Solution for Homework# 3. Chapter 5 : Review & Discussion

Size: px
Start display at page:

Download "Solution for Homework# 3. Chapter 5 : Review & Discussion"

Transcription

1 Solution for Homework# 3 Chapter 5 : Review & Discussion. The largest telescopes are reflecting telescopes, primarily because of 3 distinct disadvantages of the refracting telescope. When light passes through a lens, light of different wavelengths focus at slightly different places. This is known as chromatic aberration and can produce seriously out of focus images. It is not easy to correct when making large lenses. Note, however, that camera lenses are quite successful in correcting this aberration, otherwise all your color photos would be rather blurry. A second problem is the glass lens absorbs certain wavelengths of light that the astronomers need to observe. In the infrared, for instance, glass is not transparent like it is for visible light. In the infrared, the glass lens blocks light from entering the telescope. Lastly, it is difficult to keep a lens bigger than about one meter from bending in its support. Glass is flexible and lenses can only be supported around their edge. When a large glass lens bends due to its own weight, its curvature changes and so does the focus, thus ruining the image. 5. The Hubble Space Telescope is not affected by seeing because it orbits above Earth s atmosphere. It can also observe at wavelengths that are absorbed by Earth s atmosphere. Its disadvantages are several; it is a very complex telescope to operate and astronomers must use it remotely. If something goes wrong, they cannot easily fix it. Because the Hubble orbits close to Earth, half the sky is blocked by Earth. Because it orbits quickly around Earth, objects may be observable for only part of the time; the rest of the time they are blocked by Earth. 7. Image processing takes advantage of fast computers available today. Since the image is really nothing more than an array of picture elements stored in the computer s memory, it can be manipulated electronically/mathematically. The particular manipulation algorithm will be dependent on the desired enhancement or the particular defect to correct for. 11. The resolution of a telescope depends on the wavelength of the light observed; the longer the wavelength, the lower the resolution. Radio waves are very long relative to visible light. Since larger telescopes produce higher resolution, radio telescopes must be very large, compared to optical telescopes, in order to have a useful resolving power. 13. Even large radio telescopes have poor resolution when compared to optical telescopes. To improve their resolution would require radio telescopes of enormous size, at least kilometers in diameter. The technique of interferometry synthesizes a telescope of this size by separating several radio telescopes by this distance and simultaneously observing the same object. Using some rather complex computer processing, the individual images are combined to synthesize what would have been observed by a telescope the size of the separation between the telescopes. Radio interferometry can now reach resolutions that are far better than optical telescopes. 16. Because anything that is warm emits strongly in the infrared, the telescopes and instruments must be cooled to low temperatures to reduce the amount of interference from them. Some infrared observations must be conducted above much of Earth s atmosphere because the atmosphere absorbs certain wavelengths of the infrared radiation coming from space. 19. Many objects emit their peak amount of radiation at wavelengths other than visible. When the universe is observed at new wavelengths, these different objects suddenly become visible, and

2 astronomers are then able to study them. Generally, observing at many different wavelengths increases the total amount of information available to astronomers. Chapter 5 : Problems ) 6.9cm 1m 10μm λmax = 5.5K 100cm 1m, so λ max = 57μm, which is longer than the 3 to 00μm operating range. 4) The angular resolution of a telescope gets poorer as wavelength increases. The angular resolution in arc-seconds is proportional to the wavelength. (a) 3.5 µm = 3,500 nm. 3,500/700 = 5, so the wavelength is 5 times longer. The resolution should be 5 times poorer or 0.05" 5 = 0.5". (b) Similarly, for the ultraviolet, 140 nm/700 nm = 0. and 0.05" 0. = 0.01". 10) This is exactly the same problem as the previous problem but with a new distance,.5 million light years. Diameter =.5 million LY (3"/ 06,000") = 36 Ly; the other two answers are 0.6 Ly and 0.01 Ly ( = 760 A.U.) 1) Area is proportional to diameter squared: (10 m) = 00 m. Taking the square root of this to get the diameter of a single mirror of equivalent area gives 14.1 m. Similarly, 4 (8 m) = 56 m. Taking the square root of this to get the diameter of a single mirror of equivalent area gives 16 m. 14) Calculating the theoretical resolution of these telescopes will not help, since they do not image in the same way regular telescopes do. The text notes that the gamma-ray telescopes have about a one degree resolution, compared to one arc seconds for Chandra. The latter is the one to use. Chapter 6 : Review & Discussion ) Comparative planetology contrasts and compares the properties of objects throughout the solar system. Typical examples are the comparison of Mars and Venus to the Earth or Mercury to the Moon. By looking for similarities, new objects can be understood; by looking for differences, new processes are revealed. By understanding the similarities and differences among the bodies of the solar system, it will be possible to understand its origin and evolution. In the end, we might hope to understand the Earth much better than we do now. By seeing how other bodies formed and developed we may be able to understand how Earth developed an environment that has been so supportive of life. It is not clear at this time that other bodies have done this nor is it understood why they have or have not. 5) Mercury and Pluto have orbits tilted to the rest of the planets. Venus and Uranus have unusual rotations and Uranus is quite tilted over. Some moons have retrograde orbits. Comets from the Oort Cloud come in from all angles. Collisions by meteoroids and comets occur randomly. 11) The ices that make up a comet become gaseous as the comet nears the Sun. These gases emit light which can be analyzed. Comets also release dusty particles which reflect sunlight and reveal information about their size and composition.

