumulated Dependency (bits) ± 16.9% narrower Orientation (degrees) Firing Rate (sps)

6 Cooperative synchronized assemblies enhance orientation discrimination Samonds JM, Allison JD, Brown HA, Bonds AB. Proc Nat Acad Sci USA 11: , 24. What are synchronized assemblies? area centralis Area msec Medial-Lateral mm Posterior - Anterior LAC 5 degrees

7 Dependency vs. Assembly size Rate Dependency Rate (bits/s) Number of Cells Half-Height Bandwidth (degrees) Rate Dependency Dependency 31% narrow er Number of Cells

8 Cooperation vs. Assembly Size 6 5 R 2 =.78 R 2 = With Joint-Firing Independent 1% Synergy (%) R 2 =.26 R 2 = degrees KL Distance 4% 6% 8% 1 2 degrees 27 degrees 2% 34 degrees Dependency Rate (bits/s) Number of Cells

9 Testing coding when singles cells fail to provide information KL Distance Rate Single cells fail to discriminate fine orientation Independent With Joint-firing KL distance = Orientation Difference (deg) 5 ms

10 How do we quantify timing information? (metric-space analysis) Spike Times Spike Intervals S A S A S 1 S 2 S 3 S 1 S ,4 S 4 S 3 5 S 5 6 S 4 S 6 S B S B S A cost = q x time cost = q x time S B D spike [q] = min(cost) Victor JD and Purpura KP. Nature and precision of temporal coding in visual cortex: a metric-space analysis. J Neurophysiol, 76: , 1996.

11 From another angle: differences in cortical coding between fine and coarse discrimination of orientation Samonds JM, Bonds AB. J Neurophysiol 91: , 24. Orientation-dependent time shift in cortical responses Stimulus Trial Time (s) Preferred OR -4º

12 Information from spike timing Information (bits) q (1/s) q (1/s) Fine Coarse Number of Cells bits 68.9 ms q (1/s) Fine (<1º).24 bits 9.2 ms Coarse (>1º) 256

13 How do we quantify structure and synchronization? JPSTH Analysis 5 ms JPSTH -5 ms Cross-correlogram PSTH Cell 2 5 ms 5 ms ms 5 ms PSTH Cell 1 ms Aertsen AMHJ, Gerstein GL, Habib MK, and Palm G. Dynamics of neuronal firing correlation: modulation of effective connectivity. J Neurophysiol 61:9-917, 1989.

14 Relationships between spike train spatiotemporal structure and synchronization in cat visual cortex Samonds JM, Bonds AB. (in review) 24. Examples of temporal structure Auto-correlation Auto-correlation (%) Bursts Auto-correlation (%) Bursting Refractory Period 1 st Peak Auto-correlation Auto-correlation (%) Time Lag (ms) Bursting with Gamma Oscillation Time Lag (ms) 2 nd Peak Fourier Energy Time Lag (ms) 43 Hz Frequency (Hz) ACH RDH (RDH) Lebedev MA and Wise SP (2) Oscillations in the premotor cortex: single-unit activity from awake, behaving monkeys. Exp Brain Res 13:

15 Serial dependency of oscillation extrinsic source Auto-correlation (%) ACH RDH Less oscillation after shuffling intervals (not intrinsic).6.3. Oscillation (1 st peak) Oscillation (2 nd peak) Inhibitory GABAergic interneuronal networks Pyramidal Cell GABA Basket Cell Interneuron Traub RD, Cunning ham MO, Glovelli T, LeBeau FEN, Bibbig A, Buhl EH, and Whittington MA. GABA-enhanced collective behavior in neuronal axons underlies persistent gamma-frequency oscillations. Proc Nat Acad Sci USA 1: , 23. Cunningham MO, Davies CH, Buhl EH, Kopell N, and Whittington MA. Gamma oscillations induced by kainite receptor activation in the entorhinal cortex in vitro. J Neurosci 23: , 23. GABA

16 Refractory Period intrinsic source 2.5 Auto-correlation (%) R 2 =.48 burst Firing Rate (sps) AHP 3. Auto-correlation (%) R 2 =.27 R 2 =.6 Agmon and Connors, 1989; Connors and Gutnick, 199; Traub and Miles, 1991; Silva-Barrat et al., 1992; Frenceschetti et al., 1995; Gray and McCormick, 1996; Brumberg et al., 2; Nowak et al., Bursting AC (%) Refractory Oscillation

17 Does oscillation drive synchrony? Auto-correlation (%) Cell Cell 13 A B C Cell 11 ACH RDH Time Lag (ms) Time Lag (ms) Time Lag (ms) 4. D Cell E Cell Cross-correlation (%) Time Lag (ms) Time Lag (ms)

18 Moderate correlation between bursts or oscillation and synchrony 4. R 2 =.22 R 2 =.29 Synchrony (cross-correlation peak) 3. Cross-correlation (%) R 2 = Auto-correlation (%) Refractory Bursts Oscillations

19 Oscillation maintains synchronization Oscillatory Non-oscillatory Time Lag (ms) Cross-correlation (%) Time Lag (ms) Cross-correlation (%) Time (ms) Time (ms) Maintained Decay Cross-correlation (%) Oscillation Starting Correlation Correlation After 2 s No Oscillation

