Solar System Formation

Size: px
Start display at page:

Download "Solar System Formation"

Transcription

1 Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities among the objects in our solar system Figure out what physical processes could have led to them Then construct a model of how our solar system formed based on this This model must explain our own solar system but might or might not explain other planetary systems If not, modify the model to accommodate discrepancies In other words, carry out the scientific process Let s look at the solar system characteristics comparative planetology has to work with Solar System Formation -- Characteristics of Our Solar System 1. Large bodies have orderly motions and are isolated from each other All planets and most moons have nearly circular orbits going in the same direction in nearly the same plane 1

2 Solar System Formation -- Characteristics of Our Solar System 1. Large bodies have orderly motions and are isolated from each other All planets and most moons have nearly circular orbits going in the same direction in nearly the same plane The Sun and most of the planets rotate in this same direction as well Solar System Formation -- Characteristics of Our Solar System 1. Large bodies have orderly motions and are isolated from each other All planets and most moons have nearly circular orbits going in the same direction in nearly the same plane The Sun and most of the planets rotate in this same direction as well Most moons orbit their planet in the direction it rotates Solar System Formation -- Characteristics of Our Solar System 2. Planets fall into two main categories Small, rocky terrestrial planets near the Sun Large, hydrogen-rich jovian planets far from the Sun 2

3 Solar System Formation -- Characteristics of Our Solar System 2. Planets fall into two main categories Solar System Formation -- Characteristics of Our Solar System 3. Swarms of asteroids and comets populate the solar system Asteroids are concentrated in the asteroid belt Solar System Formation -- Characteristics of Our Solar System 3. Swarms of asteroids and comets populate the solar system Asteroids are concentrated in the asteroid belt Comets populate the regions known as the Kuiper belt and the Oort cloud 3

4 Solar System Formation -- Characteristics of Our Solar System 4. Several notable exceptions to these general trends stand out Planets with unusual axis tilts Surprisingly large moons Moons with unusual orbits Solar System Formation -- Characteristics of Our Solar System which any successful theory must account for 1. Large bodies in the solar system have orderly motions and are isolated from each other All planets and most moons have nearly circular orbits going in the same direction in nearly the same plane The Sun and most of the planets rotate in this same direction as well Most moons orbit their planet in the direction it rotates 2. Planets fall into two main categories Small, rocky terrestrial planets near the Sun Large, hydrogen-rich jovian planets farther out The jovian planets have many moons and rings of rock and ice 3. Swarms of asteroids and comets populate the solar system Asteroids are concentrated in the asteroid belt Comets populate the regions known as the Kuiper belt and the Oort cloud 4. Several notable exceptions to these general trends stand out Planets with unusual axis tilts Surprisingly large moons Moons with unusual orbits The nebular theory is the best current explanation of our solar system It is not a new idea the philosophers Emanuel Swedenborg and Immanuel Kant suggested it in the 1700s And like all scientific theories, it is still being refined and improved 4

5 It starts with cold interstellar clouds of gas and dust These clouds are mostly hydrogen and helium from the Big Bang But they contain heavier elements that were not formed in the Big Bang Astronomers call these metals (even though they re not necessarily metallic elements) Where did these heavier elements come from? They came from stars! Stars make heavier elements from lighter ones through nuclear fusion Stars make heavier elements from lighter ones through nuclear fusion The heavy elements (the metals ) mix into the interstellar medium when the stars die 5

6 Stars make heavier elements from lighter ones through nuclear fusion The heavy elements (the metals ) mix into the interstellar medium when the stars die And then new stars form from the enriched gas and dust And the cycle continues And at the same time stars are forming planetary systems can form Here s how it works A large cloud -- a nebula perhaps 1 light year across -- floats in space 6

7 A large cloud -- a nebula perhaps 1 light year across -- floats in space The cloud begins to collapse WHY?... Local density increase A large cloud -- a nebula perhaps 1 light year across -- floats in space The cloud begins to collapse -- local density increase Conservation of angular As it collapses it begins to spin faster WHY?... momentum A large cloud -- a nebula perhaps 1 light year across -- floats in space The cloud begins to collapse -- local density increase As it collapses it begins to spin faster -- conservation of angular momentum And as it spins faster, it flattens out WHY?... Collision and motion effects 7

8 A large cloud -- a nebula perhaps 1 light year across -- floats in space The cloud begins to collapse -- local density increase As it collapses it begins to spin faster -- conservation of angular momentum And as it spins faster, it flattens out -- collision and motion effects At the same time, it begins to heat up in the center WHY?... Conversion of gravitational potential energy into thermal energy A large cloud -- a nebula perhaps 1 light year across -- floats in space The cloud begins to collapse -- local density increase As it collapses it begins to spin faster -- conservation of angular momentum And as it spins faster, it flattens out -- collision and motion effects At the same time, it begins to heat up in the center -- conversion of potential to thermal energy And when it gets hot enough, a star forms in the center And in the disk around the forming star, planets can form What type of planets can form depends on what the cloud is made of This is what our own cloud the solar nebula was made of But how do we know this? 8

9 This is what our own cloud the solar nebula was made of But how do we know this? This is how the absorption line spectrum of the Sun It tells us the composition of the gas on the surface of the Sun This is the composition of the Sun s surface gas its atmosphere We think the solar nebula had the same composition But a skeptic might say, is it reasonable to say this? After all, the solar nebula collapsed 4.6 billion years ago The Sun s been making new atoms with nuclear fusion ever since Wouldn t this change the composition of the Sun s atmosphere? The answer has to do with where the new atoms are being made 9

10 The fusion reactions making new atoms generate the energy that gives us sunlight The critical question is, Where are these fusion reactions taking place? The answer: In the Sun s core And that s in the Sun s center, far from the surface So the surface layers should be essentially unchanged And their composition should be very similar to the solar nebula the Sun formed from So it seems reasonable to say that the composition of Sun s atmosphere is the same as the composition of the solar nebula The key to the nebular theory is the condensation temperature of these materials that s the temperature at which they condense into solid form The nebula was initially very cold, so everything except H and He was in solid form But it heated up as it collapsed and the temperature was different at different distances from the center 10

11 This graph shows a modeled temperature profile of the solar nebula along with an artist s rendition of the nebula The temperature was hottest in the center, and went down away from the center There was a mixture of metals, rocks, and hydrogen compounds throughout the nebula These could only be solid where the temperature was below their condensation temperature So different chemical components of the nebula condensed at different distances A mixture of solid rock and metal existed out to about 4.5 AU from the center At 4.5 AU, the temperature dropped low enough for hydrogen compounds to condense, too The boundary between where they could and could not condense is called the frost line, snow line, or ice line The frost line was located between the present-day orbits of Mars and Jupiter Once materials condense into solid form they can stick together This is called accretion And it launches the next step in planet formation Core accretion 11

