# ( ) a3 (Newton s version of Kepler s 3rd Law) Units: sec, m, kg

Size: px
Start display at page:

Download "( ) a3 (Newton s version of Kepler s 3rd Law) Units: sec, m, kg"

Transcription

1 Astronomy 18, UCSC Planets and Planetary Systems Generic Mid-Term Exam (A combination of exams from the past several times this class was taught) This exam consists of two parts: Part 1: Multiple Choice Questions Part 2: Short-Answer Questions. Equations you may want to refer to: K. E. = (1/2) m v 2 p 2 = a 3 (Kepler s 3rd Law) Units: Earth years, AU 4π 2 p 2 = G M 1 + M 2 ( ) a3 (Newton s version of Kepler s 3rd Law) Units: sec, m, kg G = m 3 kg sec 2 E = hf = hc /λ, h = 6.63 x joule sec Flux = σt 4 Watts/m 2, σ = Watts/ ( m 2 K 4 ) Speed of light: c = 300,000 km /sec 1 nm = 10-9 m Doppler shift: v c = Δλ λ 0 λ Diffraction limit (arc sec) = D where λ and D are in the same units 1

2 Part 1: Multiple Choice Questions 1) Why did Carl Sagan say that we are star stuff? a) The composition of most stars is about the same as the composition of our bodies b) Nearly every atom from which we are made was once inside of a star c) Nearly every atom from which we are made was once inside the Sun 2) What is an Astronomical Unit? a) The average speed of the Earth around the Sun b) The length of time it takes the Earth to go around the Sun in its orbit c) The average distance from the Earth to the Sun 3) Which object has the most kinetic energy? a) A 4,000 kg truck moving at 50 km/hr b) A 3,000 kg truck moving at 70 km/hr c) A 2,000 kg truck moving at 90 km/hr d) A 1,000 kg truck moving at 110 km/hr (this space left blank for scratch calculations) 4) How large is the acceleration of gravity at the surface of the Earth? a) 9.8 meters / sec downward b) 9.8 meters / sec 2 downward c) 9.8 m 2 / sec downward 5) If you drop a rock from a great height, about how fast will it be falling after 5 seconds, neglecting air resistance? a) 10 meters / sec b) 50 meters / sec c) It depends how heavy the rock is 6) Momentum is defined as a) mass times velocity b) mass times acceleration c) force time velocity d) force times acceleration 2

3 7) Circle all that apply: Kepler s third law, p 2 = a 3, means that a) A planet s period does not depend on the eccentricity of its orbit b) All orbits with the same semi-major axis have the same period c) The period of a planet does not depend on its mass d) Planets that are farther from the Sun move at slower average speeds than nearer planets e) All of the above 8) Circle all that apply: The frequency of a wave is a) the number of peaks passing by any point each second b) measured in cycles per second c) equal to the speed of the wave divided by the wavelength of the wave d) all of the above 9) When white light passes through a cool cloud of gas, we see a) thermal radiation b) an absorption line spectrum c) an emission line spectrum 10) What do we mean by the diffraction limit of a telescope? a) It is the maximum size to which a telescope lens or mirror can be built b) It describes the farthest distance to which a telescope can see c) It describes the maximum exposure time for images captured with a telescope d) It is the best angular resolution the telescope could achieve, if its optical quality were perfect and if there were no distortions due to the atmosphere 11) What is the primary purpose of adaptive optics? a) To improve the magnification of space telescopes b) To eliminate the distorting effects of atmospheric turbulence for telescopes on the ground c) To increase the collecting area of telescopes on the ground d) To allow several small telescopes to work together with the effective angular resolution of a single larger telescope 12) What percentage of the mass of the early solar nebula consisted of the elements hydrogen and helium? a) 0.5 percent b) 5 percent c) 50 percent d) 98 percent 3