20 Transient Synchrony? Shifts in the timing of the response onset determine orientation-dependent synchrony A Stimulus Receptive Fields B Response Stimulus Receptive Fields Response C.3 174º D.3 184º Probability Probability E Cross-correlation (%) Time (s) F Time (s) Lag Time (ms) Lag Time (ms)

21 The input rather than oscillation drives cortical synchronization Synchrony depends on input Reliability of synchronous input Cross-correlation (%) R 2 = R 2 = Latency (ms) SD Latency (ms)

22 Supra-threshold Activation Coherence/Correlation Synchronous Input Interval Structure Synchronous Output Spike Threshold Incoherent or Unstructured Noise Asynchronous Inputs Asynchronous Outputs Burst and/or Oscillation Threshold 2 Coherent or Structured Activation of Multiple Cells Synchronous Inputs Galarreta and Hestrin, 21; Harris et al., 21 Synchronous Outputs Bursts Gamma Oscillation 2Agmon and Connors, 1989; Connors and Gutnick, 199; Traub and Miles, 1991; Silva-Barrat et al., 1992; Frenceschetti et al., 1995; Gray and McCormick, 1996; Brumberg et al., 2; Nowak et al., 23

23 Real-time visualization of neural synchrony for identifying coordinated cell assemblies Samonds JM, Bonds AB. J Neurosci Methods (in press) 24. Present multi-unit response feedback

24 Creating the synchrony map 1. Sample the response ( t = 6 ms) 2. Assign pattern number (digitize) Only 1 pixel can be active for a particular sampled moment of time Reorganize with respect to the number of cells in a pattern Also organized from cell 1 to cell 6 (orthogonal to strength)

25 Synchrony Map Video Real-time synchrony map Moderate Moderate Weak Strong Strong Dependency Weak

26 Looking at larger and more complex integration area centralis 1 x 1 Array (3 Visual Field) Anterior Posterior 5 x 5 Array (1 Visual Field) Area 17 Lateral Medial 2 mm Area 18 AC 5 degrees 3 visual field (57 cm)

27 More subtle and complex forms of coherence Perceptual separation of objects Coherent Plaids and contours Can you detect the mouse? Structure from coherent motion Global Structure Natural Scenes

28 Acknowledgements Co-conspirators experiments: AB Bonds John Allison Heather Brown Zhiyi Zhou Michael Gallucci Technical assistance: Don Johnson Jonathan Victor George Gerstein Ross Snider Feedback and discussion: Peter Dayan Reinhard Eckhorn Bill Newsome Wolf Singer Cristoph von der Malsburg Gerald Westheimer Hugh Wilson Supported by the Graduate School and National Eye Institute Grants RO1EY and RO1EY

Gamma Oscillation Maintains Stimulus Structure-Dependent Synchronization in Cat Visual Cortex

Gamma Oscillation Maintains Stimulus Structure-Dependent Synchronization in Cat Visual Cortex J Neurophysiol 93: 223 236, 2005. First published July 28, 2004; doi:10.1152/jn.00548.2004. Gamma Oscillation Maintains Stimulus Structure-Dependent Synchronization in Cat Visual Cortex Jason M. Samonds

More information

Consider the following spike trains from two different neurons N1 and N2:

Consider the following spike trains from two different neurons N1 and N2: About synchrony and oscillations So far, our discussions have assumed that we are either observing a single neuron at a, or that neurons fire independent of each other. This assumption may be correct in

More information

The homogeneous Poisson process

The homogeneous Poisson process The homogeneous Poisson process during very short time interval Δt there is a fixed probability of an event (spike) occurring independent of what happened previously if r is the rate of the Poisson process,

More information

The Axonal Plexus. A description of the behavior of a network of neurons connected by gap junctions. Erin Munro, 4/4/2007

The Axonal Plexus. A description of the behavior of a network of neurons connected by gap junctions. Erin Munro, 4/4/2007 The Axonal Plexus A description of the behavior of a network of neurons connected by gap junctions Erin Munro, 4/4/2007 Why are we interested in studying the axonal plexus? Gap junctions are indicated

More information

When does interval coding occur?

When does interval coding occur? When does interval coding occur? Don H. Johnson Λ and Raymon M. Glantz y Λ Department of Electrical & Computer Engineering, MS 366 y Department of Biochemistry and Cell Biology Rice University 6 Main Street

More information

Neural Networks 1 Synchronization in Spiking Neural Networks

Neural Networks 1 Synchronization in Spiking Neural Networks CS 790R Seminar Modeling & Simulation Neural Networks 1 Synchronization in Spiking Neural Networks René Doursat Department of Computer Science & Engineering University of Nevada, Reno Spring 2006 Synchronization

More information

Real and Modeled Spike Trains: Where Do They Meet?

Real and Modeled Spike Trains: Where Do They Meet? Real and Modeled Spike Trains: Where Do They Meet? Vasile V. Moca 1, Danko Nikolić,3, and Raul C. Mureşan 1, 1 Center for Cognitive and Neural Studies (Coneural), Str. Cireşilor nr. 9, 4487 Cluj-Napoca,

More information

Disambiguating Different Covariation Types

Disambiguating Different Covariation Types NOTE Communicated by George Gerstein Disambiguating Different Covariation Types Carlos D. Brody Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA 925, U.S.A. Covariations

More information

Title. Author(s)Fujii, Hiroshi; Tsuda, Ichiro. CitationNeurocomputing, 58-60: Issue Date Doc URL. Type.