3 14) All planets have been visited by spacecraft with the exception of Pluto. Spacecraft have landed only on Venus and Mars. The answer to this is rather speculative. Smaller, cheaper, faster is the new policy. One benefit is that a probe failure is not as devastating as with the big missions. Results come back faster, which helps in the planning of future missions. 16) The answer to this is rather speculative. Smaller, cheaper, faster is the new policy. One benefit is that a probe failure is not as devastating as with the big missions. Results come back faster, which helps in the planning of future missions. 17) Interstellar dust within the early solar nebula is the key ingredient for the modern condensation theory for the formation of the solar system. 19) The jovians are much more massive than the terrestrials since they have spent more time accreting mass. Additionally, they had more material available from which to collect their matter. Chapter 6 : Problems )(a) For Earth, assume your mass is 100 kg. Using Newton s law of gravity; F = (b) For Mars ( ) F = 978 N. With 4.45 N in a pound, this gives F = 0 lbs F = ( ) F = 383 N. With 4.45 N in a pound, this gives F = 86 lbs 6) 3000 kg/m 3 = kg / 4/3π(R) 3. R = 0,000 m = 0 km. Diameter = 40 km. 9) At perihelion, the spacecraft is 1 A.U. from the Sun. At aphelion, it is 1.5 A.U. from the Sun. So, 1 A.U. = a(1 e) and 1.5 A.U. = a(1 + e). There are two equations and two unknowns, so we can solve for both a and e. Using basic algebra, we get a = 1.6 A.U. and e = 0.1. Now, use Kepler s third law, P = a, to compute the orbital period, P. P = a = 1.6 = 1.4 years. The time required to travel from Earth to Mars is simply half of the orbital period or 0.7 years. 13) The initial rotation rate, ω 1, is years and the initial diameter, d 1, is 0. Ly or 1,900 AU. Since mass is constant, we have ω 1 d 1 = ω d where ω and d are the final rotation rate and diameter respectively. For Part a, given that d = 100 A.U. and solving for ω, we have ω = revolutions per year. This gives an orbital period of 600 years. For part b, we set d = AU. Using similar algebra as in part a, we get an orbital period of about 0.4 years.. For density to remain constant, the mass must increase with the cube of the radius. Therefore, if the radius is doubled, then the mass must increase by a factor of 8. Now, the force of gravity on the planet surface is proportional to mass/radius. If the radius is doubled, and recall that the mass increases by a factor of 8, then the gravitational force would increase by a factor of 8/, or.

4 Chapter 7 : Review & Discussion ) Rayleigh scattering is the effect by which particles selectively scatter waves, depending on the waves wavelengths. Particles tend to scatter waves whose wavelengths are about equal to or smaller than the particle size. Rayleigh scattering accounts for the blue sky of Earth and red sunrises and sunsets. 4) Both P-waves and S-waves are seismic waves that move outward from the site of an earthquake. P waves are the first to arrive; these pressure waves alternately expand and compress the material through which they move, just as sound waves do. They move through both liquids and solids. S- waves are shear waves and are like waves on the surface of water. They move more slowly than P- waves and move only through solids. These waves carry information about the earthquake that produces them and also about the material through which they have traveled. 6) Certain types of seismic waves cannot travel through liquid rock. It has been known for decades that these waves, produced by earthquakes, do not travel through certain parts of the Earth's interior. This region is now mapped out as being the outer core. The inner core appears to be solid. 8) Convection is the rising of hot material through cooler material. (a) In the Earth s atmosphere it transports heat from the surface into the atmosphere and is responsible for many of the weather patterns. (b) In the Earth s interior it helped for the crust, mantle, and core of the Earth. It currently is responsible for volcanism and plate tectonics. 1) Quasars are so far away that they never show any measurable motion on the sky because of their own motion in space. Thus, any apparent change in their position can be interpreted as being due to the motion of the telescope or of the tectonic plate on which it is located. 13) A dynamo needs both liquid metal and reasonably rapid rotation. The dynamo in Earth s interior is believed to create the planet s magnetic field. 18) The Moon would experience stronger tides than on Earth because of its weaker surface gravity; the tidal force is actually weaker due to the Moon s smaller size. Since the Moon rotates once during each orbit, the tidal bulges would not appear to move relative to the surface of the Moon. Chapter 7 : Problems ) Mass is equal to density times the volume. M = /3 π ( ) 3 M = kg Using this value for the Earth s mass in Problem 1 for the surface gravity and escape velocity gives a = 5.4 m/s and v escape = 8.3 km/s 4) Since the luminosity in Stefan s law is proportional to T 4, compare the Earth at 50 K to Earth at 90 K. (50/90) 4 = Subtracting this from 1 gives 0.45 or 45%. 6) The diameter of the Earth is 6378 km = 1,756 km. At 5 km/s the time it will take is 1,756 km/5 km/s = 551 s or 4.4 minutes.

5 8) 6000 km = cm. At a rate of 3 cm/yr, this will give cm / 3 cm/yr = 10 8 yr or 00 million years. DISCUSSION FOR PROBLEM 15: The tidal force is simply a differential gravitational force, i.e., it results from differences in the gravitational pull of the Moon from one side of the Earth to the other relative to the pull at the center of the Earth. The following simplified example may help. The numbers represent the relative strength of the Moon s gravitational pull on the far side, middle, and near side of the Earth, respectively =-1 4-4=0 5-4=1 The tidal pull can easily be shown using algebra and Newton s law of gravity. F M F 1 m r m r Calculation : GMm F = r - r ( ) 1 & F = GMm ( r + r ) Tidal force is the difference between these two forces. 1 1 F1 F = GMm ( r r ) ( r + r ) Simplifying and dropping small terms like r gives: 4 r F = F1 F = GMm r 3

6 The tidal force, df, is proportional to the mass of the body producing the tide and inversely proportional to the cube of its distance. It is easiest to answer this question by comparing Jupiter s tidal effect to that of the Moon. This allows lunar units to be used, i.e., Jupiter s mass in Moon masses and 4. A.U. in lunar distances. Jupiter s mass is 318 Earth masses and the Moon is about 80 Earth masses, so Jupiter is 5,400 Moon masses. The Moon s distance from the Earth is about 1/400 A.U. so 4. A.U. will be 1680 lunar distances. Jupiter's tidal effect is = 5,400 / (1680) 3 = or about 5 millionth that of the Moon's tidal effect on Earth.

