Small Planets, Small Stars:

Size: px
Start display at page:

Download "Small Planets, Small Stars:"

Transcription

1 Small Planets, Small Stars: The K2 M Dwarf Program Ian Crossfield (UA/LPL) 2015/05/07 Collaborators: E. Petigura, J. Schlieder, B. Benneke, C. Beichman, A. Howard, H. Knutson, D. Dragomir, E. Sinukoff, BJ Fulton, S. Lepine, H. Isaacson, J. Krick, J. Livingstone, M. Werner, T. Barclay, C. Obermeier, K. Aller, L. Kaltenegger, J. Crepp, J. Christiansen, T. Barman, Th. Henning, B. Hansen, M. Liu, T. Greene, D. Ciardi, N. Deacon, E. Schlafly

2 Planet frequency increases toward smaller and cooler planets: E R A R (for both M stars & FGKs) Dressing+2013, 2015, Howard+2012, Petigura+2013a,b C? N O M M

3 Small planets occur 2 3x more frequently around cooler stars: Mulders

4 TESS Sky coverage Kepler Temporal coverage

5 TESS K2 Sky coverage Kepler Temporal coverage

6 K2 M Dwarf Advantage: Numbers 6

7 K2 M Dwarf Advantage: Numbers Kepler sample (Dressing et al. 2015): 2543 stars (all observed for 1000 days) Most have Teff 3500 K, R 0.4 Rsun 157 planet candidates 7

8 K2 M Dwarf Advantage: Numbers Kepler sample (Dressing et al. 2015): 2543 stars (all observed for 1000 days) Most have Teff 3500 K, R 0.4 Rsun 157 planet candidates K2: Observing ~5000 M dwarfs per field 10 fields, ~ 80 days each 8

9 K2 M Dwarf Advantage: Numbers Kepler sample (Dressing et al. 2015): 2543 stars (all observed for 1000 days) Most have T eff 3500 K, R 0.4 R sun 157 planet candidates K2: Observing ~ 5000 M dwarfs per field 10 fields, ~ 80 days each The K2 M dwarf advantage: 5000*80*10 / 2543*1000*1 ~ 1.5x 9

10 K2 M dwarf advantage: M dwarf Habitable Systems `Habitable Zone' 10

11 K2 M dwarf advantage: M dwarf Habitable Systems `Habitable Zone' K2's M dwarf sweet spot 11

12 K2 Advantage: Timing 2014 HST Operations ???

13 K2 Advantage: Timing HST Operations ??? } JWST Launch

14 K2 Advantage: Timing HST Operations TESS Launch { ??? } JWST Launch

15 K2 Advantage: Timing HST Operations TESS Launch { ??? } } JWST Calls for GTO & Cycle 1 Proposals JWST Launch

16 K2 Advantage: Timing K2 operations { TESS Launch { HST Operations 2014??? } } JWST Calls for GTO & Cycle 1 Proposals JWST Launch

17 Many candidates found to date ~1/3 orbiting M dwarfs (figure removed) See also: Foreman-Mackey et al. 2014, Montet et al. 2015

18 Candidate Validation is Underway: 0.1''

19 Candidate Validation is Underway: K2 data analyses: transit fitting, centroid motion, diff. images 0.1''

20 Candidate Validation is Underway: K2 data analyses: transit fitting, centroid motion, diff. images Stellar spectra give system params (ESO/NTT, 70 nights) and RV masses 0.1''

21 Candidate Validation is Underway: K2 data analyses: transit fitting, centroid motion, diff. images Stellar spectra give system params (ESO/NTT, 70 nights) and RV masses Adaptive optics search for blends 0.1''

22 Candidate Validation is Underway: K2 data analyses: transit fitting, centroid motion, diff. images Stellar spectra give system params (ESO/NTT, 70 nights) and RV masses Adaptive optics search for blends 0.1'' BLENDER To quantify falsepositive likelihood

23 K2 3 bcd: Three small planets transiting a bright M dwarf ic et al

24 K2 3 bcd: Three small planets transiting a bright M dwarf ic et al

25 K2 3 bcd: Three small planets transiting a bright M dwarf ic et al

26 K2 3 bcd: Three small planets transiting a bright M dwarf ic et al

27 K2 3 bcd: Three small planets K2-3b K2-3c K2-3d R / REarth 2.1 ± ± ± 0.1 Finc / FEarth 11 ± ± ± 0.5 ic et al

28 Period Ratios of Multi-planet systems:

29 Mass/density measurements underway: rho_b = 11 g/cc rho_c = 3.6 g/cc rho_d unconstrained (figure removed)

30 Spitzer transit observations underway: Two transits of K2-3b: (figure removed) Transit of K2-3c: (figure removed) PI: Mike Werner Analyses: Jessica Krick, John Livingstone