Title. Author(s)Fujii, Hiroshi; Tsuda, Ichiro. CitationNeurocomputing, 58-60: Issue Date Doc URL. Type. Title Neocortical gap junction-coupled interneuron systems exhibiting transient synchrony Author(s)Fujii, Hiroshi; Tsuda, Ichiro CitationNeurocomputing, 58-60: 151-157 Issue Date 2004-06 Doc URL http://hdl.handle.net/2115/8488

More information

Spike Count Correlation Increases with Length of Time Interval in the Presence of Trial-to-Trial Variation

Spike Count Correlation Increases with Length of Time Interval in the Presence of Trial-to-Trial Variation NOTE Communicated by Jonathan Victor Spike Count Correlation Increases with Length of Time Interval in the Presence of Trial-to-Trial Variation Robert E. Kass kass@stat.cmu.edu Valérie Ventura vventura@stat.cmu.edu

More information

On similarity measures for spike trains

On similarity measures for spike trains On similarity measures for spike trains Justin Dauwels, François Vialatte, Theophane Weber, and Andrzej Cichocki RIKEN Brain Science Institute, Saitama, Japan Massachusetts Institute of Technology, Cambridge,

More information

Trial-to-Trial Variability and its. on Time-Varying Dependence Between Two Neurons

Trial-to-Trial Variability and its. on Time-Varying Dependence Between Two Neurons Trial-to-Trial Variability and its Effect on Time-Varying Dependence Between Two Neurons Can Cai, Robert E. Kass, and Valérie Ventura Department of Statistics and Center for the Neural Basis of Cognition

More information

Synchronization, oscillations, and 1/ f noise in networks of spiking neurons

Synchronization, oscillations, and 1/ f noise in networks of spiking neurons Synchronization, oscillations, and 1/ f noise in networks of spiking neurons Martin Stemmler, Marius Usher, and Christof Koch Computation and Neural Systems, 139-74 California Institute of Technology Pasadena,

More information

Visual motion processing and perceptual decision making

Visual motion processing and perceptual decision making Visual motion processing and perceptual decision making Aziz Hurzook (ahurzook@uwaterloo.ca) Oliver Trujillo (otrujill@uwaterloo.ca) Chris Eliasmith (celiasmith@uwaterloo.ca) Centre for Theoretical Neuroscience,

More information

Rhythms in the gamma range (30 80 Hz) and the beta range

Rhythms in the gamma range (30 80 Hz) and the beta range Gamma rhythms and beta rhythms have different synchronization properties N. Kopell, G. B. Ermentrout, M. A. Whittington, and R. D. Traub Department of Mathematics and Center for BioDynamics, Boston University,

More information

Modeling neural oscillations

Modeling neural oscillations Physiology & Behavior 77 (2002) 629 633 Modeling neural oscillations G. Bard Ermentrout*, Carson C. Chow Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA Received 30 July

More information

Synchronization in Spiking Neural Networks

Synchronization in Spiking Neural Networks CS 790R Seminar Modeling & Simulation Synchronization in Spiking Neural Networks ~ Lecture 8 ~ René Doursat Department of Computer Science & Engineering University of Nevada, Reno Spring 2005 Synchronization

More information

Gap junctions promote synchronous activities in a network of inhibitory interneurons

Gap junctions promote synchronous activities in a network of inhibitory interneurons BioSystems 79 (2005) 91 99 Gap junctions promote synchronous activities in a network of inhibitory interneurons A. Di Garbo, A. Panarese, S. Chillemi Istituto di Biofisica CNR, Sezione di Pisa,Via G. Moruzzi

More information

Fast neural network simulations with population density methods

Fast neural network simulations with population density methods Fast neural network simulations with population density methods Duane Q. Nykamp a,1 Daniel Tranchina b,a,c,2 a Courant Institute of Mathematical Science b Department of Biology c Center for Neural Science

More information

Adaptation in the Neural Code of the Retina

Adaptation in the Neural Code of the Retina Adaptation in the Neural Code of the Retina Lens Retina Fovea Optic Nerve Optic Nerve Bottleneck Neurons Information Receptors: 108 95% Optic Nerve 106 5% After Polyak 1941 Visual Cortex ~1010 Mean Intensity

More information

Power Spectrum Analysis of Bursting Cells in Area MT in the Behaving Monkey

Power Spectrum Analysis of Bursting Cells in Area MT in the Behaving Monkey The Journal of Neuroscience, May 1994, 14(5): 287-2892 Power Spectrum Analysis of Bursting Cells in Area MT in the Behaving Monkey Wyeth Bair, 1 Christof Koch,' William Newsome, 2 and Kenneth Britten 2

More information

Finding a Basis for the Neural State

Finding a Basis for the Neural State Finding a Basis for the Neural State Chris Cueva ccueva@stanford.edu I. INTRODUCTION How is information represented in the brain? For example, consider arm movement. Neurons in dorsal premotor cortex (PMd)

More information

Causality and communities in neural networks

Causality and communities in neural networks Causality and communities in neural networks Leonardo Angelini, Daniele Marinazzo, Mario Pellicoro, Sebastiano Stramaglia TIRES-Center for Signal Detection and Processing - Università di Bari, Bari, Italy