Astronomy 103: First Exam

Astronomy 103: First Exam Name: Astronomy 103: First Exam Stephen Lepp October 27, 2010 Each question is worth 2 points. Write your name on this exam and on the scantron. 1 Short Answer A. What is the largest of the terrestrial

More information

a. 0.5 AU b. 5 AU c. 50 AU d.* AU e AU

a. 0.5 AU b. 5 AU c. 50 AU d.* AU e AU 1 AST104 Sp04: WELCOME TO EXAM 1 Multiple Choice Questions: Mark the best answer choice. Read all answer choices before making selection. (No credit given when multiple answers are marked.) 1. A galaxy

More information

Lecture Outlines. Chapter 6. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 6. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 6 Astronomy Today 7th Edition Chaisson/McMillan Chapter 6 The Solar System Units of Chapter 6 6.1 An Inventory of the Solar System 6.2 Measuring the Planets 6.3 The Overall Layout

More information

Study Guide for Test 2. Chapter How does refraction allow a lens to bring parallel rays of light to a focus?

Study Guide for Test 2. Chapter How does refraction allow a lens to bring parallel rays of light to a focus? Study Guide for Test 2 1. What is refraction? Chapter 6 2. How does refraction allow a lens to bring parallel rays of light to a focus? 3. Can a mirror also be used to bring parallel rays of light to a

More information

Astro 1010 Planetary Astronomy Sample Questions for Exam 3

Astro 1010 Planetary Astronomy Sample Questions for Exam 3 Astro 1010 Planetary Astronomy Sample Questions for Exam 3 Chapter 6 1. Which of the following statements is false? a) Refraction is the bending of light when it passes from one medium to another. b) Mirrors

More information

a. 0.1 AU b. 10 AU c light years d light years

a. 0.1 AU b. 10 AU c light years d light years 1 AST104 Sp2006: EXAM 1 Multiple Choice Questions: Mark the best answer choice on the bubble form. Read all answer choices before making selection. (No credit given when multiple answers are marked.) 1.

More information

Earth s Formation Unit [Astronomy] Student Success Sheets (SSS)

Earth s Formation Unit [Astronomy] Student Success Sheets (SSS) Page1 Earth s Formation Unit [Astronomy] Student Success Sheets (SSS) HS-ESSI-1; HS-ESS1-2; HS-ESS1-3; HS-ESSI-4 NGSS Civic Memorial High School - Earth Science A Concept # What we will be learning Mandatory

More information

Astronomy 1001/1005 Midterm (200 points) Name:

Astronomy 1001/1005 Midterm (200 points) Name: Astronomy 1001/1005 Midterm (00 points) Name: Instructions: Mark your answers on this test AND your bubble sheet You will NOT get your bubble sheet back One page of notes and calculators are allowed Use

More information

ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics

ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics Instructions This exam is closed book and closed notes, although you may

More information

a. 1/3 AU b. 3 AU 5. Meteor showers occur

a. 1/3 AU b. 3 AU 5. Meteor showers occur 1 AST104 Sp. 2006: WELCOME TO EXAM 3 Multiple Choice Questions: Mark the best answer choice on the answer form. Read all answer choices before making selection. CHECK YOUR WORK CAREFULLY BEFORE HANDING

More information

LEARNING ABOUT THE OUTER PLANETS. NASA's Cassini spacecraft. Io Above Jupiter s Clouds on New Year's Day, Credit: NASA/JPL/University of Arizona

LEARNING ABOUT THE OUTER PLANETS. NASA's Cassini spacecraft. Io Above Jupiter s Clouds on New Year's Day, Credit: NASA/JPL/University of Arizona LEARNING ABOUT THE OUTER PLANETS Can see basic features through Earth-based telescopes. Hubble Space Telescope especially useful because of sharp imaging. Distances from Kepler s 3 rd law, diameters from

More information

Astro 101 Lecture 12 The Jovian Planets

Astro 101 Lecture 12 The Jovian Planets Astro 101 Lecture 12 The Jovian Planets 2-28-2018 Jupiter, Saturn, Uranus and Neptune ASTR-101 Section 004 Bulk Properties of Terrestrial and Jovian Planets All Jovian planets have strong magnetic fields

More information

Test 4 Final Review. 5/2/2018 Lecture 25

Test 4 Final Review. 5/2/2018 Lecture 25 Test 4 Final Review 5/2/2018 Lecture 25 Apparent daily motion of celestial objects is due to earth s rotation Seasons are created due to the title of the Earth relative to the Sun Phases of the moon due

More information

Starting from closest to the Sun, name the orbiting planets in order.