12 Small clumps grow like snowballs until they become planetesimals the size of moons The planetesimals collide and coalesce until planets are born This suffices to explain terrestrial planet formation, but jovian planets require adding an extra layer to the process...literally Jovian planets also begin by core accretion But this happens in the outer solar system, beyond the frost line, where there is 3x more solid material available So the cores get much bigger (10-15 times the mass of Earth) Unlike terrestrials, the jovian cores gather gas from the nebula and retain it This is because: They are more massive stronger gravity It is colder lower escape speeds for gas The result is a gas giant -- a jovian planet 12

13 There is an alternative to the core accretion model disk-instability" In it, cool gas beyond the frost line collapses directly into jovian planets much like the solar nebula collapsed to form the solar system This takes much less time than the "core-accretion model" And this makes it consistent with claims that some jovians form faster than would be possible by core-accretion It is not known for certain whether jovian planets form by core accretion or disk instability Perhaps they form one way in some circumstances and the other way in others The main difference is in the way the process begins Once it starts, the nebular gas swirls in an accretion disk around the growing jovian planet In that accretion disk, moons would form around the jovian planet like planets formed in the solar nebula around the Sun The process of jovian and terrestrial planet formation was finalized by the infant Sun As the Sun became a star, a strong solar wind blew out from it and cleared the remaining nebular gas away thus halting the growth of the planets from the solar nebula 13

14 A successful theory must explain our solar system So how does this one do? How Does the Nebular Theory Do? Large bodies in the solar system have orderly motions and are isolated from each other : All planets and most moons have nearly circular orbits going in the same direction in nearly the same plane The Sun and most of the planets rotate in this same direction as well Most moons orbit their planet in the direction it rotates Planets fall into two main categories: Small, rocky terrestrial planets near the Sun No rings and few, if any, moons Large, hydrogen-rich jovian planets farther out Rings of rock and ice and many moons Swarms of asteroids and comets populate the solar system: Asteroids are concentrated in the asteroid belt Comets in the Kuiper belt and the Oort cloud Several notable exceptions to these general trends stand out: Planets with unusual axis tilts Surprisingly large moons Moons with unusual orbits How Does the Nebular Theory Do? Large bodies in the solar system have orderly motions and are isolated from each other: All planets and most moons have nearly circular orbits going in the same direction in nearly the same plane The planets and moons orbit in the direction that the solar nebula was spinning The Sun and most of the planets rotate in this same direction as well Conservation of angular momentum Most moons orbit their planet in the direction it rotates Conservation of angular momentum 14

15 How Does the Nebular Theory Do? Large bodies in the solar system have orderly motions and are isolated from each other Planets fall into two main categories: Large, hydrogen-rich jovian planets far from the Sun, with rings of rock and ice and many moons Small, rocky terrestrial planets near the Sun with no rings and few, if any, moons How Does the Nebular Theory Do? Large bodies in the solar system have orderly motions and are isolated from each other Planets fall into two main categories: Large, hydrogen-rich jovian planets far from the Sun, with rings of rock and ice and many moons Outside the frost line, lower temperatures led to condensation of hydrogen compounds (ices) along with metals and rocks Cores large enough to capture gas could form Moons made of rock and ice formed in the swirling jovian nebula around each growing jovian planet Rings appear when some of those moons get torn apart by tidal forces Small, rocky terrestrial planets near the Sun with no rings and few, if any, moons Inside the frost line, higher temperatures meant that only metals and rocks could condense, providing less than 1/3 as much material and leading to small, rocky cores The smaller cores and higher temperatures prevented gas capture, and moon and ring formation How Does the Nebular Theory Do? Large bodies in the solar system have orderly motions and are isolated from each other Planets fall into two main categories Swarms of asteroids and comets populate the solar system: Asteroids mainly in the asteroid belt The asteroids in the asteroid belt are a frustrated planet The Trojan asteroids are planetesimals that became locked in gravitational "wells" caused by the gravity of Jupiter and the Sun 15

16 How Does the Nebular Theory Do? Large bodies in the solar system have orderly motions and are isolated from each other Planets fall into two main categories Swarms of asteroids and comets populate the solar system: Asteroids mainly in the asteroid belt Comets in the Kuiper belt and the Oort cloud How Does the Nebular Theory Do? Large bodies in the solar system have orderly motions and are isolated from each other Planets fall into two main categories Swarms of asteroids and comets populate the solar system: Asteroids mainly in the asteroid belt Comets in the Kuiper belt and the Oort cloud The icy planetesimals that formed beyond the frost line near Jupiter and Saturn were thrown in random orbits, forming the Oort Cloud How Does the Nebular Theory Do? Large bodies in the solar system have orderly motions and are isolated from each other Planets fall into two main categories Swarms of asteroids and comets populate the solar system: Asteroids mainly in the asteroid belt Comets in the Kuiper belt and the Oort cloud Those that formed beyond Neptune were relatively unaffected, and make up the Kuiper Belt 16

17 How Does the Nebular Theory Do? Large bodies in the solar system have orderly motions and are isolated from each other Planets fall into two main categories Swarms of asteroids and comets populate the solar system: Asteroids mainly in the asteroid belt Comets in the Kuiper belt and the Oort cloud Those that formed near Uranus and Neptune were flung into the inner solar system, and some provided water for Earth and other terrestrial planets How Does the Nebular Theory Do? Large bodies in the solar system have orderly motions and are isolated from each other Planets fall into two main categories Swarms of asteroids and comets populate the solar system: Several notable exceptions to these general trends stand out: Moons with unusual orbits Unusual (backward) orbits indicate captured objects Planets with unusual axis tilts The unusual axis tilts can be explained by giant impacts during the Era of Heavy Bombardment Surprisingly large moons The surprisingly large moon is our own It is unlikely that it formed at the same time as Earth because its density is lower But Earth is too small to have captured it It too can be explained by a giant impact 17

18 There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up 18

19 There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized The nebula was hottest in the center There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized The nebula was hottest in the center The farther away from the center, the cooler it got 19

20 There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized The nebula was hottest in the center The farther away from the center, the cooler it got Different types of dust resolidified at different distances from the center depending on their condensation temperatures There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized The nebula was hottest in the center The farther away from the center, the cooler it got Different types of dust resolidified at different distances from the center depending on their condensation temperatures Close to the center only rock and metal dust was able to condense There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized The nebula was hottest in the center The farther away from the center, the cooler it got Different types of dust resolidified at different distances from the center depending on their condensation temperatures Close to the center only rock and metal dust was able to condense Far from the center, beyond the frost line, hydrogen compounds could also condense 20