More information

Linearization of F-I Curves by Adaptation

Linearization of F-I Curves by Adaptation LETTER Communicated by Laurence Abbott Linearization of F-I Curves by Adaptation Bard Ermentrout Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A. We show that negative

More information

Lateral organization & computation

Lateral organization & computation Lateral organization & computation review Population encoding & decoding lateral organization Efficient representations that reduce or exploit redundancy Fixation task 1rst order Retinotopic maps Log-polar

More information

An Introductory Course in Computational Neuroscience

An Introductory Course in Computational Neuroscience An Introductory Course in Computational Neuroscience Contents Series Foreword Acknowledgments Preface 1 Preliminary Material 1.1. Introduction 1.1.1 The Cell, the Circuit, and the Brain 1.1.2 Physics of

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary discussion 1: Most excitatory and suppressive stimuli for model neurons The model allows us to determine, for each model neuron, the set of most excitatory and suppresive features. First,

More information

The Spike Response Model: A Framework to Predict Neuronal Spike Trains

The Spike Response Model: A Framework to Predict Neuronal Spike Trains The Spike Response Model: A Framework to Predict Neuronal Spike Trains Renaud Jolivet, Timothy J. Lewis 2, and Wulfram Gerstner Laboratory of Computational Neuroscience, Swiss Federal Institute of Technology

More information

Dynamical Constraints on Computing with Spike Timing in the Cortex

Dynamical Constraints on Computing with Spike Timing in the Cortex Appears in Advances in Neural Information Processing Systems, 15 (NIPS 00) Dynamical Constraints on Computing with Spike Timing in the Cortex Arunava Banerjee and Alexandre Pouget Department of Brain and

More information

!) + log(t) # n i. The last two terms on the right hand side (RHS) are clearly independent of θ and can be

!) + log(t) # n i. The last two terms on the right hand side (RHS) are clearly independent of θ and can be Supplementary Materials General case: computing log likelihood We first describe the general case of computing the log likelihood of a sensory parameter θ that is encoded by the activity of neurons. Each

More information

Gap Junctions between Interneuron Dendrites Can Enhance Synchrony of Gamma Oscillations in Distributed Networks

Gap Junctions between Interneuron Dendrites Can Enhance Synchrony of Gamma Oscillations in Distributed Networks The Journal of Neuroscience, December 1, 2001, 21(23):9478 9486 Gap Junctions between Interneuron Dendrites Can Enhance Synchrony of Gamma Oscillations in Distributed Networks Roger D. Traub, 1,2 Nancy

More information

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017 The Bayesian Brain Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester May 11, 2017 Bayesian Brain How do neurons represent the states of the world? How do neurons represent

More information

Jan 16: The Visual System

Jan 16: The Visual System Geometry of Neuroscience Matilde Marcolli & Doris Tsao Jan 16: The Visual System References for this lecture 1977 Hubel, D. H., Wiesel, T. N., Ferrier lecture 2010 Freiwald, W., Tsao, DY. Functional compartmentalization

More information

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 5 part 3a :Three definitions of rate code Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 5 Variability and Noise: The question of the neural code Wulfram Gerstner EPFL, Lausanne,

More information

High-dimensional geometry of cortical population activity. Marius Pachitariu University College London

High-dimensional geometry of cortical population activity. Marius Pachitariu University College London High-dimensional geometry of cortical population activity Marius Pachitariu University College London Part I: introduction to the brave new world of large-scale neuroscience Part II: large-scale data preprocessing

More information

RESEARCH STATEMENT. Nora Youngs, University of Nebraska - Lincoln

RESEARCH STATEMENT. Nora Youngs, University of Nebraska - Lincoln RESEARCH STATEMENT Nora Youngs, University of Nebraska - Lincoln 1. Introduction Understanding how the brain encodes information is a major part of neuroscience research. In the field of neural coding,

More information

Correlations Without Synchrony

Correlations Without Synchrony LETTER Communicated by George Gerstein Correlations Without Synchrony Carlos D. Brody Computationand Neural Systems Program,CaliforniaInstitute of Technology,Pasadena, CA 9115, U.S.A. Peaks in spike train

More information

How Spike Generation Mechanisms Determine the Neuronal Response to Fluctuating Inputs

How Spike Generation Mechanisms Determine the Neuronal Response to Fluctuating Inputs 628 The Journal of Neuroscience, December 7, 2003 23(37):628 640 Behavioral/Systems/Cognitive How Spike Generation Mechanisms Determine the Neuronal Response to Fluctuating Inputs Nicolas Fourcaud-Trocmé,

More information

Discovery of Salient Low-Dimensional Dynamical Structure in Neuronal Population Activity Using Hopfield Networks

Discovery of Salient Low-Dimensional Dynamical Structure in Neuronal Population Activity Using Hopfield Networks Discovery of Salient Low-Dimensional Dynamical Structure in Neuronal Population Activity Using Hopfield Networks Felix Effenberger (B) and Christopher Hillar 2 Max-Planck-Institute for Mathematics in the

More information

Probabilistic Inference of Hand Motion from Neural Activity in Motor Cortex

Probabilistic Inference of Hand Motion from Neural Activity in Motor Cortex Probabilistic Inference of Hand Motion from Neural Activity in Motor Cortex Y Gao M J Black E Bienenstock S Shoham J P Donoghue Division of Applied Mathematics, Brown University, Providence, RI 292 Dept

More information

Model neurons!!poisson neurons!