Starting from closest to the Sun, name the orbiting planets in order. Chapter 9 Section 1: Our Solar System Solar System: The solar system includes the sun, planets and many smaller structures. A planet and its moon(s) make up smaller systems in the solar system. Scientist

More information

Unit 1: The Earth in the Universe

Unit 1: The Earth in the Universe Unit 1: The Earth in the Universe 1. The Universe 1.1. First ideas about the Universe 1.2. Components and origin 1.3. Sizes and distances 2. The Solar System 3. The planet Earth 3.1. Movements of the Earth

More information

Lunar Eclipse. Solar Eclipse

Lunar Eclipse. Solar Eclipse Lunar Eclipse SUN Moon Solar Eclipse SUN SUN Moon Total solar eclipse Partial solar eclipse Moon Phases What does the moon look like from at each position? G H F A E B D C SUNLIGHT Refracting Telescopes

More information

AST Section 2: Test 1

AST Section 2: Test 1 AST1002 - Section 2: Test 1 Date: 10/06/2009 Name: Equations: c = λ f, λ peak = Question 1: A star with a declination of +40.0 degrees will be 1. east of the vernal equinox. 2. west of the vernal equinox.

More information

9. Moon, Mercury, Venus

9. Moon, Mercury, Venus 9. Moon, Mercury, Venus All the heavier elements were manufactured by stars later, either by thermonuclear fusion reactions deep in their interiors or by the violent explosions that mark the end of massive

More information

Next opportunity to observe the Moon and Venus close together: Dec. 31, Announcements

Next opportunity to observe the Moon and Venus close together: Dec. 31, Announcements Announcements Last OWL homework: due 12/15 before midnight Study guide for final exam is up on the class webpage Practice exam up Thursday afternoon Final exam: Monday, Dec. 15, 10:30 AM, Hasbrouck 20

More information

ASTRONOMY 1 FINAL EXAM 1 Name

ASTRONOMY 1 FINAL EXAM 1 Name ASTRONOMY 1 FINAL EXAM 1 Name Multiple Choice (2 pts each) 1. Sullivan Star is an F spectral class star that is part of a binary star system. It has a MS lifetime of 5 billion years. Its life will eventually

More information

Astro 1: Introductory Astronomy

Astro 1: Introductory Astronomy Astro 1: Introductory Astronomy David Cohen Class 16: Thursday, March 20 Spring 2014 large cloud of interstellar gas and dust - giving birth to millions of stars Hubble Space Telescope: Carina Nebula

More information

Chapter 26. Objectives. Describe characteristics of the universe in terms of time, distance, and organization

Chapter 26. Objectives. Describe characteristics of the universe in terms of time, distance, and organization Objectives Describe characteristics of the universe in terms of time, distance, and organization Identify the visible and nonvisible parts of the electromagnetic spectrum Compare refracting telescopes

More information

Inner Planets (Part II)

Inner Planets (Part II) Inner Planets (Part II) Sept. 18, 2002 1) Atmospheres 2) Greenhouse Effect 3) Mercury 4) Venus 5) Mars 6) Moon Announcements Due to technical difficulties, Monday s quiz doesn t count An extra credit problem

More information

( ) a3 (Newton s version of Kepler s 3rd Law) Units: sec, m, kg

( ) a3 (Newton s version of Kepler s 3rd Law) Units: sec, m, kg Astronomy 18, UCSC Planets and Planetary Systems Generic Mid-Term Exam (A combination of exams from the past several times this class was taught) This exam consists of two parts: Part 1: Multiple Choice

More information

The Sun s center is much hotter than the surface. The Sun looks large and bright in the sky. Other stars look much smaller.

The Sun s center is much hotter than the surface. The Sun looks large and bright in the sky. Other stars look much smaller. The Sun A star is a huge ball of hot, glowing gases. The Sun is a star. The width of the Sun is equal to the width of 100 Earths placed side by side. The Sun is extremely hot. The surface of the Sun has

More information

FCAT Review Space Science

FCAT Review Space Science FCAT Review Space Science The Law of Universal Gravitation The law of universal gravitation states that ALL matter in the universe attracts each other. Gravity is greatly impacted by both mass and distance

More information

Clicker Question: Clicker Question: Clicker Question:

Clicker Question: Clicker Question: Clicker Question: Test results Last day to drop without a grade is Feb 29 Grades posted in cabinet and online F D C B A In which direction would the Earth move if the Sun s gravitational force were suddenly removed from

More information

Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2

Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2 Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2 Instructor: L. M. Khandro 1. Relatively speaking, objects with high temperatures emit their peak radiation in short wavelengths

More information

2. The distance between the Sun and the next closest star, Proxima Centuari, is MOST accurately measured in

2. The distance between the Sun and the next closest star, Proxima Centuari, is MOST accurately measured in Name: Date: 1. Some scientists study the revolution of the Moon very closely and have recently suggested that the Moon is gradually moving away from Earth. Which statement below would be a prediction of

More information

ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy

ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy Chariho Regional School District - Science Curriculum September, 2016 ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy OVERVIEW Summary Students will be introduced to the overarching concept of astronomy.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter 4 - Group Homework Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Density is defined as A) mass times weight. B) mass per unit volume.