21 There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized The nebula was hottest in the center The farther away from the center, the cooler it got Different types of dust resolidified at different distances from the center depending on their condensation temperatures Close to the center only rock and metal dust was able to condense Far from the center, beyond the frost line, hydrogen compounds could also condense The solid particles stuck together ( accreted ), forming bigger and bigger clumps until they were the size of planets There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized The nebula was hottest in the center The farther away from the center, the cooler it got Different types of dust resolidified at different distances from the center depending on their condensation temperatures Close to the center only rock and metal dust was able to condense Far from the center, beyond the frost line, hydrogen compounds could also condense The solid particles stuck together ( accreted ), forming bigger and bigger clumps until they were the size of planets Inside the frost line, where only rock and metal could condense, small terrestrial planets formed There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized The nebula was hottest in the center The farther away from the center, the cooler it got Different types of dust resolidified at different distances from the center depending on their condensation temperatures Close to the center only rock and metal dust was able to condense Far from the center, beyond the frost line, hydrogen compounds could also condense The solid particles stuck together ( accreted ), forming bigger and bigger clumps until they were the size of planets Inside the frost line, where only rock and metal could condense, small terrestrial planets formed Beyond the frost line, hydrogen compounds as well as rock and metal could condense, and much larger jovian planet cores could form 21

22 There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized The nebula was hottest in the center The farther away from the center, the cooler it got Different types of dust resolidified at different distances from the center depending on their condensation temperatures Close to the center only rock and metal dust was able to condense Far from the center, beyond the frost line, hydrogen compounds could also condense The solid particles stuck together ( accreted ), forming bigger and bigger clumps until they were the size of planets Inside the frost line, where only rock and metal could condense, small terrestrial planets formed Beyond the frost line, hydrogen compounds as well as rock and metal could condense, and much larger jovian planet cores could form The jovian cores were massive enough, and the temperatures cold enough, to attract and retain gas from the surrounding nebula, becoming our gas giant planets There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized The nebula was hottest in the center The farther away from the center, the cooler it got Different types of dust resolidified at different distances from the center depending on their condensation temperatures Close to the center only rock and metal dust was able to condense Far from the center, beyond the frost line, hydrogen compounds could also condense The solid particles stuck together ( accreted ), forming bigger and bigger clumps until they were the size of planets Inside the frost line, where only rock and metal could condense, small terrestrial planets formed Beyond the frost line, hydrogen compounds as well as rock and metal could condense, and much larger jovian planet cores could form The jovian cores were massive enough, and the temperatures cold enough, to attract and retain gas from the surrounding nebula, becoming our gas giant planets When the Sun matured into a star, the solar wind blew out the remaining gas and arrested the development of the planets There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized The nebula was hottest in the center The farther away from the center, the cooler it got Different types of dust resolidified at different distances from the center depending on their condensation temperatures Close to the center only rock and metal dust was able to condense Far from the center, beyond the frost line, hydrogen compounds could also condense The solid particles stuck together ( accreted ), forming bigger and bigger clumps until they were the size of planets Inside the frost line, where only rock and metal could condense, small terrestrial planets formed Beyond the frost line, hydrogen compounds as well as rock and metal could condense, and much larger jovian planet cores could form The jovian cores were massive enough, and the temperatures cold enough, to attract and retain gas from the surrounding nebula, becoming our gas giant planets When the Sun matured into a star, the solar wind blew out the remaining gas and arrested the development of the planets Planetesimals still remained, and these collected into the asteroid belt, Kuiper belt, or Oort cloud or were captured by planets as moons or collided with the planets, in some cases altering their axis tilts 22

23 There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized The nebula was hottest in the center The farther away from the center, the cooler it got Different types of dust resolidified at different distances from the center depending on their condensation temperatures Close to the center only rock and metal dust was able to condense Far from the center, beyond the frost line, hydrogen compounds could also condense The solid particles stuck together ( accreted ), forming bigger and bigger clumps until they were the size of planets Inside the frost line, where only rock and metal could condense, small terrestrial planets formed Beyond the frost line, hydrogen compounds as well as rock and metal could condense, and much larger jovian planet cores could form The jovian cores were massive enough, and the temperatures cold enough, to attract and retain gas from the surrounding nebula, becoming our gas giant planets When the Sun matured into a star, it emitted a strong solar wind that blew out the remaining gas and arrested the development of the planets Planetesimals still remained, and these collected into the asteroid belt, Kuiper belt, or Oort cloud or were captured by planets as moons or collided with the planets, in some cases altering their axis tilts When did all this happen, and how do we know? It was 4.6 billion years ago that our solar system formed But how do we know this?... From radiometric dating, using radioactive isotopes Every element exists as a mixture of isotopes Some isotopes, like 14 C, are radioactive Every radioactive isotope has its own half-life If a sample has a certain amount of radioactivity, after one half-life it will have half as much With radiometric dating, you estimate the initial amount of radioactivity in a sample, and determine its age from the amount that s left When did all this happen? Carbon-14 ( 14 C) provides a familiar example of radiometric dating It s used to date mummies, archaeological artifacts, and the like Here s how it works 14 C is produced in the upper atmosphere Living animals and plants take in carbon, which has a certain proportion of 14 C The proportion is maintained as long as they are living When they die, the 14 C decays, and the proportion decreases The proportion of 14 C left in their carbon tells how many half-lives since they died It s useful for dating things up to ~60,000 years old But its half-life of ~5700 years is too short to be useful in measuring the age of our solar system 23

24 When did all this happen? Carbon-14 ( 14 C) provides a familiar example of radiometric dating It s used to date mummies, archaeological artifacts, and the like The diagram shows how it works 14 C is useful for dating things up to ~60,000 years old But its half-life of ~5700 years is too short to be useful in measuring the age of our solar system When did all this happen? One isotope whose half-life is long enough is potassium-40 ( 40 K) 40 K decays to argon-40 ( 40 Ar) with a half-life of 1.25 billion years 40 K is found in rock along with 40 Ar from its decay If the rock is melted, the 40 Ar escapes as a gas When the rock cools and resolidifies, it contains 40 K, but no 40 Ar When did all this happen? One isotope whose half-life is long enough is potassium-40 ( 40 K) 40 K decays to argon-40 ( 40 Ar) with a half-life of 1.25 billion years 40 K is found in rock along with 40 Ar from its decay If the rock is melted, the 40 Ar escapes as a gas When the rock cools and resolidifies, it contains 40 K, but no 40 Ar So by measuring the ratio of 40 Ar to 40 K in a piece of rock, you can determine how long it s been since the rock solidified 24

25 When did all this happen? How can 40 K be used to date the formation of the solar system? The solar system formed from the solar nebula, a vast cloud of gas and (solid) dust The solid (cold) dust particles initially contained both 40 K and 40 Ar But as the nebula contracted and heated, the dust vaporized, and the 40 Ar was released When the dust condensed to solid form again, it contained 40 K, but not 40 Ar If rocks accreted from this dust could be found unchanged, their age would be the age of the solar system This is a type of meteorite called a chondrite Chondrites have not melted since they accreted from the nebular dust when the solar system formed So whatever 40 Ar they contain has appeared since then When did all this happen? How can 40 K be used to date the formation of the solar system? The solar system formed from the solar nebula, a vast cloud of gas and (solid) dust The solid (cold) dust particles initially contained both 40 K and 40 Ar But as the nebula contracted and heated, the dust vaporized, and the 40 Ar was released When the dust condensed to solid form again, it contained 40 K, but not 40 Ar If rocks accreted from this dust could be found unchanged, their age would be the age of the solar system This is a type of meteorite called a chondrite Chondrites have not melted since they accreted from the nebular dust when the solar system formed So whatever 40 Ar they contain has appeared since then Radiometric dating using 40 Ar/ 40 K shows that chondrites formed 4.6 billion years ago The age determined using other isotopes is similar, and this gives us confidence that it is correct Is ours the only solar system? Observation of other stars reveals many of them surrounded by disks of dust and gas These protoplanetary disks are exactly what the nebular theory predicts But until the 1990s, there was no convincing evidence for planets around other stars As of today, more than 3500 extrasolar planets or exoplanets have been confirmed NASA Exoplanet Archive The Extrasolar Planet Encyclopaedia 25