Model neurons!!poisson neurons! Model neurons!!poisson neurons! Suggested reading:! Chapter 1.4 in Dayan, P. & Abbott, L., heoretical Neuroscience, MI Press, 2001.! Model neurons: Poisson neurons! Contents: Probability of a spike sequence

More information

Collective Dynamics in Human and Monkey Sensorimotor Cortex: Predicting Single Neuron Spikes

Collective Dynamics in Human and Monkey Sensorimotor Cortex: Predicting Single Neuron Spikes Collective Dynamics in Human and Monkey Sensorimotor Cortex: Predicting Single Neuron Spikes Supplementary Information Wilson Truccolo 1,2,5, Leigh R. Hochberg 2-6 and John P. Donoghue 4,1,2 1 Department

More information

Spike-Frequency Adaptation: Phenomenological Model and Experimental Tests

Spike-Frequency Adaptation: Phenomenological Model and Experimental Tests Spike-Frequency Adaptation: Phenomenological Model and Experimental Tests J. Benda, M. Bethge, M. Hennig, K. Pawelzik & A.V.M. Herz February, 7 Abstract Spike-frequency adaptation is a common feature of

More information

Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire Neuron Model Based on Small World Networks

Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire Neuron Model Based on Small World Networks Commun. Theor. Phys. (Beijing, China) 43 (2005) pp. 466 470 c International Academic Publishers Vol. 43, No. 3, March 15, 2005 Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire

More information

The functional organization of the visual cortex in primates

The functional organization of the visual cortex in primates The functional organization of the visual cortex in primates Dominated by LGN M-cell input Drosal stream for motion perception & spatial localization V5 LIP/7a V2 V4 IT Ventral stream for object recognition

More information

A Multivariate Time-Frequency Based Phase Synchrony Measure for Quantifying Functional Connectivity in the Brain

A Multivariate Time-Frequency Based Phase Synchrony Measure for Quantifying Functional Connectivity in the Brain A Multivariate Time-Frequency Based Phase Synchrony Measure for Quantifying Functional Connectivity in the Brain Dr. Ali Yener Mutlu Department of Electrical and Electronics Engineering, Izmir Katip Celebi

More information

Patterns of Synchrony in Neural Networks with Spike Adaptation

Patterns of Synchrony in Neural Networks with Spike Adaptation Patterns of Synchrony in Neural Networks with Spike Adaptation C. van Vreeswijky and D. Hanselz y yracah Institute of Physics and Center for Neural Computation, Hebrew University, Jerusalem, 9194 Israel

More information

Tuning tuning curves. So far: Receptive fields Representation of stimuli Population vectors. Today: Contrast enhancment, cortical processing

Tuning tuning curves. So far: Receptive fields Representation of stimuli Population vectors. Today: Contrast enhancment, cortical processing Tuning tuning curves So far: Receptive fields Representation of stimuli Population vectors Today: Contrast enhancment, cortical processing Firing frequency N 3 s max (N 1 ) = 40 o N4 N 1 N N 5 2 s max

More information

Synchrony in Neural Systems: a very brief, biased, basic view

Synchrony in Neural Systems: a very brief, biased, basic view Synchrony in Neural Systems: a very brief, biased, basic view Tim Lewis UC Davis NIMBIOS Workshop on Synchrony April 11, 2011 components of neuronal networks neurons synapses connectivity cell type - intrinsic

More information

Detection of spike patterns using pattern ltering, with applications to sleep replay in birdsong

Detection of spike patterns using pattern ltering, with applications to sleep replay in birdsong Neurocomputing 52 54 (2003) 19 24 www.elsevier.com/locate/neucom Detection of spike patterns using pattern ltering, with applications to sleep replay in birdsong Zhiyi Chi a;, Peter L. Rauske b, Daniel

More information

The Role of Corticothalamic Feedback in the Response Mode Transition of Thalamus

The Role of Corticothalamic Feedback in the Response Mode Transition of Thalamus ADAPTIVE 0 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications The Role of Corothalamic Feedback in the Response Mode Transition of Thalamus Jia-xin Cui Institute

More information

Gamma and Theta Rhythms in Biophysical Models of Hippocampal Circuits

Gamma and Theta Rhythms in Biophysical Models of Hippocampal Circuits Gamma and Theta Rhythms in Biophysical Models of Hippocampal Circuits N. Kopell, C. Börgers, D. Pervouchine, P. Malerba, and A. Tort Introduction The neural circuits of the hippocampus are extremely complex,

More information

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing Linear recurrent networks Simpler, much more amenable to analytic treatment E.g. by choosing + ( + ) = Firing rates can be negative Approximates dynamics around fixed point Approximation often reasonable

More information

Phase-coupling in Two-Dimensional Networks of Interacting Oscillators

Phase-coupling in Two-Dimensional Networks of Interacting Oscillators Phase-coupling in Two-Dimensional Networks of Interacting Oscillators Ernst Niebur, Daniel M. Kammen, Christof Koch, Daniel Ruderman! & Heinz G. Schuster2 Computation and Neural Systems Caltech 216-76

More information

Factors affecting phase synchronization in integrate-and-fire oscillators

Factors affecting phase synchronization in integrate-and-fire oscillators J Comput Neurosci (26) 2:9 2 DOI.7/s827-6-674-6 Factors affecting phase synchronization in integrate-and-fire oscillators Todd W. Troyer Received: 24 May 25 / Revised: 9 November 25 / Accepted: November

More information

Modeling the Milk-Ejection Reflex! Gareth Leng and collaborators!