4 13) What was the first frost line of the Solar System? a) The distance from the Sun where temperatures were low enough for metals to condense. Roughly between the Sun and the present-day orbit of Mercury. b) The distance from the Sun where temperatures were low enough for rocks to condense. Roughly between the present-day orbits of Mercury and Venus. c) The distance from the Sun where temperatures were low enough for hydrogen compounds to condense into ices. Roughly between the present-day orbits of Mars and Jupiter. d) The distance from the Sun where temperatures were low enough for hydrogen and helium to condense. Roughly between the present-day orbits of Saturn and Uranus. 14) Why are the inner planets made of denser materials than the outer planets? a) Denser materials were heavier and sank to the center of the solar nebula. b) In the inner part of the nebula, only metals and rocks were able to condense because of the high temperatures there. c) Early in the life of the solar nebula when the protoplanetary disk was spinning faster, centrifugal forces flung the lighter materials toward the outer part of the nebula. 15) According to the nebular hypothesis for Solar System formation, what are the asteroids and comets? a) They are shattered remains of collisions between planets b) They are shattered remains of collisions between moons c) They are leftover planetesimals that never accreted into planets d) They are chunks of rock or ice that condensed long after the planets had formed 16) The age of our Solar System is approximately a) 10,000 years b) 4.6 million years c) 4.6 billion years d) 13 billion years 4

5 Part 2: Short-Answer Questions Be sure to explain each step of your reasoning in words as well as in symbols, and be sure to clearly state what units you are using. That way we can give you partial credit even if your answer isn't complete. 1) How far is a light-year? Show your work clearly in the space below, and indicate what units you are using. Hint: refer to speed of light in the list of equations. 2) The Moon orbits the Earth in an average of 27.3 days at an average distance of 384,000 km. Using Newton s version of Kepler s third law (see equation section), calculate the mass of the Earth. You may neglect the mass of the Moon compared with the mass of the Earth. Be sure to use consistent units (e.g. kg, meters, sec), and describe your reasoning below: 5

6 3) Suppose that when the Sun was very young, its surface temperature was 18,000K (rather than the 6,000K that it is today). How much more thermal radiation flux would the young Sun be emitting? Be sure to state what units you are using. 4) In a hydrogen atom, the transition from level 2 to level 1 has a rest wavelength of nm. (1 nm = 10-9 meter.) Suppose you observe spectra of two stars and find that this line is at a wavelength of nm in Star A, and at nm in Star B. a) Describe whether each star is moving towards us or away from us. Which star is moving fastest relative to us? Hint: you will not need a calculator to answer the questions in part a). b) Calculate the speeds of Stars A and B. Be sure to state your units, and whether each star is moving towards or away from us. 6

7 5) The diffraction-limited angular resolution of a 10-m diameter telescope is about 0.02 arc sec for infrared light whose wavelength is 1 micron (1 micron = 10-6 meters). Let s say that you wanted to build a radio telescope that would detect radio waves at a wavelength of 10-2 m = 1 cm. What would the diameter of the radio telescope have to be in order to achieve an angular resolution of 0.02 arc sec? How big is this in km? Is this practical? How else might you achieve this angular resolution? 7

8 7) In the entire early Solar System, assume that the density of material forming solid planetesimals was 3 x 10 3 kg m -3. How many planetesimals of 100-km diameter would it take to form a body with the mass of the Earth, which has a mass of 6 x kg? Hint: It is a reasonable approximation to treat these planetesimals as spheres. The volume V of a sphere of radius R is given by V = (4/3) π R 3. 8

### What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1

What is it like? When did it form? How did it form The Solar System Fall, 2005 Astronomy 110 1 Fall, 2005 Astronomy 110 2 The planets all orbit the sun in the same direction. The Sun spins in the same

### Currently, the largest optical telescope mirrors have a diameter of A) 1 m. B) 2 m. C) 5 m. D) 10 m. E) 100 m.

If a material is highly opaque, then it reflects most light. absorbs most light. transmits most light. scatters most light. emits most light. When light reflects off an object, what is the relation between

### ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics

ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics Instructions This exam is closed book and closed notes, although you may