31 Planet Size vs. Stellar Magnitude (figure removed) J G See also: Foreman-Mackey et al. 2014, Montet et al. 2015

32 Finding excellent targets for atmospheric studies with HST+JWST: CH4 CH4 CH4 simulations by B. Benneke 32

33 Finding excellent targets for atmospheric studies with HST+JWST: CH4 CH4 CH4 First of many K2 targets for JWST Cycle 1 observations! simulations by B. Benneke 33

34 K2 Take-home Points: Many new K2 candidates to date New multi-planet & M-dwarf systems Validation & vetting ongoing Mass measurements underway Good targets for Spitzer, HST, & JWST We expect ~5x more data by end-of-mission

The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets

The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets BJ Fulton, Erik Petigura, Andrew Howard, Howard Isaacson, Geoffrey Marcy, Phillip Cargile, Leslie Hebb, Lauren Weiss,

More information

The SPIRou RV surveys. Étienne Artigau for the SPIRou collaboration

The SPIRou RV surveys. Étienne Artigau for the SPIRou collaboration + The SPIRou RV surveys Étienne Artigau for the SPIRou collaboration + SPIRou RV surveys n Two major surveys n Blind survey of selected stars n Very deep survey of nearest M dwarfs n Down to ~1 M earth

More information

Lessons Learned from the Kepler/K2 Follow-Up Observation Programs: Leading to TESS and now PLATO

Lessons Learned from the Kepler/K2 Follow-Up Observation Programs: Leading to TESS and now PLATO Lessons Learned from the Kepler/K2 Follow-Up Observation Programs: Leading to TESS and now PLATO David R. Ciardi Caltech-NASA Exoplanet Science Institute 0 A Tale of Two Follow-Up Programs Kepler Project

More information

The Kepler Mission: 20% of all Stars in the Milky Way Have Earth like Planets!

The Kepler Mission: 20% of all Stars in the Milky Way Have Earth like Planets! The Kepler Mission: 20% of all Stars in the Milky Way Have Earth like Planets! Kepler Spacecraft Can we believe this result? What techniques and data were used to derive this important result? 1 How to

More information

Search for Transiting Planets around Nearby M Dwarfs. Norio Narita (NAOJ)

Search for Transiting Planets around Nearby M Dwarfs. Norio Narita (NAOJ) Search for Transiting Planets around Nearby M Dwarfs Norio Narita (NAOJ) Outline Introduction of Current Status of Exoplanet Studies Motivation for Transiting Planets around Nearby M Dwarfs Roadmap and

More information

arxiv: v1 [astro-ph.ep] 7 Mar 2016

arxiv: v1 [astro-ph.ep] 7 Mar 2016 Spitzer Observations of Exoplanets Discovered with The Kepler K2 Mission arxiv:1603.01934v1 [astro-ph.ep] 7 Mar 2016 Charles Beichman NASA Exoplanet Science Institute, California Institute of Technology,

More information

How Common Are Planets Around Other Stars? Transiting Exoplanets. Kailash C. Sahu Space Tel. Sci. Institute

How Common Are Planets Around Other Stars? Transiting Exoplanets. Kailash C. Sahu Space Tel. Sci. Institute How Common Are Planets Around Other Stars? Transiting Exoplanets Kailash C. Sahu Space Tel. Sci. Institute Earth as viewed by Voyager Zodiacal cloud "Pale blue dot" Look again at that dot. That's here.

More information

Occurrence of 1-4 REarth Planets Orbiting Sun-Like Stars

Occurrence of 1-4 REarth Planets Orbiting Sun-Like Stars Occurrence of 1-4 REarth Planets Orbiting Sun-Like Stars Geoff Marcy, Erik Petigura, Andrew Howard Planet Density vs Radius + Collaborators: Lauren Weiss, Howard Isaacson, Rea Kolbl, Lea Hirsch Thanks

More information

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects Extrasolar Planets Methods of detection Characterization Theoretical ideas Future prospects Methods of detection Methods of detection Methods of detection Pulsar timing Planetary motion around pulsar