26 Detecting Extrasolar Planets by Radial Velocity The first extrasolar planets were found by the radial velocity technique This technique depends on the gravitational effect of a planet on its star This image shows what would happen if Jupiter and the Sun were the only objects in our solar system They both would orbit around their common center of mass (on the surface of the Sun) Detecting Extrasolar Planets by Radial Velocity This image shows the actual path of the Sun around our solar system s center of mass In a system with more than one planet, the star s movement can be quite complicated The motion is mainly due to the effects of Jupiter and Saturn, because they are so massive Other stars are affected similarly by their planets Detecting Extrasolar Planets by Radial Velocity This back-and-forth motion of the star along the line of sight from Earth causes Doppler-shifting of its light And this can be detected in a light curve 26

27 Detecting Extrasolar Planets by Radial Velocity After recording the light curve, computer modeling is used to determine how many and what type of planets are there This light curve led to the discovery of the first planet orbiting a Sun-like star 51 Pegasi It is fairly simple, and is consistent with a single planet The period of the wobbling gives you the orbital period and therefore the distance (~0.05AU how?) The magnitude gives you the minimum mass of the planet (~.5M Jupiter how?) Detecting Extrasolar Planets by Radial Velocity This light curve is more complicated Detecting Extrasolar Planets by Radial Velocity This light curve is more complicated It is consistent with the triple-planet system at right 27

28 Detecting Extrasolar Planets by Transit In the transit method (used by the Kepler SpaceTelescope), astronomers look for a periodic decrease in the light from a star The decrease indicates that a planet is transiting the star, blocking some of the starlight How often and how much the light decreases gives information about the planet s orbit and size Combining this info with radial velocity info can give the density of the planet Detecting Extrasolar Planets by Imaging Planets do not emit their own light, and so are hard to see in telescopes, but a small number of extrasolar planets have been found this way The red object in the image above is the first of them It is orbiting a brown dwarf (the brighter object) Detecting Extrasolar Planets A few exoplanets have been found by gravitational microlensing In this method, the light from a distant star is bent by the gravity of an intervening star If the intervening star has a planet, the planet s gravity adds to the effect in a recognizable way A statistical analysis of planets detected by this technique led to the prediction that each star in the Milky Way has ~1.6 planets You can see a list of all the known extrasolar planets and more at The Extrasolar Planets Encyclopedia NASA Exoplanet Archive 28

29 Detecting Extrasolar Planets At one time, most confirmed exoplanets were very large and very close to their star This was not because extrasolar systems more like ours do not exist (they do) It was simply a reflection of the methods that are used They tend to be more sensitive to large planets close to their star Detecting Extrasolar Planets But the existence of hot Jupiters jovian planets very close to their star is not consistent with the nebular theory we have discussed Following the scientific method, we need to see if there is some way the nebular theory can be modified to account for this And there is Detecting Extrasolar Planets It s a matter of timing In our own solar system, the waking Sun expelled all the nebular gas and dust The strong solar wind produced when fusion was about to start blew it all away But if that hadn t happened, the planets and the nebular disk would interact 29

30 Detecting Extrasolar Planets and the planets would migrate inward The star still blows the nebula away when it finally comes alive But a jovian planet that formed beyond the frost line might find itself, after migration, closer to its star than Mercury is to our Sun And the nebular theory lives to fight another day 30

31 31

32 TRAPPIST-1 32

33 TRAPPIST-1 TRAPPIST-1 33

Solar System Formation

Solar System Formation Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities

More information

Solar System Formation

Solar System Formation Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities

More information

9. Formation of the Solar System

9. Formation of the Solar System 9. Formation of the Solar System The evolution of the world may be compared to a display of fireworks that has just ended: some few red wisps, ashes, and smoke. Standing on a cool cinder, we see the slow

More information

Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am

Astronomy.  physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Planetology II Key characteristics Chemical elements and planet size Radioactive dating Solar system formation Solar nebula

More information

What does the solar system look like?

What does the solar system look like? What does the solar system look like? The solar system exhibits clear patterns of composition and motion. These patterns are far more important and interesting than numbers, names, and other trivia. Relative

More information

The Coriolis effect. Why does the cloud spin? The Solar Nebula. Origin of the Solar System. Gravitational Collapse

The Coriolis effect. Why does the cloud spin? The Solar Nebula. Origin of the Solar System. Gravitational Collapse Origin of the Solar System Our theory must explain the data 1. Large bodies in the Solar System have orderly motions. 2. There are two types of planets. small, rocky terrestrial planets large, hydrogen-rich

More information

9/22/ A Brief Tour of the Solar System. Chapter 6: Formation of the Solar System. What does the solar system look like?

9/22/ A Brief Tour of the Solar System. Chapter 6: Formation of the Solar System. What does the solar system look like? 9/22/17 Lecture Outline 6.1 A Brief Tour of the Solar System Chapter 6: Formation of the Solar System What does the solar system look like? Our goals for learning: What does the solar system look like?

More information

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1 What is it like? When did it form? How did it form The Solar System Fall, 2005 Astronomy 110 1 Fall, 2005 Astronomy 110 2 The planets all orbit the sun in the same direction. The Sun spins in the same

More information

Chapter 8 Lecture. The Cosmic Perspective Seventh Edition. Formation of the Solar System

Chapter 8 Lecture. The Cosmic Perspective Seventh Edition. Formation of the Solar System Chapter 8 Lecture The Cosmic Perspective Seventh Edition Formation of the Solar System Formation of the Solar System 8.1 The Search for Origins Our goals for learning: Develop a theory of solar system

More information

Making a Solar System

Making a Solar System Making a Solar System Learning Objectives! What are our Solar System s broad features? Where are asteroids, comets and each type of planet? Where is most of the mass? In what direction do planets orbit

More information

Today. Solar System Formation. a few more bits and pieces. Homework due

Today. Solar System Formation. a few more bits and pieces. Homework due Today Solar System Formation a few more bits and pieces Homework due Pluto Charon 3000 km Asteroids small irregular rocky bodies Comets icy bodies Formation of the Solar System How did these things come

More information

-Melissa Greenberg, Arielle Hoffman, Zachary Feldmann, Ryan Pozin, Elizabeth Weeks, Christopher Pesota, & Sara Pilcher