### The Big Bang Theory (page 854)

Name Class Date Space Homework Packet Homework #1 Hubble s Law (pages 852 853) 1. How can astronomers use the Doppler effect? 2. The shift in the light of a galaxy toward the red wavelengths is called

### Astro 1010 Planetary Astronomy Sample Questions for Exam 3

Astro 1010 Planetary Astronomy Sample Questions for Exam 3 Chapter 6 1. Which of the following statements is false? a) Refraction is the bending of light when it passes from one medium to another. b) Mirrors

### Chapter 19 The Origin of the Solar System

Chapter 19 The Origin of the Solar System Early Hypotheses catastrophic hypotheses, e.g., passing star hypothesis: Star passing closely to the the sun tore material out of the sun, from which planets could

### Astronomy 103: First Exam

Name: Astronomy 103: First Exam Stephen Lepp October 27, 2010 Each question is worth 2 points. Write your name on this exam and on the scantron. 1 Short Answer A. What is the largest of the terrestrial

### Today. Solar System Formation. a few more bits and pieces. Homework due

Today Solar System Formation a few more bits and pieces Homework due Pluto Charon 3000 km Asteroids small irregular rocky bodies Comets icy bodies Formation of the Solar System How did these things come

### Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am

Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Planetology II Key characteristics Chemical elements and planet size Radioactive dating Solar system formation Solar nebula

### Formation of the Solar System Chapter 8

Formation of the Solar System Chapter 8 To understand the formation of the solar system one has to apply concepts such as: Conservation of angular momentum Conservation of energy The theory of the formation

### What does the solar system look like?

What does the solar system look like? The solar system exhibits clear patterns of composition and motion. These patterns are far more important and interesting than numbers, names, and other trivia. Relative

### on it, can still ripen a bunch of grapes as though it had nothing else in the Universe to do. Galileo Galilei

The Sun, with all the planets revolving around it, and depending on it, can still ripen a bunch of grapes as though it had nothing else in the Universe to do. Galileo Galilei What We Will Learn Today Where

### 5. How did Copernicus s model solve the problem of some planets moving backwards?

MODELS OF THE SOLAR SYSTEM Reading Guide: Chapter 27.2 (read text pages 691-694) 1k. Recognize the cumulative nature of scientific evidence. 1n. Know that when an observation does not agree with an accepted

### 1. Solar System Overview

Astronomy 241: Foundations of Astrophysics I 1. Solar System Overview 0. Units and Precision 1. Constituents of the Solar System 2. Motions: Rotation and Revolution 3. Formation Scenario Units Text uses

### Which of the following correctly describes the meaning of albedo?

Which of the following correctly describes the meaning of albedo? A) The lower the albedo, the more light the surface reflects, and the less it absorbs. B) The higher the albedo, the more light the surface

### X Rays must be viewed from space used for detecting exotic objects such as neutron stars and black holes also observing the Sun.

6/25 How do we get information from the telescope? 1. Galileo drew pictures. 2. With the invention of photography, we began taking pictures of the view in the telescope. With telescopes that would rotate

### Where did the solar system come from?

Chapter 06 Part 2 Making the Planetary Donuts Where did the solar system come from? Galactic Recycling Elements that formed planets were made in stars and then recycled through interstellar space. Evidence

### WHAT WE KNOW. Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So..

ASTRONOMY THE BIG BANG THEORY WHAT WE KNOW Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So.. WHAT DOES THIS MEAN? If

### Astro 1: Introductory Astronomy

Astro 1: Introductory Astronomy David Cohen Class 16: Thursday, March 20 Spring 2014 large cloud of interstellar gas and dust - giving birth to millions of stars Hubble Space Telescope: Carina Nebula

### Earth Science 11 Learning Guide Unit Complete the following table with information about the sun:

Earth Science 11 Learning Guide Unit 2 Name: 2-1 The sun 1. Complete the following table with information about the sun: a. Mass compare to the Earth: b. Temperature of the gases: c. The light and heat

### 9/22/ A Brief Tour of the Solar System. Chapter 6: Formation of the Solar System. What does the solar system look like?