Modeling the Milk-Ejection Reflex! Gareth Leng and collaborators! Modeling the Milk-Ejection Reflex! Gareth Leng and collaborators! Why the milk-ejection reflex?! One of the best studied neuroendocrine reflex Good example of peptide- mediated communication between neurons

More information

1/12/2017. Computational neuroscience. Neurotechnology.

1/12/2017. Computational neuroscience. Neurotechnology. Computational neuroscience Neurotechnology https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/ 1 Neurotechnology http://www.lce.hut.fi/research/cogntech/neurophysiology Recording

More information

Coarse-grained event tree analysis for quantifying Hodgkin-Huxley neuronal network dynamics

Coarse-grained event tree analysis for quantifying Hodgkin-Huxley neuronal network dynamics J Comput Neurosci (212) 32:55 72 DOI 1.17/s1827-11-339-7 Coarse-grained event tree analysis for quantifying Hodgkin-Huxley neuronal network dynamics Yi Sun Aaditya V. Rangan Douglas Zhou David Cai Received:

More information

Volterra kernels and effective connectivity

Volterra kernels and effective connectivity Volterra kernels and effective connectivity Karl J Friston The Wellcome Dept. of Cognitive Neurology, University College London Queen Square, London, UK WC1N 3BG Tel (44) 020 7833 7456 Fax (44) 020 7813

More information

Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations

Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations Robert Kozma rkozma@memphis.edu Computational Neurodynamics Laboratory, Department of Computer Science 373 Dunn

More information

A Model for Real-Time Computation in Generic Neural Microcircuits

A Model for Real-Time Computation in Generic Neural Microcircuits A Model for Real-Time Computation in Generic Neural Microcircuits Wolfgang Maass, Thomas Natschläger Institute for Theoretical Computer Science Technische Universitaet Graz A-81 Graz, Austria maass, tnatschl

More information

Exercises. Chapter 1. of τ approx that produces the most accurate estimate for this firing pattern.

Exercises. Chapter 1. of τ approx that produces the most accurate estimate for this firing pattern. 1 Exercises Chapter 1 1. Generate spike sequences with a constant firing rate r 0 using a Poisson spike generator. Then, add a refractory period to the model by allowing the firing rate r(t) to depend

More information

Spike Frequency Adaptation Affects the Synchronization Properties of Networks of Cortical Oscillators

Spike Frequency Adaptation Affects the Synchronization Properties of Networks of Cortical Oscillators LETTER Communicated by John Rinzel Spike Frequency Adaptation Affects the Synchronization Properties of Networks of Cortical Oscillators Sharon M. Crook Center for Computational Biology, Montana State

More information

Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau

Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau Motivation, Brain and Behaviour group, ICM, Paris, France Overview 1 DCM: introduction 2 Dynamical systems theory 3 Neural states dynamics

More information

Synchronization in Electrically Coupled Neural Networks

Synchronization in Electrically Coupled Neural Networks Synchronization in Electrically Coupled Neural Networks Rajesh G. Kavasseri Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND 5815 Radhakrishnan Nagarajan Department

More information

Internally generated preactivation of single neurons in human medial frontal cortex predicts volition

Internally generated preactivation of single neurons in human medial frontal cortex predicts volition Internally generated preactivation of single neurons in human medial frontal cortex predicts volition Itzhak Fried, Roy Mukamel, Gabriel Kreiman List of supplementary material Supplementary Tables (2)

More information

A MODEL OF A NEURONAL STRUCTURE ABLE TO GENERATE COLLECTIVE OSCILLATIONS SIMILAR TO HUMAN PARIETAL ALPHA RHYTHM

A MODEL OF A NEURONAL STRUCTURE ABLE TO GENERATE COLLECTIVE OSCILLATIONS SIMILAR TO HUMAN PARIETAL ALPHA RHYTHM MODEL OF NEURONL STRUCTURE LE TO GENERTE COLLECTIVE OSCILLTIONS SIMILR TO HUMN PRIETL LPH RHYTHM Otilia Păduraru *, Hariton Costin *+ * Institute for Theoretical Computer Science, Romanian cademy, Iaşi

More information

Searching for Nested Oscillations in Frequency and Sensor Space. Will Penny. Wellcome Trust Centre for Neuroimaging. University College London.