-Melissa Greenberg, Arielle Hoffman, Zachary Feldmann, Ryan Pozin, Elizabeth Weeks, Christopher Pesota, & Sara Pilcher -Melissa Greenberg, Arielle Hoffman, Zachary Feldmann, Ryan Pozin, Elizabeth Weeks, Christopher Pesota, & Sara Pilcher Formation Overview All explanations as to how the solar system was formed are only

More information

Agenda. International Space Station (ISS) International Space Station (ISS) Can we see light from first stars? 9. Formation of the Solar System

Agenda. International Space Station (ISS) International Space Station (ISS) Can we see light from first stars? 9. Formation of the Solar System 9. Formation of the Solar System The evolution of the world may be compared to a display of fireworks that has just ended: some few red wisps, ashes, and smoke. Standing on a cool cinder, we see the slow

More information

Comparative Planetology I: Our Solar System

Comparative Planetology I: Our Solar System Comparative Planetology I: Our Solar System Guiding Questions 1. Are all the other planets similar to Earth, or are they very different? 2. Do other planets have moons like Earth s Moon? 3. How do astronomers

More information

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 7th Edition Chaisson/McMillan Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Terrestrial and Jovian Planets

More information

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight Comparative Planetology II: The Origin of Our Solar System Chapter Eight ASTR 111 003 Fall 2007 Lecture 07 Oct. 15, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6)

More information

Chapter 8 Formation of the Solar System

Chapter 8 Formation of the Solar System Chapter 8 Formation of the Solar System SUMMARY OF STAGES IN FORMATION OF SOLAR SYSTEM STARTING POINT: A ROTATING SPHERICAL NEBULA with atoms made by Galactic recycling 1-GRAVITATIONAL CONTRACTION AND

More information

Formation of the Solar System Chapter 8

Formation of the Solar System Chapter 8 Formation of the Solar System Chapter 8 To understand the formation of the solar system one has to apply concepts such as: Conservation of angular momentum Conservation of energy The theory of the formation

More information

Chapter 19 The Origin of the Solar System

Chapter 19 The Origin of the Solar System Chapter 19 The Origin of the Solar System Early Hypotheses catastrophic hypotheses, e.g., passing star hypothesis: Star passing closely to the the sun tore material out of the sun, from which planets could

More information

Radioactive Dating. U238>Pb206. Halflife: Oldest earth rocks. Meteors and Moon rocks. 4.5 billion years billion years

Radioactive Dating. U238>Pb206. Halflife: Oldest earth rocks. Meteors and Moon rocks. 4.5 billion years billion years U238>Pb206 Halflife: 4.5 billion years Oldest earth rocks 3.96 billion years Meteors and Moon rocks 4.6 billion years This is the time they solidified The solar system is older than this. Radioactive Dating

More information

Class 15 Formation of the Solar System

Class 15 Formation of the Solar System Class 16 Extra-solar planets The radial-velocity technique for finding extrasolar planets Other techniques for finding extrasolar planets Class 15 Formation of the Solar System What does a successful model

More information

Formation of the Solar System

Formation of the Solar System Formation of the Solar System What theory best explains the features of our solar system? The nebular theory states that our solar system formed from the gravitational collapse of a giant interstellar

More information

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight Comparative Planetology II: The Origin of Our Solar System Chapter Eight ASTR 111 003 Fall 2007 Lecture 06 Oct. 09, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6)

More information

Why are Saturn s rings confined to a thin plane? 1. Tidal forces 2. Newton s 1st law 3. Conservation of energy 4. Conservation of angular momentum

Why are Saturn s rings confined to a thin plane? 1. Tidal forces 2. Newton s 1st law 3. Conservation of energy 4. Conservation of angular momentum Announcements Astro 101, 12/2/08 Formation of the Solar System (text unit 33) Last OWL homework: late this week or early next week Final exam: Monday, Dec. 15, 10:30 AM, Hasbrouck 20 Saturn Moons Rings

More information

The History of the Solar System. From cloud to Sun, planets, and smaller bodies

The History of the Solar System. From cloud to Sun, planets, and smaller bodies The History of the Solar System From cloud to Sun, planets, and smaller bodies The Birth of a Star Twenty years ago, we knew of only one star with planets the Sun and our understanding of the birth of

More information

Chapter 15: The Origin of the Solar System

Chapter 15: The Origin of the Solar System Chapter 15: The Origin of the Solar System The Solar Nebula Hypothesis Basis of modern theory of planet formation: Planets form at the same time from the same cloud as the star. Planet formation sites

More information

Chapter 15 The Formation of Planetary Systems

Chapter 15 The Formation of Planetary Systems Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Formation of the Solar System 15.3 Terrestrial and Jovian Planets 15.4 Interplanetary Debris 15.5 Solar

More information

Formation of the Solar System. What We Know. What We Know

Formation of the Solar System. What We Know. What We Know Formation of the Solar System Many of the characteristics of the planets we discussed last week are a direct result of how the Solar System formed Until recently, theories for solar system formation were

More information

Astronomy 103: First Exam

Astronomy 103: First Exam Name: Astronomy 103: First Exam Stephen Lepp October 27, 2010 Each question is worth 2 points. Write your name on this exam and on the scantron. 1 Short Answer A. What is the largest of the terrestrial

More information

9.2 - Our Solar System

9.2 - Our Solar System 9.2 - Our Solar System Scientists describe our solar system as the Sun and all the planets and other celestial objects, such as moons, comets, and asteroids, that are held by the Sun s gravity and orbit

More information

Earth 110 Exploration of the Solar System Assignment 2: Solar System Formation Due in class Tuesday, Jan. 26, 2016

Earth 110 Exploration of the Solar System Assignment 2: Solar System Formation Due in class Tuesday, Jan. 26, 2016 Name: Section: Earth 110 Exploration of the Solar System Assignment 2: Solar System Formation Due in class Tuesday, Jan. 26, 2016 Can we use our observations of the solar system to explain how it formed?