More information

12. Jovian Planet Systems Pearson Education Inc., publishing as Addison Wesley

12. Jovian Planet Systems Pearson Education Inc., publishing as Addison Wesley 12. Jovian Planet Systems Jovian Planet Properties Compared to the terrestrial planets, the Jovians: are much larger & more massive 2. are composed mostly of Hydrogen, Helium, & Hydrogen compounds 3. have

More information

F = ma P 2 = a 3 (M + m) P 2 = a 3. max T = 2900 K m

F = ma P 2 = a 3 (M + m) P 2 = a 3. max T = 2900 K m Summer 2013 Astronomy - Test 1 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as

More information

Lecture 16 Dwarf Planets and Comets January 8a, 2014

Lecture 16 Dwarf Planets and Comets January 8a, 2014 1 Lecture 16 Dwarf Planets and Comets January 8a, 2014 2 Pluto -- Basic Information Discovered by Clyde Tombaugh in 1930 Period: P orb = 248 years Distance: a = 39.5 AU 3 moons (Charon, Nix, Hydra) Demoted

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ASTRO 102/104 Prelim 2 Name Section MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) This is version E of the exam. Please fill in (E). A) This

More information

Discussion Review Test #2. Units 12-19: (1) (2) (3) (4) (5) (6)

Discussion Review Test #2. Units 12-19: (1) (2) (3) (4) (5) (6) Discussion Review Test #2 Units 12-19: (1) (2) (3) (4) (5) (6) (7) (8) (9) Galileo used his observations of the changing phases of Venus to demonstrate that a. the sun moves around the Earth b. the universe

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ASTRO 102/104 Prelim 2 Name Section MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) This is version B of the exam. Please fill in (B). A) This

More information

1 of 5 4/21/2015 6:40 PM

1 of 5 4/21/2015 6:40 PM 1 of 5 4/21/2015 6:40 PM 1. Which of the following lists the outer planets in order of increasing mass?,,,,,,,,,,,, 2. The surface structure of 's largest satellite, Titan, is completely unknown because

More information

Useful Formulas and Values

Useful Formulas and Values Name Test 1 Planetary and Stellar Astronomy 2017 (Last, First) The exam has 20 multiple choice questions (3 points each) and 8 short answer questions (5 points each). This is a closed-book, closed-notes

More information

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes Foundations of Astronomy 13e Seeds Chapter 6 Light and Telescopes Guidepost In this chapter, you will consider the techniques astronomers use to study the Universe What is light? How do telescopes work?

More information

HNRS 227 Fall 2006 Chapter 13. What is Pluto? What is a Planet? There are two broad categories of planets: Terrestrial and Jovian

HNRS 227 Fall 2006 Chapter 13. What is Pluto? What is a Planet? There are two broad categories of planets: Terrestrial and Jovian Key Points of Chapter 13 HNRS 227 Fall 2006 Chapter 13 The Solar System presented by Prof. Geller 24 October 2006 Planets Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune Dwarf Planets Pluto,

More information

3. Titan is a moon that orbits A) Jupiter B) Mars C) Saturn D) Neptune E) Uranus

3. Titan is a moon that orbits A) Jupiter B) Mars C) Saturn D) Neptune E) Uranus Fall 2013 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as well.

More information

The Jovian Planets. The Jovian planets: Jupiter, Saturn, Uranus and Neptune

The Jovian Planets. The Jovian planets: Jupiter, Saturn, Uranus and Neptune The Jovian planets: Jupiter, Saturn, Uranus and Neptune Their masses are large compared with terrestrial planets, from 15 to 320 times the Earth s mass They are gaseous Low density All of them have rings

More information

Lecture 11 The Structure and Atmospheres of the Outer Planets October 9, 2017

Lecture 11 The Structure and Atmospheres of the Outer Planets October 9, 2017 Lecture 11 The Structure and Atmospheres of the Outer Planets October 9, 2017 1 2 Jovian Planets 3 Jovian Planets -- Basic Information Jupiter Saturn Uranus Neptune Distance 5.2 AU 9.5 AU 19 AU 30 AU Spin

More information

The Solar System 6/23

The Solar System 6/23 6/23 The Solar System I. Earth A. Earth is the prototype terrestrial planet 1. Only planet in the solar system (we know of so far) with life 2. Temperature 290 K B. Physical Characteristics 1. Mass: 6

More information

Lecture Outlines. Chapter 11. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 11. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 11 Astronomy Today 8th Edition Chaisson/McMillan Chapter 11 Jupiter Units of Chapter 11 11.1 Orbital and Physical Properties 11.2 Jupiter s Atmosphere Discovery 11.1 A Cometary

More information

Chapter Outline. Earth and Other Planets. The Formation of the Solar System. Clue #1: Planetary Orbits. Clues to the Origin of the Solar System

Chapter Outline. Earth and Other Planets. The Formation of the Solar System. Clue #1: Planetary Orbits. Clues to the Origin of the Solar System Chapter Outline Earth and Other Planets The Formation of the Solar System Exploring the Solar System Chapter 16 Great Idea: Earth, one of the planets that orbit the Sun, formed 4.5 billion years ago from

More information

Todays Topics 3/19/2018. Light and Telescope. PHYS 1403 Introduction to Astronomy. CCD Camera Makes Digital Images. Astronomical Detectors

Todays Topics 3/19/2018. Light and Telescope. PHYS 1403 Introduction to Astronomy. CCD Camera Makes Digital Images. Astronomical Detectors PHYS 1403 Introduction to Astronomy Light and Telescope Chapter 6 Todays Topics Astronomical Detectors Radio Telescopes Why we need space telescopes? Hubble Space Telescopes Future Space Telescopes Astronomy

More information

Chapter 23. Light, Astronomical Observations, and the Sun

Chapter 23. Light, Astronomical Observations, and the Sun Chapter 23 Light, Astronomical Observations, and the Sun The study of light Electromagnetic radiation Visible light is only one small part of an array of energy Electromagnetic radiation includes Gamma

More information

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 7th Edition Chaisson/McMillan Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Terrestrial and Jovian Planets

More information

Currently, the largest optical telescope mirrors have a diameter of A) 1 m. B) 2 m. C) 5 m. D) 10 m. E) 100 m.