9/22/17 Lecture Outline 6.1 A Brief Tour of the Solar System Chapter 6: Formation of the Solar System What does the solar system look like? Our goals for learning: What does the solar system look like?

### Chapter 8 Lecture. The Cosmic Perspective Seventh Edition. Formation of the Solar System

Chapter 8 Lecture The Cosmic Perspective Seventh Edition Formation of the Solar System Formation of the Solar System 8.1 The Search for Origins Our goals for learning: Develop a theory of solar system

### Our Planetary System & the Formation of the Solar System

Our Planetary System & the Formation of the Solar System Chapters 7 & 8 Comparative Planetology We learn about the planets by comparing them and assessing their similarities and differences Similarities

### Solar System Formation

Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities

### 9.2 - Our Solar System

9.2 - Our Solar System Scientists describe our solar system as the Sun and all the planets and other celestial objects, such as moons, comets, and asteroids, that are held by the Sun s gravity and orbit

### Clicker Question: Clicker Question: Clicker Question:

Test results Last day to drop without a grade is Feb 29 Grades posted in cabinet and online F D C B A In which direction would the Earth move if the Sun s gravitational force were suddenly removed from

### Test 2 Result: Sec 1. To see the scantron & problem set, contact the TA: Mr. He Gao

Test 2 Result: Sec 1 Column Statistics for: Test2 Count: 103 Average: 31.4 Median: 32.0 Maximum: 46.0 Minimum: 10.0 Standard Deviation: 7.94 To see the scantron & problem set, contact the TA: Mr. He Gao

### 9. Formation of the Solar System

9. Formation of the Solar System The evolution of the world may be compared to a display of fireworks that has just ended: some few red wisps, ashes, and smoke. Standing on a cool cinder, we see the slow

### Why are Saturn s rings confined to a thin plane? 1. Tidal forces 2. Newton s 1st law 3. Conservation of energy 4. Conservation of angular momentum

Announcements Astro 101, 12/2/08 Formation of the Solar System (text unit 33) Last OWL homework: late this week or early next week Final exam: Monday, Dec. 15, 10:30 AM, Hasbrouck 20 Saturn Moons Rings

### Stellar Astronomy Sample Questions for Exam 3

Stellar Astronomy Sample Questions for Exam 3 Chapter 7 1. A protostar is formed by a) the rapid expansion of gas from an exploding star. b) the gravitational collapse of a rotating interstellar cloud.

### 1 A Solar System Is Born

CHAPTER 16 1 A Solar System Is Born SECTION Our Solar System California Science Standards 8.2.g, 8.4.b, 8.4.c, 8.4.d BEFORE YOU READ After you read this section, you should be able to answer these questions:

### Midterm 1. - Covers Ch. 1, 2, 3, 4, & 5 (HW 1, 2, 3, & 4) ** bring long green SCANTRON 882 E short answer questions (show work)

Midterm 1 - Covers Ch. 1, 2, 3, 4, & 5 (HW 1, 2, 3, & 4) - 20 multiple choice/fill-in the blank ** bring long green SCANTRON 882 E - 10 short answer questions (show work) - formula sheet will be included

### Universe Celestial Object Galaxy Solar System

ASTRONOMY Universe- Includes all known matter (everything). Celestial Object Any object outside or above Earth s atmosphere. Galaxy- A large group (billions) of stars (held together by gravity). Our galaxy

### Solar System Formation/The Sun

Solar System Formation/The Sun Objective 4 Examine the orbital paths of planets and other astronomical bodies (comets and asteroids). Examine the theories of geocentric and heliocentric models and Kepler

### Comparative Planetology II: The Origin of Our Solar System. Chapter Eight

Comparative Planetology II: The Origin of Our Solar System Chapter Eight ASTR 111 003 Fall 2007 Lecture 06 Oct. 09, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6)

### Making a Solar System

Making a Solar System Learning Objectives! What are our Solar System s broad features? Where are asteroids, comets and each type of planet? Where is most of the mass? In what direction do planets orbit

### Other Planetary Systems (Chapter 13) Extrasolar Planets. Is our solar system the only collection of planets in the universe?