More information

Brooks Observatory telescope observing this week

Brooks Observatory telescope observing this week Brooks Observatory telescope observing this week Mon. - Thurs., 7:30 9:15 PM MW, 7:30 8:45 PM TR See the class web page for weather updates. This evening s session is cancelled. Present your blue ticket

More information

Our Planetary System & the Formation of the Solar System

Our Planetary System & the Formation of the Solar System Our Planetary System & the Formation of the Solar System Chapters 7 & 8 Comparative Planetology We learn about the planets by comparing them and assessing their similarities and differences Similarities

More information

Test 2 Result: Sec 1. To see the scantron & problem set, contact the TA: Mr. He Gao

Test 2 Result: Sec 1. To see the scantron & problem set, contact the TA: Mr. He Gao Test 2 Result: Sec 1 Column Statistics for: Test2 Count: 103 Average: 31.4 Median: 32.0 Maximum: 46.0 Minimum: 10.0 Standard Deviation: 7.94 To see the scantron & problem set, contact the TA: Mr. He Gao

More information

1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids

1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids The Solar System 1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids The distances to planets are known from Kepler s Laws (once calibrated with radar ranging to Venus) How are planet

More information

Origins and Formation of the Solar System

Origins and Formation of the Solar System Origins and Formation of the Solar System 312-1 Describe theories on the formation of the solar system Smash, crash and bang The solar system is big, and big things have big origins A history of ideas

More information

8. Solar System Origins

8. Solar System Origins 8. Solar System Origins Chemical composition of the galaxy The solar nebula Planetary accretion Extrasolar planets Our Galaxy s Chemical Composition es Big Bang produced hydrogen & helium Stellar processes

More information

The History of the Earth

The History of the Earth The History of the Earth We have talked about how the universe and sun formed, but what about the planets and moons? Review: Origin of the Universe The universe began about 13.7 billion years ago The Big

More information

The Formation of the Solar System

The Formation of the Solar System The Formation of the Solar System Basic Facts to be explained : 1. Each planet is relatively isolated in space. 2. Orbits nearly circular. 3. All roughly orbit in the same plane. 4. Planets are all orbiting

More information

Which of the following statements best describes the general pattern of composition among the four jovian

Which of the following statements best describes the general pattern of composition among the four jovian Part A Which of the following statements best describes the general pattern of composition among the four jovian planets? Hint A.1 Major categories of ingredients in planetary composition The following

More information

Accretionary Disk Model

Accretionary Disk Model Accretionary Disk Model SOLAR NEBULAR THEORY a large cloud of gas began eventually forming the Sun at its center while the outer, cooler, parts created the planets. SOLAR NEBULA A cloud of gasses and

More information

Where did the solar system come from?

Where did the solar system come from? Chapter 06 Part 2 Making the Planetary Donuts Where did the solar system come from? Galactic Recycling Elements that formed planets were made in stars and then recycled through interstellar space. Evidence

More information

Introduction to the Solar System

Introduction to the Solar System Introduction to the Solar System Sep. 11, 2002 1) Introduction 2) Angular Momentum 3) Formation of the Solar System 4) Cowboy Astronomer Review Kepler s Laws empirical description of planetary motion Newton

More information

Moon Obs #1 Due! Moon visible: early morning through afternoon. 6 more due June 13 th. 15 total due June 25 th. Final Report Due June 28th

Moon Obs #1 Due! Moon visible: early morning through afternoon. 6 more due June 13 th. 15 total due June 25 th. Final Report Due June 28th Moon Obs #1 Due! Moon visible: early morning through afternoon 6 more due June 13 th 15 total due June 25 th Final Report Due June 28th Our Solar System Objectives Overview of what is in our solar system

More information

Astronomy Wed. Oct. 6

Astronomy Wed. Oct. 6 Astronomy 301 - Wed. Oct. 6 Guest lectures, Monday and today: Prof. Harriet Dinerstein Monday: The outer planets & their moons Today: asteroids, comets, & the Kuiper Belt; formation of the Solar System

More information

Planets: Name Distance from Sun Satellites Year Day Mercury 0.4AU yr 60 days Venus yr 243 days* Earth 1 1 yr 1 day Mars 1.

Planets: Name Distance from Sun Satellites Year Day Mercury 0.4AU yr 60 days Venus yr 243 days* Earth 1 1 yr 1 day Mars 1. The Solar System (Ch. 6 in text) We will skip from Ch. 6 to Ch. 15, only a survey of the solar system, the discovery of extrasolar planets (in more detail than the textbook), and the formation of planetary

More information

HNRS 227 Fall 2006 Chapter 13. What is Pluto? What is a Planet? There are two broad categories of planets: Terrestrial and Jovian

HNRS 227 Fall 2006 Chapter 13. What is Pluto? What is a Planet? There are two broad categories of planets: Terrestrial and Jovian Key Points of Chapter 13 HNRS 227 Fall 2006 Chapter 13 The Solar System presented by Prof. Geller 24 October 2006 Planets Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune Dwarf Planets Pluto,

More information

Clicker Question: Clicker Question: Clicker Question:

Clicker Question: Clicker Question: Clicker Question: Test results Last day to drop without a grade is Feb 29 Grades posted in cabinet and online F D C B A In which direction would the Earth move if the Sun s gravitational force were suddenly removed from

More information

Currently, the largest optical telescope mirrors have a diameter of A) 1 m. B) 2 m. C) 5 m. D) 10 m. E) 100 m.

Currently, the largest optical telescope mirrors have a diameter of A) 1 m. B) 2 m. C) 5 m. D) 10 m. E) 100 m. If a material is highly opaque, then it reflects most light. absorbs most light. transmits most light. scatters most light. emits most light. When light reflects off an object, what is the relation between

More information

LESSON topic: formation of the solar system Solar system formation Star formation Models of the solar system Planets in our solar system

LESSON topic: formation of the solar system Solar system formation Star formation Models of the solar system Planets in our solar system Unit 2 Lesson 1 LESSON topic: formation of the solar system - Solar system formation - Star formation - Models of the solar system - Planets in our solar system Big bang theory Origin of the universe According

More information

HW #2. Solar Nebular Theory. Predictions: Young stars have disks. Disks contain gas & dust. Solar System should contain disk remnants

HW #2. Solar Nebular Theory. Predictions: Young stars have disks. Disks contain gas & dust. Solar System should contain disk remnants Astronomy 330: Extraterrestrial Life This class (Lecture 9): Next Class: Planet Formation Zachary Brewer Quinn Calvert Exoplanets Itamar Allali Brian Campbell-Deem HW #3 due Sunday night. Music: Another

More information

Initial Conditions: The temperature varies with distance from the protosun.

Initial Conditions: The temperature varies with distance from the protosun. Initial Conditions: The temperature varies with distance from the protosun. In the outer disk it is cold enough for ice to condense onto dust to form large icy grains. In the inner solar system ice can

More information

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Visit us on the World Wide Web at: www.pearsoned.co.uk Pearson Education Limited 2014

More information

Astronomy 241: Foundations of Astrophysics I. The Solar System

Astronomy 241: Foundations of Astrophysics I. The Solar System Astronomy 241: Foundations of Astrophysics I. The Solar System Astronomy 241 is the first part of a year-long introduction to astrophysics. It uses basic classical mechanics and thermodynamics to analyze

More information

Science Skills Station

Science Skills Station Science Skills Station Objective 1. Describe the relationship between the distance from the sun and temperature. 2. Make inferences about how temperature impacted the solar system formation. 3. Explain

More information

Astronomy 1 Winter Lecture 11; January

Astronomy 1 Winter Lecture 11; January Astronomy 1 Winter 2011 Lecture 11; January 31 2011 Previously on Astro-1 Properties of the Planets: Orbits in the same plane and direction Inner planets are small and made of heavy elements Outer planets