Currently, the largest optical telescope mirrors have a diameter of A) 1 m. B) 2 m. C) 5 m. D) 10 m. E) 100 m. If a material is highly opaque, then it reflects most light. absorbs most light. transmits most light. scatters most light. emits most light. When light reflects off an object, what is the relation between

More information

Overview of Solar System

Overview of Solar System Overview of Solar System The solar system is a disk Rotation of sun, orbits of planets all in same direction. Most planets rotate in this same sense. (Venus, Uranus, Pluto are exceptions). Angular momentum

More information

Galaxies: enormous collections of gases, dust and stars held together by gravity Our galaxy is called the milky way

Galaxies: enormous collections of gases, dust and stars held together by gravity Our galaxy is called the milky way Celestial bodies are all of the natural objects in space ex. stars moons, planets, comets etc. Star: celestial body of hot gas that gives off light and heat the closest star to earth is the sun Planet:

More information

Lecture #11: Plan. Terrestrial Planets (cont d) Jovian Planets

Lecture #11: Plan. Terrestrial Planets (cont d) Jovian Planets Lecture #11: Plan Terrestrial Planets (cont d) Jovian Planets Mercury (review) Density = 5.4 kg / liter.. ~ Earth s Rocky mantle + iron/nickel core Slow spin: 59 days (orbital period = 88 days) No satellites

More information

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits 7. Our Solar System Terrestrial & Jovian planets Seven large satellites [moons] Chemical composition of the planets Asteroids & comets The Terrestrial & Jovian Planets Four small terrestrial planets Like

More information

Chapter 19 The Origin of the Solar System

Chapter 19 The Origin of the Solar System Chapter 19 The Origin of the Solar System Early Hypotheses catastrophic hypotheses, e.g., passing star hypothesis: Star passing closely to the the sun tore material out of the sun, from which planets could

More information

1 A Solar System Is Born

1 A Solar System Is Born CHAPTER 16 1 A Solar System Is Born SECTION Our Solar System California Science Standards 8.2.g, 8.4.b, 8.4.c, 8.4.d BEFORE YOU READ After you read this section, you should be able to answer these questions:

More information

Properties of Thermal Radiation

Properties of Thermal Radiation Observing the Universe: Telescopes Astronomy 2020 Lecture 6 Prof. Tom Megeath Today s Lecture: 1. A little more on blackbodies 2. Light, vision, and basic optics 3. Telescopes Properties of Thermal Radiation

More information

Chapter 26 Section 1 pages Directed Reading Section: Viewing the Universe

Chapter 26 Section 1 pages Directed Reading Section: Viewing the Universe Name: Period: Chapter 26 Section 1 pages 659-666 Directed Reading Section: Viewing the Universe 1. How did observations of the sky help sailors in the past? 2. What is the main reason people study the

More information

Astronomy Unit Notes Name:

Astronomy Unit Notes Name: Astronomy Unit Notes Name: (DO NOT LOSE!) To help with the planets order 1 My = M 2 V = Venus 3 Eager = E 4 M = Mars 5 Just = J 6 Served = Saturn 7 Us = Uranus 8 N = N 1 Orbit: The path (usually elliptical)

More information

Lecture 24: Saturn. The Solar System. Saturn s Rings. First we focus on solar distance, average density, and mass: (where we have used Earth units)

Lecture 24: Saturn. The Solar System. Saturn s Rings. First we focus on solar distance, average density, and mass: (where we have used Earth units) Lecture 24: Saturn The Solar System First we focus on solar distance, average density, and mass: Planet Distance Density Mass Mercury 0.4 1.0 0.06 Venus 0.7 0.9 0.8 Earth 1.0 1.0 1.0 Mars 1.5 0.7 0.1 (asteroid)

More information

CHAPTER 11. We continue to Learn a lot about the Solar System by using Space Exploration

CHAPTER 11. We continue to Learn a lot about the Solar System by using Space Exploration CHAPTER 11 We continue to Learn a lot about the Solar System by using Space Exploration Section 11.1 The Sun page 390 -Average sized star -Millions of km away -300,000 more massive then Earth, 99% of all

More information

Astronomy Today. Eighth edition. Eric Chaisson Steve McMillan

Astronomy Today. Eighth edition. Eric Chaisson Steve McMillan Global edition Astronomy Today Eighth edition Eric Chaisson Steve McMillan The Distance Scale ~1 Gpc Velocity L Distance Hubble s law Supernovae ~200 Mpc Time Tully-Fisher ~25 Mpc ~10,000 pc Time Variable

More information

Earth Space Systems. Semester 1 Exam. Astronomy Vocabulary

Earth Space Systems. Semester 1 Exam. Astronomy Vocabulary Earth Space Systems Semester 1 Exam Astronomy Vocabulary Astronomical Unit- Aurora- Big Bang- Black Hole- 1AU is the average distance between the Earth and the Sun (93 million miles). This unit of measurement

More information

WHAT WE KNOW. Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So..