Other Planetary Systems (Chapter 13) Extrasolar Planets Is our solar system the only collection of planets in the universe? Based on Chapter 13 No subsequent chapters depend on the material in this lecture

### -Melissa Greenberg, Arielle Hoffman, Zachary Feldmann, Ryan Pozin, Elizabeth Weeks, Christopher Pesota, & Sara Pilcher

-Melissa Greenberg, Arielle Hoffman, Zachary Feldmann, Ryan Pozin, Elizabeth Weeks, Christopher Pesota, & Sara Pilcher Formation Overview All explanations as to how the solar system was formed are only

### The History of the Solar System. From cloud to Sun, planets, and smaller bodies

The History of the Solar System From cloud to Sun, planets, and smaller bodies The Birth of a Star Twenty years ago, we knew of only one star with planets the Sun and our understanding of the birth of

### AST 301 Introduction to Astronomy

AST 301 Introduction to Astronomy John Lacy RLM 16.332 471-1469 lacy@astro.as.utexas.edu Myoungwon Jeon RLM 16.216 471-0445 myjeon@astro.as.utexas.edu Bohua Li RLM 16.212 471-8443 bohuali@astro.as.utexas.edu

### Astronomy 1001/1005 Midterm (200 points) Name:

Astronomy 1001/1005 Midterm (00 points) Name: Instructions: Mark your answers on this test AND your bubble sheet You will NOT get your bubble sheet back One page of notes and calculators are allowed Use

### The Solar Nebula Theory

Reading: Chap. 21, Sect.21.1, 21.3 Final Exam: Tuesday, December 12; 4:30-6:30PM Homework 10: Due in recitation Dec. 1,4 Astro 120 Fall 2017: Lecture 25 page 1 Astro 120 Fall 2017: Lecture 25 page 2 The

### Origins and Formation of the Solar System

Origins and Formation of the Solar System 312-1 Describe theories on the formation of the solar system Smash, crash and bang The solar system is big, and big things have big origins A history of ideas

### Solar System Formation

Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities

### Planetarium observing is over. Nighttime observing starts next week.

Homework #2 was due today at 11:50am! It s too late now. Planetarium observing is over. Solar observing is over. Nighttime observing starts next week. Outline Switch Gears Solar System Introduction The

### Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2

Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2 Instructor: L. M. Khandro 1. Relatively speaking, objects with high temperatures emit their peak radiation in short wavelengths

### Comparative Planetology II: The Origin of Our Solar System. Chapter Eight

Comparative Planetology II: The Origin of Our Solar System Chapter Eight ASTR 111 003 Fall 2007 Lecture 07 Oct. 15, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6)

### Introduction to the Solar System

Introduction to the Solar System Sep. 11, 2002 1) Introduction 2) Angular Momentum 3) Formation of the Solar System 4) Cowboy Astronomer Review Kepler s Laws empirical description of planetary motion Newton

### Solar System Formation

Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities

### Brooks Observatory telescope observing this week

Brooks Observatory telescope observing this week Mon. - Thurs., 7:30 9:15 PM MW, 7:30 8:45 PM TR See the class web page for weather updates. This evening s session is cancelled. Present your blue ticket

### Planetary Interiors. Earth s Interior Structure Hydrostatic Equilibrium Heating Constituent Relations Gravitational Fields Isostasy Magnetism

Planetary Interiors Earth s Interior Structure Hydrostatic Equilibrium Heating Constituent Relations Gravitational Fields Isostasy Magnetism Isostasy Courtesy of U of Leeds Now apply this idea to topography

### 1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids

The Solar System 1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids The distances to planets are known from Kepler s Laws (once calibrated with radar ranging to Venus) How are planet