More information

RING DISCOVERED AROUND DWARF PLANET

RING DISCOVERED AROUND DWARF PLANET RING DISCOVERED AROUND DWARF PLANET Haumea, a dwarf planet in the Kuiper Belt was just found to have a ring. Why? Hint: what causes the Jovian planet rings? Artist's conception, not a real photo RING DISCOVERED

More information

Lecture: Planetology. Part II: Solar System Planetology. A. Components of Solar System. B. Formation of Solar System. C. Xtra Solar Planets

Lecture: Planetology. Part II: Solar System Planetology. A. Components of Solar System. B. Formation of Solar System. C. Xtra Solar Planets Part II: Solar System Planetology A. Components of Solar System 2 Lecture: Planetology B. Formation of Solar System C. Xtra Solar Planets Updated: Oct 31, 2006 A. Components of Solar System 3 The Solar

More information

The Big Bang Theory (page 854)

The Big Bang Theory (page 854) Name Class Date Space Homework Packet Homework #1 Hubble s Law (pages 852 853) 1. How can astronomers use the Doppler effect? 2. The shift in the light of a galaxy toward the red wavelengths is called

More information

Dating the Universe. But first... Lecture 6: Formation of the Solar System. Observational Constraints. How did the Solar System Form?

Dating the Universe. But first... Lecture 6: Formation of the Solar System. Observational Constraints. How did the Solar System Form? Dating the Universe Lecture 6: Formation of the Solar System Astro 202 Prof. Jim Bell (jfb8@cornell.edu) Spring 2008 But first... Graded Paper 1 returned today... Paper 2 is due at beginning of class on

More information

Announcements. HW #3 is Due on Thursday (September 22) as usual. Chris will be in RH111 on that day.

Announcements. HW #3 is Due on Thursday (September 22) as usual. Chris will be in RH111 on that day. Announcements The Albuquerque Astronomical Society (TAAS) is hosting a public lecture SATURDAY, SEPTEMBER 17TH - 7:00pm SCIENCE AND MATH LEARNING CENTER, UNM CAMPUS Free and open to the public USA Total

More information

Cosmology Vocabulary

Cosmology Vocabulary Cosmology Vocabulary Vocabulary Words Terrestrial Planets The Sun Gravity Galaxy Lightyear Axis Comets Kuiper Belt Oort Cloud Meteors AU Nebula Solar System Cosmology Universe Coalescence Jovian Planets

More information

The Solar Nebula Theory

The Solar Nebula Theory Reading: Chap. 21, Sect.21.1, 21.3 Final Exam: Tuesday, December 12; 4:30-6:30PM Homework 10: Due in recitation Dec. 1,4 Astro 120 Fall 2017: Lecture 25 page 1 Astro 120 Fall 2017: Lecture 25 page 2 The

More information

A star is a massive sphere of gases with a core like a thermonuclear reactor. They are the most common celestial bodies in the universe are stars.

A star is a massive sphere of gases with a core like a thermonuclear reactor. They are the most common celestial bodies in the universe are stars. A star is a massive sphere of gases with a core like a thermonuclear reactor. They are the most common celestial bodies in the universe are stars. They radiate energy (electromagnetic radiation) from a

More information

Astro 1: Introductory Astronomy

Astro 1: Introductory Astronomy Astro 1: Introductory Astronomy David Cohen Class 16: Thursday, March 20 Spring 2014 large cloud of interstellar gas and dust - giving birth to millions of stars Hubble Space Telescope: Carina Nebula

More information

Notes: The Solar System

Notes: The Solar System Notes: The Solar System The Formation of the Solar System 1. A gas cloud collapses under the influence of gravity. 2. Solids condense at the center, forming a protostar. 3. A falttened disk of matter surrounds

More information

Earth in the Universe Unit Notes

Earth in the Universe Unit Notes Earth in the Universe Unit Notes The Universe - everything everywhere, 15-20 billion years old Inside the universe there are billions of Galaxies Inside each Galaxy there are billions of Solar Systems

More information

m V Formation of the Solar System and Other Planetary Systems Questions to Ponder about Solar System

m V Formation of the Solar System and Other Planetary Systems Questions to Ponder about Solar System Formation of the Solar System and Other Planetary Systems Questions to Ponder about Solar System 1 1. Are all the other planets similar to Earth, or are they very different? 2. Do other planets have moons

More information

on it, can still ripen a bunch of grapes as though it had nothing else in the Universe to do. Galileo Galilei

on it, can still ripen a bunch of grapes as though it had nothing else in the Universe to do. Galileo Galilei The Sun, with all the planets revolving around it, and depending on it, can still ripen a bunch of grapes as though it had nothing else in the Universe to do. Galileo Galilei What We Will Learn Today Where

More information

Origin of the Solar System

Origin of the Solar System Origin of the Solar System and Solar System Debris 1 Debris comets meteoroids asteroids gas dust 2 Asteroids irregular, rocky hunks small in mass and size Ceres - largest, 1000 km in diameter (1/3 Moon)

More information

Section 25.1 Exploring the Solar System (pages )

Section 25.1 Exploring the Solar System (pages ) Name Class Date Chapter 25 The Solar System Section 25.1 Exploring the Solar System (pages 790 794) This section explores early models of our solar system. It describes the components of the solar system

More information

Lecture 16. How did it happen? How long did it take? Where did it occur? Was there more than 1 process?

Lecture 16. How did it happen? How long did it take? Where did it occur? Was there more than 1 process? Planet formation in the Solar System Lecture 16 How did it happen? How long did it take? Where did it occur? Was there more than 1 process? Planet formation How do planets form?? By what mechanism? Planet

More information

The formation & evolution of solar systems

The formation & evolution of solar systems The formation & evolution of solar systems Content expectations Birth of the Solar System What did the material that eventually became the Sun and planets look like originally? Interstellar clouds like

More information

ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics

ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics Instructions This exam is closed book and closed notes, although you may

More information

Formation of the Solar System and Other Planetary Systems

Formation of the Solar System and Other Planetary Systems Formation of the Solar System and Other Planetary Systems 1 Questions to Ponder 1. Are all the other planets similar to Earth, or are they very different? 2. Do other planets have moons like Earth s Moon?

More information

m V Density Formation of the Solar System and Other Planetary Systems Questions to Ponder

m V Density Formation of the Solar System and Other Planetary Systems Questions to Ponder Formation of the Solar System and Other Planetary Systems Questions to Ponder 1. Are all the other planets similar to Earth, or are they very different? 2. Do other planets have moons like Earth s Moon?