More information

Extrasolar Transiting Planets: Detection and False Positive Rejection

Extrasolar Transiting Planets: Detection and False Positive Rejection 4 Harvard-Smithsonian Center for Astrophysics Extrasolar Transiting Planets: Detection and False Positive Rejection Willie Torres Harvard-Smithsonian Center for Astrophysics Young Planetary Systems Workshop

More information

Direct imaging characterisation of (exo-) planets with METIS

Direct imaging characterisation of (exo-) planets with METIS Direct imaging characterisation of (exo-) planets with METIS Jupiter HR8799 Saturn VLT/ISAAC VLT/NACO Cassini/VIMS Wolfgang Brandner (MPIA) with contributions by Ian Crossfield, Lisa Kaltenegger (MPIA),

More information

Transiting Exoplanet Observations of GJ 1132b & LHS 1140b with JWST

Transiting Exoplanet Observations of GJ 1132b & LHS 1140b with JWST Transiting Exoplanet Observations of GJ 1132b & LHS 1140b with JWST Hannah Diamond-Lowe Harvard-Smithsonian Center for Astrophysics Enabling Transiting Exoplanet Observations with JWST Space Telescope

More information

Stars from Kepler. Courtney Dressing

Stars from Kepler. Courtney Dressing Images: Pale Blue Dots (K. Mora) & KOI 961 (NASA/JPL Caltech) The Prevalence of Small Planets Around Small Stars from Kepler Courtney Dressing & David Charbonneau Harvard Smithsonian Center for Astrophysics

More information

Exoplanetary Science with Mul4- Object Spectrographs (and GLAO) Norio Narita (NAOJ)

Exoplanetary Science with Mul4- Object Spectrographs (and GLAO) Norio Narita (NAOJ) Exoplanetary Science with Mul4- Object Spectrographs (and GLAO) Norio Narita (NAOJ) Outline Conclusion of My Considera4ons Current Status of Exoplanetary Science Summary of Previous Discoveries Future

More information

Adam Burrows, Princeton April 7, KITP Public Lecture

Adam Burrows, Princeton April 7, KITP Public Lecture Adam Burrows, Princeton April 7, 2010 KITP Public Lecture The Ancient History of Comparative Planetology There are infinite worlds both like and unlike this world of ours...we must believe that in all

More information

arxiv: v1 [astro-ph.ep] 17 Jan Department of Astronomy, University of Tokyo, Hongo, Bunkyo-ku, Tokyo , Japan

arxiv: v1 [astro-ph.ep] 17 Jan Department of Astronomy, University of Tokyo, Hongo, Bunkyo-ku, Tokyo , Japan Draft version January 18, 2019 Typeset using LATEX twocolumn style in AASTeX61 SPITZER TRANSIT FOLLOW-UP OF PLANET CANDIDATES FROM THE K2 MISSION John H. Livingston, 1, 2, 3 Ian J. M. Crossfield, 4 Michael

More information

Detection and characterization of exoplanets from space

Detection and characterization of exoplanets from space Detection and characterization of exoplanets from space Heike Rauer 1,2, 1:Institute for Planetary Research, DLR, Berlin 2:Center for Astronomy and Astrophysics, TU Berlin Exoplanet Space Missions and

More information

Future Opportunities for Collaborations: Exoplanet Astronomers & Statisticians

Future Opportunities for Collaborations: Exoplanet Astronomers & Statisticians Future Opportunities for Collaborations: Exoplanet Astronomers & Statisticians Eric B. Ford Penn State Astronomy & Astrophysics Center for Astrostatistics Center for Exoplanets & Habitable Worlds Institute

More information

Synergies & Opportunities for SONG in the TESS Era

Synergies & Opportunities for SONG in the TESS Era Synergies & Opportunities for SONG in the TESS Era Daniel Huber Institute for Astronomy, University of Hawaiʻi SONG Workshop, Tenerife October 2018 TESS Mission: Introduction & First Results Transiting

More information

Astronomical Observations(?) for Transit Validation

Astronomical Observations(?) for Transit Validation Astronomical Observations(?) for Transit Validation Timothy Morton (Princeton / U of Florida / Flatiron Institute) @timothydmorton Sagan Summer Workshop July 23, 2018 OGLE-TR-56b Konacki+ (2004) OGLE

More information

Orbital Obliquities of Small Planets from CHARA Stellar Diameters

Orbital Obliquities of Small Planets from CHARA Stellar Diameters Orbital Obliquities of Small Planets from CHARA Stellar Diameters Samuel Quinn & Russel White Georgia State University CHARA Meeting March 19, 2015 Hébrard+ (2011) How do planets migrate? Giant planets

More information

SPICA Science for Transiting Planetary Systems

SPICA Science for Transiting Planetary Systems SPICA Science for Transiting Planetary Systems Norio Narita Takuya Yamashita National Astronomical Observatory of Japan 2009/06/02 SPICA Science Workshop @ UT 1 Outline For Terrestrial/Jovian Planets 1.