### Useful Formulas and Values

Name Test 1 Planetary and Stellar Astronomy 2017 (Last, First) The exam has 20 multiple choice questions (3 points each) and 8 short answer questions (5 points each). This is a closed-book, closed-notes

### Outline. Question of Scale. Planets Dance. Homework #2 was due today at 11:50am! It s too late now.

Outline Homework #2 was due today at 11:50am! It s too late now. Planetarium observing is over. Switch Gears Solar System Introduction The Planets, the Asteroid belt, the Kupier objects, and the Oort cloud

### Descriptive Astronomy (ASTR 108) Exam 2A March 29, 2010

Descriptive Astronomy (ASTR 108) Exam 2A March 29, 2010 Name: In each of the following multiple choice questions, select the best possible answer. First circle the answer on this exam, then in the line

### Lecture Outlines. Chapter 6. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines Chapter 6 Astronomy Today 7th Edition Chaisson/McMillan Chapter 6 The Solar System Units of Chapter 6 6.1 An Inventory of the Solar System 6.2 Measuring the Planets 6.3 The Overall Layout

### Name and Student ID Section Day/Time:

AY2 - Overview of the Universe - Midterm #1 - Instructor: Maria F. Duran Name and Student ID Section Day/Time: 1) Imagine we ve discovered a planet orbiting another star at 1 AU every 6 months. The planet

### Coriolis Effect - the apparent curved paths of projectiles, winds, and ocean currents

Regents Earth Science Unit 5: Astronomy Models of the Universe Earliest models of the universe were based on the idea that the Sun, Moon, and planets all orbit the Earth models needed to explain how the

### Test Name: 09.LCW.0352.SCIENCE.GR Q1.S.THEUNIVERSE-SOLARSYSTEMHONORS Test ID: Date: 09/21/2017

Test Name: 09.LCW.0352.SCIENCE.GR7.2017.Q1.S.THEUNIVERSE-SOLARSYSTEMHONORS Test ID: 243920 Date: 09/21/2017 Section 1.1 - According to the Doppler Effect, what happens to the wavelength of light as galaxies

### Solar System Forma-on

Solar System Forma-on The processes by which stars and planets form are ac-ve areas of research in modern astrophysics The forma-on of our own solar system is central to the first half of our course, and

### The Coriolis effect. Why does the cloud spin? The Solar Nebula. Origin of the Solar System. Gravitational Collapse

Origin of the Solar System Our theory must explain the data 1. Large bodies in the Solar System have orderly motions. 2. There are two types of planets. small, rocky terrestrial planets large, hydrogen-rich

### 8. Solar System Origins

8. Solar System Origins Chemical composition of the galaxy The solar nebula Planetary accretion Extrasolar planets Our Galaxy s Chemical Composition es Big Bang produced hydrogen & helium Stellar processes

### Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016 Why are celestial motions and forces important? They explain the world around us.

### Earth s Formation Unit [Astronomy] Student Success Sheets (SSS)

Page1 Earth s Formation Unit [Astronomy] Student Success Sheets (SSS) HS-ESSI-1; HS-ESS1-2; HS-ESS1-3; HS-ESSI-4 NGSS Civic Memorial High School - Earth Science A Concept # What we will be learning Mandatory

### Solution for Homework# 3. Chapter 5 : Review & Discussion

Solution for Homework# 3 Chapter 5 : Review & Discussion. The largest telescopes are reflecting telescopes, primarily because of 3 distinct disadvantages of the refracting telescope. When light passes

### Earth in the Universe Unit Notes

Earth in the Universe Unit Notes The Universe - everything everywhere, 15-20 billion years old Inside the universe there are billions of Galaxies Inside each Galaxy there are billions of Solar Systems

### Planets: Name Distance from Sun Satellites Year Day Mercury 0.4AU yr 60 days Venus yr 243 days* Earth 1 1 yr 1 day Mars 1.