More information

ET: Astronomy 230 Section 1 MWF Astronomy Building. Outline. Presentations. Presentations. HW #2 is due on Friday First Presentations on

ET: Astronomy 230 Section 1 MWF Astronomy Building. Outline. Presentations. Presentations. HW #2 is due on Friday First Presentations on This Class (Lecture 8): Planet Formation Next Class: ET: Astronomy 230 Section 1 MWF 1400-1450 134 Astronomy Building Nature of Solar Systems HW #2 is due on Friday First Presentations on 19 th and 23

More information

Universe Celestial Object Galaxy Solar System

Universe Celestial Object Galaxy Solar System ASTRONOMY Universe- Includes all known matter (everything). Celestial Object Any object outside or above Earth s atmosphere. Galaxy- A large group (billions) of stars (held together by gravity). Our galaxy

More information

The Solar System consists of

The Solar System consists of The Universe The Milky Way Galaxy, one of billions of other galaxies in the universe, contains about 400 billion stars and countless other objects. Why is it called the Milky Way? Welcome to your Solar

More information

Asteroids February 23

Asteroids February 23 Asteroids February 23 Test 2 Mon, Feb 28 Covers 6 questions from Test 1. Added to score of Test 1 Telescopes Solar system Format similar to Test 1 Missouri Club Fri 9:00 1415 Fri, last 10 minutes of class

More information

Which of the following correctly describes the meaning of albedo?

Which of the following correctly describes the meaning of albedo? Which of the following correctly describes the meaning of albedo? A) The lower the albedo, the more light the surface reflects, and the less it absorbs. B) The higher the albedo, the more light the surface

More information

Radiation - a process in which energy travels through vacuum (without a medium) Conduction a process in which energy travels through a medium

Radiation - a process in which energy travels through vacuum (without a medium) Conduction a process in which energy travels through a medium SOLAR SYSTEM NOTES ENERGY TRANSFERS Radiation - a process in which energy travels through vacuum (without a medium) Conduction a process in which energy travels through a medium Convection - The transfer

More information

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Reminder: When I write these questions, I believe that there is one one correct answer. The questions consist of all parts a e. Read the entire

More information

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION CHAPTER 4 The Solar System Lecture Presentation 4.0 What can be seen with the naked eye? Early astronomers knew about the Sun, Moon, stars, Mercury,

More information

ASTR 200 : Lecture 6 Introduction to the Solar System Pearson Education Inc., publishing as Addison-Wesley

ASTR 200 : Lecture 6 Introduction to the Solar System Pearson Education Inc., publishing as Addison-Wesley ASTR 200 : Lecture 6 Introduction to the Solar System 1 2004 Pearson Education Inc., publishing as Addison-Wesley Comparative Planetology Studying the similarities among and differences between the planets

More information

Astronomy Ch. 6 The Solar System: Comparative Planetology

Astronomy Ch. 6 The Solar System: Comparative Planetology Name: Period: Date: Astronomy Ch. 6 The Solar System: Comparative Planetology MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The largest asteroid,

More information

Astronomy 210 Midterm #2

Astronomy 210 Midterm #2 Astronomy 210 Midterm #2 This Class (Lecture 27): Birth of the Solar System II Next Class: Exam!!!! 2 nd Hour Exam on Friday!!! Review Session on Thursday 12-1:30 in room 236 Solar Observing starts on

More information

Astronomy Ch. 6 The Solar System. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 6 The Solar System. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 6 The Solar System MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The largest asteroid, and probably the only

More information

CST Prep- 8 th Grade Astronomy

CST Prep- 8 th Grade Astronomy CST Prep- 8 th Grade Astronomy Chapter 15 (Part 1) 1. The theory of how the universe was created is called the 2. Which equation states that matter and energy are interchangeable? 3. All matter in the

More information

WHAT WE KNOW. Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So..

WHAT WE KNOW. Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So.. ASTRONOMY THE BIG BANG THEORY WHAT WE KNOW Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So.. WHAT DOES THIS MEAN? If

More information

1 A Solar System Is Born

1 A Solar System Is Born CHAPTER 16 1 A Solar System Is Born SECTION Our Solar System California Science Standards 8.2.g, 8.4.b, 8.4.c, 8.4.d BEFORE YOU READ After you read this section, you should be able to answer these questions:

More information

( ) a3 (Newton s version of Kepler s 3rd Law) Units: sec, m, kg

( ) a3 (Newton s version of Kepler s 3rd Law) Units: sec, m, kg Astronomy 18, UCSC Planets and Planetary Systems Generic Mid-Term Exam (A combination of exams from the past several times this class was taught) This exam consists of two parts: Part 1: Multiple Choice

More information

Unit 3 Lesson 2 Gravity and the Solar System. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 3 Lesson 2 Gravity and the Solar System. Copyright Houghton Mifflin Harcourt Publishing Company Florida Benchmarks SC.8.N.1.4 Explain how hypotheses are valuable if they lead to further investigations, even if they turn out not to be supported by the data. SC.8.N.1.5 Analyze the methods used to develop

More information

Lecture Outlines. Chapter 6. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 6. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 6 Astronomy Today 7th Edition Chaisson/McMillan Chapter 6 The Solar System Units of Chapter 6 6.1 An Inventory of the Solar System 6.2 Measuring the Planets 6.3 The Overall Layout

More information

Astronomy 230 Section 1 MWF B6 Eng Hall. Outline. Star Formation. The Protostar Stage. Gravity, Spin, & Magnetic Fields

Astronomy 230 Section 1 MWF B6 Eng Hall. Outline. Star Formation. The Protostar Stage. Gravity, Spin, & Magnetic Fields Astronomy 230 Section 1 MWF 1400-1450 106 B6 Eng Hall This Class (Lecture 7): Planet Formation and Next Class: Extrasolar Planets Oral Presentation Decisions! Deadline is Feb 6 th. Outline Star formation

More information

Other worlds. Innumerable suns exist;

Other worlds. Innumerable suns exist; Innumerable suns exist; Other worlds innumerable earths revolve around these suns in a manner similar to the way the seven planets revolve around our Sun. Living beings inhabit these worlds. Giordano Bruno

More information

PLANETARY FORMATION THEORY EXPLORING EXOPLANETS

PLANETARY FORMATION THEORY EXPLORING EXOPLANETS PLANETARY FORMATION THEORY EXPLORING EXOPLANETS This is what we call planets around OTHER stars! PLANETARY FORMATION THEORY EXPLORING EXOPLANETS This is only as of June 2012. We ve found at least double

More information

Origin of the Solar System

Origin of the Solar System Solar nebula Formation of planetismals Formation of terrestrial planets Origin of the Solar System Announcements There will be another preceptor-led study group Wednesday at 10:30AM in room 330 of Kuiper

More information

The Solar Nebula Theory. This lecture will help you understand: Conceptual Integrated Science. Chapter 28 THE SOLAR SYSTEM

The Solar Nebula Theory. This lecture will help you understand: Conceptual Integrated Science. Chapter 28 THE SOLAR SYSTEM This lecture will help you understand: Hewitt/Lyons/Suchocki/Yeh Conceptual Integrated Science Chapter 28 THE SOLAR SYSTEM Overview of the Solar System The Nebular Theory The Sun Asteroids, Comets, and

More information

Answers. The Universe. Year 10 Science Chapter 6

Answers. The Universe. Year 10 Science Chapter 6 Answers The Universe Year 10 Science Chapter 6 p133 1 The universe is considered to be the whole of all matter, energy, planets, solar systems, galaxies, and space. Many definitions of the universe also

More information