More information

The Kepler Legacy Continues: A Catalog of K2 Planets David R. Ciardi NExScI/Caltech

The Kepler Legacy Continues: A Catalog of K2 Planets David R. Ciardi NExScI/Caltech The Kepler Legacy Continues: A Catalog of K2 Planets David R. Ciardi NExScI/Caltech I A N J. M. C R O S S F I E L D, E R I K A. P E T I G U R A, E V A N S I N U K O F F, J O S H U A E. S C H L I E D E

More information

Lecture 12: Extrasolar planets. Astronomy 111 Monday October 9, 2017

Lecture 12: Extrasolar planets. Astronomy 111 Monday October 9, 2017 Lecture 12: Extrasolar planets Astronomy 111 Monday October 9, 2017 Reminders Star party Thursday night! Homework #6 due Monday The search for extrasolar planets The nature of life on earth and the quest

More information

PLATO-2.0 Follow-up. Questions addressed. PLATO Follow-up activities. Mass distribution Spectroscopy. Small mass planets are numerous => huge work

PLATO-2.0 Follow-up. Questions addressed. PLATO Follow-up activities. Mass distribution Spectroscopy. Small mass planets are numerous => huge work PLATO-20 Follow-up PLATO Follow-up activities Context'and'organisaon S Udry University of Geneva Overall PSPM structure The prime science product of PLATO = sample of fully characterized planets (various

More information

Forging the Vulcans: Forming Close-in Earths and Super-Earths around Low Mass Stars

Forging the Vulcans: Forming Close-in Earths and Super-Earths around Low Mass Stars Forging the Vulcans: Forming Close-in Earths and Super-Earths around Low Mass Stars Subhanjoy Mohanty (Imperial College London) Jonathan Tan (University of Florida, Gainesville) VIEW FROM KEPLER-62F: artist

More information

Validation of Transiting Planet Candidates with BLENDER

Validation of Transiting Planet Candidates with BLENDER Validation of Transiting Planet Candidates with BLENDER Willie Torres Harvard-Smithsonian Center for Astrophysics Planet Validation Workshop, Marseille, 14 May 2013 2013 May 14 Planet Validation Workshop,

More information

Searching for Other Worlds

Searching for Other Worlds Searching for Other Worlds Lecture 32 1 In-Class Question What is the Greenhouse effect? a) Optical light from the Sun is reflected into space while infrared light passes through the atmosphere and heats

More information

Science of extrasolar Planets A focused update

Science of extrasolar Planets A focused update Science of extrasolar Planets A focused update Raffaele Gratton, INAF Osservatorio Astronomico di Padova Extrasolar planets: a rapidly growing field of astronomy Top Tenz: Top 10 most important discoveries

More information

Imprints of Formation on Exoplanets

Imprints of Formation on Exoplanets Imprints of Formation on Exoplanets The role of Stellar Mass and Metallicity ILARIA PASCUCCI Lunar and Planetary Laboratory, Department of Planetary Sciences The University of Arizona https://almascience.nrao.edu/alma-science/planet-forming-disks

More information

arxiv: v2 [astro-ph.ep] 21 Jun 2016

arxiv: v2 [astro-ph.ep] 21 Jun 2016 Accepted to ApJ Preprint typeset using L A TEX style emulateapj v. 01/23/15 ELEVEN MULTI-PLANET SYSTEMS FROM K2 CAMPAIGNS 1 & 2 AND THE MASSES OF TWO HOT SUPER-EARTHS Evan Sinukoff 1,11, Andrew W. Howard

More information

arxiv: v1 [astro-ph.ep] 19 Dec 2018

arxiv: v1 [astro-ph.ep] 19 Dec 2018 Draft version December 21, 2018 Typeset using LATEX twocolumn style in AASTeX61 BRIGHT OPPORTUNITIES FOR ATMOSPHERIC CHARACTERIZATION OF SMALL PLANETS: MASSES AND RADII OF K2-3 B, C, D AND GJ3470 B FROM