WHAT WE KNOW. Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So.. ASTRONOMY THE BIG BANG THEORY WHAT WE KNOW Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So.. WHAT DOES THIS MEAN? If

More information

Astronomy 111 Review Problems Solutions

Astronomy 111 Review Problems Solutions Astronomy 111 Review Problems Solutions Problem 1: Venus has an equatorial radius of 6052 km. Its semi-major axis is 0.72 AU. The Sun has a radius of cm. a) During a Venus transit (such as occurred June

More information

Light and Telescopes

Light and Telescopes Light and Telescopes Astronomy 1 Elementary Astronomy LA Mission College Spring F2015 Quotes & Cartoon of the Day We find them smaller and fainter, in constantly increasing numbers, and we know that we

More information

Astronomy I Exam 2 Sample

Astronomy I Exam 2 Sample NAME: Part I: Multiple Choice (2 points. ea.) Read carefully, choose the best answer 1. Which of the following occurs because of the orbital motion of the Earth about the Sun and cannot be accounted for

More information

Solar System revised.notebook October 12, 2016 Solar Nebula Theory

Solar System revised.notebook October 12, 2016 Solar Nebula Theory Solar System revised.notebook The Solar System Solar Nebula Theory Solar Nebula was a rotating disk of dust and gas w/ a dense center dense center eventually becomes the sun start to condense b/c of gravity

More information

Stellar Astronomy Sample Questions for Exam 3

Stellar Astronomy Sample Questions for Exam 3 Stellar Astronomy Sample Questions for Exam 3 Chapter 7 1. A protostar is formed by a) the rapid expansion of gas from an exploding star. b) the gravitational collapse of a rotating interstellar cloud.

More information

Exam# 1 Review Gator 1 Keep the first page of the exam. Scores will be published using the exam number Chapter 0 Charting the Heavens

Exam# 1 Review Gator 1 Keep the first page of the exam. Scores will be published using the exam number Chapter 0 Charting the Heavens Exam# 1 Review Exam is Wednesday October 11 h at 10:40AM, room FLG 280 Bring Gator 1 ID card Bring pencil #2 (HB) with eraser. We provide the scantrons No use of calculator or any electronic device during

More information

Astronomy (Geology 360, Physics 360) take-home test. There is no class on Monday March 16th

Astronomy (Geology 360, Physics 360) take-home test. There is no class on Monday March 16th Astronomy (Geology 360, Physics 360) take-home test. Reminder: Test must be answered on a ScanTron sheet. Be sure to use a No. 2 pencil. Be sure to "bubble in" your name and Student ID on the ScanTron

More information

Chapter 6 Light and Telescopes

Chapter 6 Light and Telescopes Chapter 6 Light and Telescopes Guidepost In the early chapters of this book, you looked at the sky the way ancient astronomers did, with the unaided eye. In chapter 4, you got a glimpse through Galileo

More information

Comparative Planetology I: Our Solar System. Chapter Seven

Comparative Planetology I: Our Solar System. Chapter Seven Comparative Planetology I: Our Solar System Chapter Seven ASTR 111 003 Fall 2006 Lecture 07 Oct. 16, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17)

More information

The History of the Solar System. From cloud to Sun, planets, and smaller bodies

The History of the Solar System. From cloud to Sun, planets, and smaller bodies The History of the Solar System From cloud to Sun, planets, and smaller bodies The Birth of a Star Twenty years ago, we knew of only one star with planets the Sun and our understanding of the birth of

More information

Greeks watched the stars move across the sky and noticed five stars that wandered around and did not follow the paths of the normal stars.

Greeks watched the stars move across the sky and noticed five stars that wandered around and did not follow the paths of the normal stars. Chapter 23 Our Solar System Our Solar System Historical Astronomy Wandering Stars Greeks watched the stars move across the sky and noticed five stars that wandered around and did not follow the paths of

More information

CHAPTER 6. The Solar System

CHAPTER 6. The Solar System CHAPTER 6 The Solar System 6.1 An Inventory of the Solar System The Greeks knew about 5 planets other than Earth They also knew about two other objects that were not planets or stars: meteors and comets

More information

Astronomy 1504/15014 Section 20

Astronomy 1504/15014 Section 20 1 point each Astronomy 1504/15014 Section 20 Midterm 1 (Practice Exam) September 21, 2015 Exam Version A Choose the answer that best completes the question. Read each problem carefully and read through

More information

Our Sun. The centre of our solar system

Our Sun. The centre of our solar system Our Sun The centre of our solar system Nicolaus Copernicus Our Sun The sun represents 99.86% of the mass in our solar system. It is ¾ hydrogen and ¼ helium. More than 1 million Earths can fit inside the

More information

A star is a massive sphere of gases with a core like a thermonuclear reactor. They are the most common celestial bodies in the universe are stars.

A star is a massive sphere of gases with a core like a thermonuclear reactor. They are the most common celestial bodies in the universe are stars. A star is a massive sphere of gases with a core like a thermonuclear reactor. They are the most common celestial bodies in the universe are stars. They radiate energy (electromagnetic radiation) from a

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The Arecibo radio telescope is laid out like which optical telescope design? 1) A) prime

More information

What is Earth Science?

What is Earth Science? What is Earth Science? A.EARTH SCIENCE: the study of Earth and its history B. Earth science is divided into 4 main branches: 1. Geology: study of the lithosphere 2. Oceanography: study of oceans 3. Meteorology:

More information

Jupiter: Giant of the Solar System

Jupiter: Giant of the Solar System Jupiter: Giant of the Solar System Jupiter s Red spot : A huge storm that has raged for over 300 years that is ~2x size of the Earth. Gas Giant is really a Liquid Giant! Pictures over ~7 years from Hubble

More information

5. How did Copernicus s model solve the problem of some planets moving backwards?

5. How did Copernicus s model solve the problem of some planets moving backwards? MODELS OF THE SOLAR SYSTEM Reading Guide: Chapter 27.2 (read text pages 691-694) 1k. Recognize the cumulative nature of scientific evidence. 1n. Know that when an observation does not agree with an accepted

More information

Phys 214. Planets and Life

Phys 214. Planets and Life Phys 214. Planets and Life Dr. Cristina Buzea Department of Physics Room 259 E-mail: cristi@physics.queensu.ca (Please use PHYS214 in e-mail subject) Lecture 28. Search for life on jovian moons. March

More information

1. Using, scientists can use a few smaller telescopes to take images with the. 2. To double the resolving power of a telescope, you must.