The Solar System (Ch. 6 in text) We will skip from Ch. 6 to Ch. 15, only a survey of the solar system, the discovery of extrasolar planets (in more detail than the textbook), and the formation of planetary

### Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines Chapter 15 Astronomy Today 7th Edition Chaisson/McMillan Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Terrestrial and Jovian Planets

### Formation of the Solar System. What We Know. What We Know

Formation of the Solar System Many of the characteristics of the planets we discussed last week are a direct result of how the Solar System formed Until recently, theories for solar system formation were

### Other worlds. Innumerable suns exist;

Innumerable suns exist; Other worlds innumerable earths revolve around these suns in a manner similar to the way the seven planets revolve around our Sun. Living beings inhabit these worlds. Giordano Bruno

### Origin of the Solar System

Origin of the Solar System and Solar System Debris 1 Debris comets meteoroids asteroids gas dust 2 Asteroids irregular, rocky hunks small in mass and size Ceres - largest, 1000 km in diameter (1/3 Moon)

### Formation of the Universe

A. The Universe 1. 2. 3. How did the universe begin? Only one exists or are there more? Composed of space and 100 billion galaxies A galaxy is a grouping of millions or billions of stars kept together

### Observational Astronomy - Lecture 6 Solar System I - The Planets

Observational Astronomy - Lecture 6 Solar System I - The Planets Craig Lage New York University - Department of Physics craig.lage@nyu.edu March 23, 2014 1 / 39 The Sun and the Earth The Sun is 23,000

### Chapter 15: The Origin of the Solar System

Chapter 15: The Origin of the Solar System The Solar Nebula Hypothesis Basis of modern theory of planet formation: Planets form at the same time from the same cloud as the star. Planet formation sites

### Moon Obs #1 Due! Moon visible: early morning through afternoon. 6 more due June 13 th. 15 total due June 25 th. Final Report Due June 28th

Moon Obs #1 Due! Moon visible: early morning through afternoon 6 more due June 13 th 15 total due June 25 th Final Report Due June 28th Our Solar System Objectives Overview of what is in our solar system

### Section 25.1 Exploring the Solar System (pages )

Name Class Date Chapter 25 The Solar System Section 25.1 Exploring the Solar System (pages 790 794) This section explores early models of our solar system. It describes the components of the solar system

### Lecture 13. Gravity in the Solar System

Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

### HNRS 227 Fall 2006 Chapter 13. What is Pluto? What is a Planet? There are two broad categories of planets: Terrestrial and Jovian

Key Points of Chapter 13 HNRS 227 Fall 2006 Chapter 13 The Solar System presented by Prof. Geller 24 October 2006 Planets Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune Dwarf Planets Pluto,

### Lunar Eclipse. Solar Eclipse

Lunar Eclipse SUN Moon Solar Eclipse SUN SUN Moon Total solar eclipse Partial solar eclipse Moon Phases What does the moon look like from at each position? G H F A E B D C SUNLIGHT Refracting Telescopes

### The Solar System LEARNING TARGETS. Scientific Language. Name Test Date Hour

Name Test Date Hour Astronomy#3 - Notebook The Solar System LEARNING TARGETS I can describe the objects that make up our solar system. I can identify the inner and outer planets. I can explain the difference

### The scientific theory I like best is that the rings of. Saturn are composed entirely of lost airline luggage. Mark Russell

The scientific theory I like best is that the rings of Saturn are composed entirely of lost airline luggage. Mark Russell What We Will Learn Today Why does Saturn have such a low density and how does that

### Astronomy 241: Foundations of Astrophysics I. The Solar System

Astronomy 241: Foundations of Astrophysics I. The Solar System Astronomy 241 is the first part of a year-long introduction to astrophysics. It uses basic classical mechanics and thermodynamics to analyze

### Properties of the Solar System

Properties of the Solar System Dynamics of asteroids Telescopic surveys, especially those searching for near-earth asteroids and comets (collectively called near-earth objects or NEOs) have discovered

### Why is it hard to detect planets around other stars?

Extrasolar planets Why is it hard to detect planets around other stars? Planets are small and low in mass Planets are faint The angular separation between planets and their stars is tiny Why is it hard