More information

Studying Exoplanet Atmospheres with TMT. Ian Crossfield Sagan Fellow, UA/LPL 2014/07/18

Studying Exoplanet Atmospheres with TMT. Ian Crossfield Sagan Fellow, UA/LPL 2014/07/18 Studying Exoplanet Atmospheres with TMT Ian Crossfield Sagan Fellow, UA/LPL 2014/07/18 What are conditions like on other worlds? Temperature @ 3 mbar Temperature @ 210 mbar Temperature @ 400 mbar Phosphine

More information

The Direct Study of Exoplanet Atmospheres

The Direct Study of Exoplanet Atmospheres The Direct Study of Exoplanet Atmospheres David Charbonneau (Harvard-Smithsonian Center for Astrophysics) Symposium in Honor of Giovanni Fazio 27 May 2008 Statement about the Astronomy & Astrophysics 2010

More information

Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us.

Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us. Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us. Current techniques can measure motions as small as 1 m/s (walking speed!). Sun motion due to: Jupiter:

More information

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits. Paper Due Tue, Feb 23 Exoplanet Discovery Methods (1) Direct imaging (2) Astrometry position (3) Radial velocity velocity Seager & Mallen-Ornelas 2003 ApJ 585, 1038. "A Unique Solution of Planet and Star

More information

Finding Extra-Solar Earths with Kepler. William Cochran McDonald Observatory

Finding Extra-Solar Earths with Kepler. William Cochran McDonald Observatory Finding Extra-Solar Earths with Kepler William Cochran McDonald Observatory Who is Bill Cochran? Senior Research Scien;st McDonald Observatory Originally interested in outer planet atmospheres Started

More information

arxiv: v1 [astro-ph.ep] 30 Jul 2018

arxiv: v1 [astro-ph.ep] 30 Jul 2018 Draft version July 31, 2018 Preprint typeset using L A TEX style emulateapj v. 12/16/11 EXPECTED YIELDS OF PLANET DISCOVERIES FROM THE TESS PRIMARY AND EXTENDED MISSIONS Chelsea X. Huang 1,2, Avi Shporer

More information

Kepler s Multiple Planet Systems

Kepler s Multiple Planet Systems Kepler s Multiple Planet Systems TITech & Kobe Univ. February 2018 Jack J. Lissauer NASA Ames Outline Solar System & Exoplanets Kepler Mission Kepler planets and planetery systems Principal Kepler findings

More information

The KELT Transit Survey:

The KELT Transit Survey: The KELT Transit Survey: Hot, Planets around Hot, Bright Stars * The KELT North and South Collaborations The KELT-FUN the race to the bottom *i.e., refusing to participate in the small star opportunity.

More information

CHARACTERIZING K2 CANDIDATE PLANETARY SYSTEMS ORBITING LOW-MASS STARS I: CLASSIFYING LOW-MASS HOST STARS OBSERVED DURING CAMPAIGNS 1-7

CHARACTERIZING K2 CANDIDATE PLANETARY SYSTEMS ORBITING LOW-MASS STARS I: CLASSIFYING LOW-MASS HOST STARS OBSERVED DURING CAMPAIGNS 1-7 Accepted to The Astrophysical Journal Preprint typeset using L A TEX style AASTeX6 v. CHARACTERIZING K2 CANDIDATE PLANETARY SYSTEMS ORBITING LOW-MASS STARS I: CLASSIFYING LOW-MASS HOST STARS OBSERVED DURING

More information

EarthFinder A NASA-selected Probe Mission Concept Study for input to the 2020 Astrophysics Decadal Survey

EarthFinder A NASA-selected Probe Mission Concept Study for input to the 2020 Astrophysics Decadal Survey EarthFinder A NASA-selected Probe Mission Concept Study for input to the 2020 Astrophysics Decadal Survey Peter Plavchan Assistant Professor George Mason University 1 @PlavchanPeter http://exo.gmu.edu

More information

Quantifying False Positive Probabilities for Transiting Planet Candidates

Quantifying False Positive Probabilities for Transiting Planet Candidates Quantifying False Positive Probabilities for Transiting Planet Candidates Timothy Morton (Princeton) Sagan Workshop July 20, 2016 OGLE planet candidates, c.2004 Unsuitable for follow-up Stellar Binaries

More information

Why Search for Extrasolar Planets?