Searching for Nested Oscillations in Frequency and Sensor Space. Will Penny. Wellcome Trust Centre for Neuroimaging. University College London. in Frequency and Sensor Space Oscillation Wellcome Trust Centre for Neuroimaging. University College London. Non- Workshop on Non-Invasive Imaging of Nonlinear Interactions. 20th Annual Computational Neuroscience

More information

Analyzing Neuroscience Signals using Information Theory and Complexity

Analyzing Neuroscience Signals using Information Theory and Complexity 12th INCF Workshop on Node Communication and Collaborative Neuroinformatics Warsaw, April 16-17, 2015 Co-Authors: Analyzing Neuroscience Signals using Information Theory and Complexity Shannon Communication

More information

How to read a burst duration code

How to read a burst duration code Neurocomputing 58 60 (2004) 1 6 www.elsevier.com/locate/neucom How to read a burst duration code Adam Kepecs a;, John Lisman b a Cold Spring Harbor Laboratory, Marks Building, 1 Bungtown Road, Cold Spring

More information

Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses

Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses Jonathan Pillow HHMI and NYU http://www.cns.nyu.edu/~pillow Oct 5, Course lecture: Computational Modeling of Neuronal Systems

More information

Decision-making and Weber s law: a neurophysiological model

Decision-making and Weber s law: a neurophysiological model European Journal of Neuroscience, Vol. 24, pp. 901 916, 2006 doi:10.1111/j.14-9568.2006.04940.x Decision-making and Weber s law: a neurophysiological model Gustavo Deco 1 and Edmund T. Rolls 2 1 Institucio

More information

Fitting a Stochastic Neural Network Model to Real Data

Fitting a Stochastic Neural Network Model to Real Data Fitting a Stochastic Neural Network Model to Real Data Christophe Pouzat, Ludmila Brochini, Pierre Hodara and Guilherme Ost MAP5 Univ. Paris-Descartes and CNRS Neuromat, USP christophe.pouzat@parisdescartes.fr

More information

T CHANNEL DYNAMICS IN A SILICON LGN. Kai Michael Hynnä A DISSERTATION. Bioengineering

T CHANNEL DYNAMICS IN A SILICON LGN. Kai Michael Hynnä A DISSERTATION. Bioengineering T CHANNEL DYNAMICS IN A SILICON LGN Kai Michael Hynnä A DISSERTATION in Bioengineering Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree

More information

Dynamic Causal Modelling for evoked responses J. Daunizeau

Dynamic Causal Modelling for evoked responses J. Daunizeau Dynamic Causal Modelling for evoked responses J. Daunizeau Institute for Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France Overview 1 DCM: introduction 2 Neural

More information

Power-Law Neuronal Fluctuations in a Recurrent Network Model of Parametric Working Memory

Power-Law Neuronal Fluctuations in a Recurrent Network Model of Parametric Working Memory Power-Law Neuronal Fluctuations in a Recurrent Network Model of Parametric Working Memory Paul Miller and Xiao-Jing Wang J Neurophysiol 95:199-1114, 26. First published Oct 19, 25; doi:1.1152/jn.491.25

More information

Sustained rhythmic activity in gapneurons depends on the diameter of coupled dendrites

Sustained rhythmic activity in gapneurons depends on the diameter of coupled dendrites Sustained rhythmic activity in gapneurons depends on the diameter of coupled dendrites Juliane Gansert Department of Mathematical Sciences, NJIT [Currently at: European Neuroscience Institute Göttingen,

More information

Transformation of stimulus correlations by the retina

Transformation of stimulus correlations by the retina Transformation of stimulus correlations by the retina Kristina Simmons (University of Pennsylvania) and Jason Prentice, (now Princeton University) with Gasper Tkacik (IST Austria) Jan Homann (now Princeton

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/319/5869/1543/dc1 Supporting Online Material for Synaptic Theory of Working Memory Gianluigi Mongillo, Omri Barak, Misha Tsodyks* *To whom correspondence should be addressed.

More information

The Effects of Voltage Gated Gap. Networks

The Effects of Voltage Gated Gap. Networks The Effects of Voltage Gated Gap Junctions on Phase Locking in Neuronal Networks Tim Lewis Department of Mathematics, Graduate Group in Applied Mathematics (GGAM) University of California, Davis with Donald

More information

Approximate, not perfect synchrony maximizes the downstream effectiveness of excitatory neuronal ensembles

Approximate, not perfect synchrony maximizes the downstream effectiveness of excitatory neuronal ensembles Börgers et al. RESEARCH Approximate, not perfect synchrony maximizes the downstream effectiveness of excitatory neuronal ensembles Christoph Börgers *, Jie Li and Nancy Kopell 2 * Correspondence: cborgers@tufts.edu

More information

PULSE-COUPLED networks (PCNs) of integrate-and-fire

PULSE-COUPLED networks (PCNs) of integrate-and-fire 1018 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 5, SEPTEMBER 2004 Grouping Synchronization in a Pulse-Coupled Network of Chaotic Spiking Oscillators Hidehiro Nakano, Student Member, IEEE, and Toshimichi

More information

arxiv:physics/ v1 [physics.data-an] 7 Jun 2003

arxiv:physics/ v1 [physics.data-an] 7 Jun 2003 Entropy and information in neural spike trains: Progress on the sampling problem arxiv:physics/0306063v1 [physics.data-an] 7 Jun 2003 Ilya Nemenman, 1 William Bialek, 2 and Rob de Ruyter van Steveninck

More information

Describing Spike-Trains

Describing Spike-Trains Describing Spike-Trains Maneesh Sahani Gatsby Computational Neuroscience Unit University College London Term 1, Autumn 2012 Neural Coding The brain manipulates information by combining and generating action