1. Using, scientists can use a few smaller telescopes to take images with the. 2. To double the resolving power of a telescope, you must. Chapter 5 Telescopes Multiple Choice Questions 1. Using, scientists can use a few smaller telescopes to take images with the same resolution as a much larger telescope. A. Satellite telescopes B. Charge-coupled

More information

Pluto. Touring our Solar System. September 08, The Solar System.notebook. Solar System includes: Sun 8 planets Asteroids Comets Meteoroids

Pluto. Touring our Solar System. September 08, The Solar System.notebook. Solar System includes: Sun 8 planets Asteroids Comets Meteoroids Touring our Solar System Solar System includes: Sun 8 planets Asteroids Comets Meteoroids Jan 4 5:48 PM Jan 4 5:50 PM A planet's orbit lies in an inclined orbital plane Planes of seven planets lie within

More information

ASTR 2310: Chapter 6

ASTR 2310: Chapter 6 ASTR 231: Chapter 6 Astronomical Detection of Light The Telescope as a Camera Refraction and Reflection Telescopes Quality of Images Astronomical Instruments and Detectors Observations and Photon Counting

More information

Uranus & Neptune, The Ice Giants

Uranus & Neptune, The Ice Giants Uranus & Neptune, The Ice Giants What We Will Learn Today How & When were Uranus & Neptune discovered? How are the interiors and weather on these planets? Why is Neptune as warm as Uranus? What are their

More information

The Jovian Planets (Gas Giants)

The Jovian Planets (Gas Giants) The Jovian Planets (Gas Giants) Discoveries and known to ancient astronomers. discovered in 1781 by Sir William Herschel (England). discovered in 1845 by Johann Galle (Germany). Predicted to exist by John

More information

OUR SOLAR SYSTEM. James Martin. Facebook.com/groups/AstroLSSC Twitter.com/AstroLSSC

OUR SOLAR SYSTEM. James Martin. Facebook.com/groups/AstroLSSC Twitter.com/AstroLSSC OUR SOLAR SYSTEM James Martin Facebook.com/groups/AstroLSSC Twitter.com/AstroLSSC It s time for the human race to enter the solar system. -Dan Quayle Structure of the Solar System Our Solar System contains

More information

Overview of the Solar System

Overview of the Solar System The Solar System Overview of the Solar System Basics Source: Nine Planets - A Multimedia Tour of the Solar System * By Bill Arnett The solar system consists of the Sun, the nine planets, about 90 satellites

More information

Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am

Astronomy.  physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Planetology II Key characteristics Chemical elements and planet size Radioactive dating Solar system formation Solar nebula

More information

Final exam is Wednesday, December 14, in LR 1 VAN at 9:45 am.

Final exam is Wednesday, December 14, in LR 1 VAN at 9:45 am. Announcements Final exam is Wednesday, December 14, in LR 1 VAN at 9:45 am. Astronomy tutorial: Tuesday 3-5, 7-9 pm in 310 VAN Office hours: Tuesday 1 3 pm, Wednesday 10-11 am, or by appointment in 702

More information

The Big Bang Theory (page 854)

The Big Bang Theory (page 854) Name Class Date Space Homework Packet Homework #1 Hubble s Law (pages 852 853) 1. How can astronomers use the Doppler effect? 2. The shift in the light of a galaxy toward the red wavelengths is called

More information

ASTRO 120 Sample Exam

ASTRO 120 Sample Exam ASTRO 120 Sample Exam 1) If a planet has a reasonably strong magnetic field, we know that a. It is made entirely of iron b. There is liquid nitrogen below the surface c. It can harbor life d. It has a

More information

Lecture 23: Jupiter. Solar System. Jupiter s Orbit. The semi-major axis of Jupiter s orbit is a = 5.2 AU

Lecture 23: Jupiter. Solar System. Jupiter s Orbit. The semi-major axis of Jupiter s orbit is a = 5.2 AU Lecture 23: Jupiter Solar System Jupiter s Orbit The semi-major axis of Jupiter s orbit is a = 5.2 AU Jupiter Sun a Kepler s third law relates the semi-major axis to the orbital period 1 Jupiter s Orbit

More information

General Comments about the Atmospheres of Terrestrial Planets

General Comments about the Atmospheres of Terrestrial Planets General Comments about the Atmospheres of Terrestrial Planets Mercury Very little atmosphere Contents: vaporized micrometeorites, solar wind Sky is black Venus Very thick (10% density of water), dense

More information

ASTRONOMY 1010 Exam 2 October 19, 2007

ASTRONOMY 1010 Exam 2 October 19, 2007 ASTRONOMY 1010 Exam 2 October 19, 2007 Name Please write and mark your name and student number in the Scantron answer sheet. FILL THE BUBBLE IN THE "TEST FORM" BOX CORRESPONDING TO YOUR TEST VERSION (listed

More information

Formation of the Solar System Chapter 8

Formation of the Solar System Chapter 8 Formation of the Solar System Chapter 8 To understand the formation of the solar system one has to apply concepts such as: Conservation of angular momentum Conservation of energy The theory of the formation

More information