### Chapter Outline. Earth and Other Planets. The Formation of the Solar System. Clue #1: Planetary Orbits. Clues to the Origin of the Solar System

Chapter Outline Earth and Other Planets The Formation of the Solar System Exploring the Solar System Chapter 16 Great Idea: Earth, one of the planets that orbit the Sun, formed 4.5 billion years ago from

### Astronomy Final Exam Study Guide

Astronomy Final Exam Study Guide 1. Daily motion is diurnal. Yearly motion is annual. 2. The Celestial equator lies directly above the Earth s equator. The Celestial North Pole lies directly above the

### Patterns in the Solar System (Chapter 18)

GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Patterns in the Solar System (Chapter 18) For this assignment you will require: a calculator, colored pencils, a metric ruler, and meter stick.

### NSCI 314 LIFE IN THE COSMOS

NSCI 314 LIFE IN THE COSMOS 2 BASIC ASTRONOMY, AND STARS AND THEIR EVOLUTION Dr. Karen Kolehmainen Department of Physics CSUSB COURSE WEBPAGE: http://physics.csusb.edu/~karen MOTIONS IN THE SOLAR SYSTEM

### Lecture 16. How did it happen? How long did it take? Where did it occur? Was there more than 1 process?

Planet formation in the Solar System Lecture 16 How did it happen? How long did it take? Where did it occur? Was there more than 1 process? Planet formation How do planets form?? By what mechanism? Planet

### Attendance Quiz. Are you here today? (a) yes (b) no (c) Captain, the sensors indicate a class M planet orbiting this star. Here!

Extrasolar Planets Attendance Quiz Are you here today? Here! (a) yes (b) no (c) Captain, the sensors indicate a class M planet orbiting this star Guest Lectures Thursday, May 4 Life in the Zooniverse:

### Galaxies: enormous collections of gases, dust and stars held together by gravity Our galaxy is called the milky way

Celestial bodies are all of the natural objects in space ex. stars moons, planets, comets etc. Star: celestial body of hot gas that gives off light and heat the closest star to earth is the sun Planet:

### Motion of the planets

Our Solar system Motion of the planets Our solar system is made up of the sun and the 9 planets that revolve around the sun Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune & Pluto (maybe?)

### The History of the Earth

The History of the Earth We have talked about how the universe and sun formed, but what about the planets and moons? Review: Origin of the Universe The universe began about 13.7 billion years ago The Big

### Earth Space Systems. Semester 1 Exam. Astronomy Vocabulary

Earth Space Systems Semester 1 Exam Astronomy Vocabulary Astronomical Unit- Aurora- Big Bang- Black Hole- 1AU is the average distance between the Earth and the Sun (93 million miles). This unit of measurement

### Chapter 8 Formation of the Solar System

Chapter 8 Formation of the Solar System SUMMARY OF STAGES IN FORMATION OF SOLAR SYSTEM STARTING POINT: A ROTATING SPHERICAL NEBULA with atoms made by Galactic recycling 1-GRAVITATIONAL CONTRACTION AND

### The Solar System. Name Test Date Hour

Name Test Date Hour Astronomy#3 - Notebook The Solar System LEARNING TARGETS I can describe the objects that make up our solar system. I can identify the inner and outer planets. I can explain the difference

### Dating the Universe. But first... Lecture 6: Formation of the Solar System. Observational Constraints. How did the Solar System Form?

Dating the Universe Lecture 6: Formation of the Solar System Astro 202 Prof. Jim Bell (jfb8@cornell.edu) Spring 2008 But first... Graded Paper 1 returned today... Paper 2 is due at beginning of class on

### Cosmology Vocabulary

Cosmology Vocabulary Vocabulary Words Terrestrial Planets The Sun Gravity Galaxy Lightyear Axis Comets Kuiper Belt Oort Cloud Meteors AU Nebula Solar System Cosmology Universe Coalescence Jovian Planets