More information

Information Processing in Neural Populations

Information Processing in Neural Populations Information Processing in Neural Populations selective tutorial introduction KITP, UCSB July 2011 Jonathan Victor Neurology and Neuroscience Weill Cornell Medical College Disclaimers The visual system

More information

Measuring spike pattern reliability with the Lempel Ziv-distance

Measuring spike pattern reliability with the Lempel Ziv-distance Journal of Neuroscience Methods 156 (2006) 342 350 Measuring spike pattern reliability with the Lempel Ziv-distance Markus Christen a,, Adam Kohn b, Thomas Ott a, Ruedi Stoop a a Institute of Neuroinformatics,

More information

Nonlinear reverse-correlation with synthesized naturalistic noise

Nonlinear reverse-correlation with synthesized naturalistic noise Cognitive Science Online, Vol1, pp1 7, 2003 http://cogsci-onlineucsdedu Nonlinear reverse-correlation with synthesized naturalistic noise Hsin-Hao Yu Department of Cognitive Science University of California

More information

Synchronization in Electrically Coupled Neural Networks

Synchronization in Electrically Coupled Neural Networks Synchronization in Electrically Coupled Neural Networks arxiv:q-bio/0603035v1 [q-bio.nc] 29 Mar 2006 Rajesh G. Kavasseri, Department of Electrical and Computer Engineering North Dakota State University,

More information

Probabilistic Models in Theoretical Neuroscience

Probabilistic Models in Theoretical Neuroscience Probabilistic Models in Theoretical Neuroscience visible unit Boltzmann machine semi-restricted Boltzmann machine restricted Boltzmann machine hidden unit Neural models of probabilistic sampling: introduction

More information

Neural Encoding: Firing Rates and Spike Statistics

Neural Encoding: Firing Rates and Spike Statistics Neural Encoding: Firing Rates and Spike Statistics Dayan and Abbott (21) Chapter 1 Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks Background: Dirac δ Function Dirac δ function has the following

More information

THE THALAMUS is centrally located for much information

THE THALAMUS is centrally located for much information 1734 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 56, NO. 6, JUNE 2009 Nonlinear Influence of T-Channels in an in silico Relay Neuron Kai M. Hynna and Kwabena A. Boahen*, Member, IEEE Abstract Thalamic

More information

Synfire Waves in Small Balanced Networks

Synfire Waves in Small Balanced Networks Synfire Waves in Small Balanced Networks Yuval Aviel 1,3, David Horn 2 and Moshe Abeles 1 1 Interdisciplinary Center for Neural Computation, Hebrew University, Jerusalem, Israel. 2 School of Physics and

More information

Higher Order Statistics

Higher Order Statistics Higher Order Statistics Matthias Hennig Neural Information Processing School of Informatics, University of Edinburgh February 12, 2018 1 0 Based on Mark van Rossum s and Chris Williams s old NIP slides

More information

Subthreshold cross-correlations between cortical neurons: Areference model with static synapses

Subthreshold cross-correlations between cortical neurons: Areference model with static synapses Neurocomputing 65 66 (25) 685 69 www.elsevier.com/locate/neucom Subthreshold cross-correlations between cortical neurons: Areference model with static synapses Ofer Melamed a,b, Gilad Silberberg b, Henry

More information

Surround effects on the shape of the temporal contrast-sensitivity function

Surround effects on the shape of the temporal contrast-sensitivity function B. Spehar and Q. Zaidi Vol. 14, No. 9/September 1997/J. Opt. Soc. Am. A 2517 Surround effects on the shape of the temporal contrast-sensitivity function Branka Spehar School of Psychology, University of

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Spatio-temporal correlations and visual signaling in a complete neuronal population Jonathan W. Pillow 1, Jonathon Shlens 2, Liam Paninski 3, Alexander Sher 4, Alan M. Litke 4,E.J.Chichilnisky 2, Eero

More information

An Efficient Algorithm for Continuous-time Cross Correlogram of Spike Trains

An Efficient Algorithm for Continuous-time Cross Correlogram of Spike Trains An Efficient Algorithm for Continuous-time Cross Correlogram of Spike Trains Il Park António R. C. Paiva Thomas B. DeMarse José C. Príncipe University of Florida, Gainesville, FL, USA 32611 Abstract We

More information

Marr's Theory of the Hippocampus: Part I

Marr's Theory of the Hippocampus: Part I Marr's Theory of the Hippocampus: Part I Computational Models of Neural Systems Lecture 3.3 David S. Touretzky October, 2015 David Marr: 1945-1980 10/05/15 Computational Models of Neural Systems 2 Marr

More information

Frequency of gamma oscillations routes flow of information in the hippocampus

Frequency of gamma oscillations routes flow of information in the hippocampus Vol 46 9 November 9 doi:.38/nature8573 LETTERS Frequency of gamma oscillations routes flow of information in the hippocampus Laura Lee Colgin, Tobias Denninger {, Marianne Fyhn {, Torkel Hafting {, Tora

More information

Divisive Inhibition in Recurrent Networks

Divisive Inhibition in Recurrent Networks Divisive Inhibition in Recurrent Networks Frances S. Chance and L. F. Abbott Volen Center for Complex Systems and Department of Biology Brandeis University Waltham MA 2454-911 Abstract Models of visual

More information