Why Search for Extrasolar Planets? Why Search for Extrasolar Planets? What is the diversity of habitats for life in the universe? Are Earth-like planets common or rare in our region of the galaxy? We have an elaborate and self-consistent

More information

TESS and Galactic Science

TESS and Galactic Science TESS and Galactic Science! Keivan Stassun!! WFIRST Meeting! 18 November 2014! 1! Preliminary TESS Mission Schedule! Activity! Date! Status! Systems Requirement Review! 12-13 Feb 2014! Completed! Preliminary

More information

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due Extrasolar Planets Today Dwarf Planets Extrasolar Planets Next week Review Tuesday Exam Thursday also, Homework 6 Due will count best 5 of 6 homeworks 2007 Pearson Education Inc., publishing as Pearson

More information

CHARACTERIZING EXOPLANETS SATELLITE

CHARACTERIZING EXOPLANETS SATELLITE JWST Transit Workshop Pasadena CHARACTERIZING EXOPLANETS SATELLITE David Ehrenreich! CHEOPS Mission Scientist s first small-class mission Mass-radius diagram Apparent continuity of masses for exoplanets

More information

CASE/ARIEL & FINESSE Briefing

CASE/ARIEL & FINESSE Briefing CASE/ARIEL & FINESSE Briefing Presentation to NRC Committee for Exoplanet Science Strategy including material from the ARIEL consortium Mark Swain - JPL 19 April 2019 2018 California Institute of Technology.

More information

arxiv: v1 [astro-ph.ep] 5 Oct 2018

arxiv: v1 [astro-ph.ep] 5 Oct 2018 Planet Occurrence Rate Density Models Including Stellar Effective Temperature Daniel Garrett arxiv:1810.02847v1 [astro-ph.ep] 5 Oct 2018 Sibley School of Mechanical and Aerospace Engineering, Cornell University,

More information

Exoplanet Science in the 2020s

Exoplanet Science in the 2020s Exoplanet Science in the 2020s NOAO 2020 Decadal Survey Community Planning Workshop Courtney Dressing Assistant Professor of Astronomy at University of California, Berkeley February 20, 2018 Origins Space

More information

Transits: planet detection and false signals. Raphaëlle D. Haywood Sagan Fellow, Harvard College Observatory

Transits: planet detection and false signals. Raphaëlle D. Haywood Sagan Fellow, Harvard College Observatory Transits: planet detection and false signals Raphaëlle D. Haywood Sagan Fellow, Harvard College Observatory Outline Transit method basics Transit discoveries so far From transit detection to planet confirmation

More information

The Large UV Optical IR survey telescope. Debra Fischer

The Large UV Optical IR survey telescope. Debra Fischer The Large UV Optical IR survey telescope Debra Fischer Yale University How do we identify worlds that are most promising for life? Host star insolation determines the probability of retaining water. Habitable

More information

Atmospheric Study of Exoplanets by Transmission Spectroscopy (keynote talk)

Atmospheric Study of Exoplanets by Transmission Spectroscopy (keynote talk) Atmospheric Study of Exoplanets by Transmission Spectroscopy (keynote talk) Akihiko Fukui Okayama Astrophysical Observatory (OAO), NAOJ Main collaborators: ObservaDon: N. Narita, T. Hirano, N. Kusakabe,

More information

Curriculum Vitae Courtney D. Dressing. Homepage: w.astro.berkeley.edu/ dressing

Curriculum Vitae Courtney D. Dressing.   Homepage: w.astro.berkeley.edu/ dressing Curriculum Vitae Courtney D. Dressing Campbell Hall 605E Berkeley, CA 94720 Email: dressing@berkeley.edu Homepage: w.astro.berkeley.edu/ dressing Appointments Assistant Professor, Department of Astronomy,

More information

arxiv: v1 [astro-ph.ep] 28 Sep 2018

arxiv: v1 [astro-ph.ep] 28 Sep 2018 Draft version October 1, 2018 Preprint typeset using L A TEX style emulateapj v. 12/16/11 REVISITING THE HIP41378 SYSTEM WITH K2 AND SPITZER David Berardo 1,2,,, Ian J. M. Crossfield 1, Michael Werner

More information

Comple(ng the Nearby Stellar and Substellar Census with WISE and 2MASS. John Gizis Department of Physics and Astronomy University of Delaware

Comple(ng the Nearby Stellar and Substellar Census with WISE and 2MASS. John Gizis Department of Physics and Astronomy University of Delaware Comple(ng the Nearby Stellar and Substellar Census with WISE and 2MASS John Gizis Department of Physics and Astronomy University of Delaware Collaborators Phil Castro Hugh Harris, Fred Vrba A. Burgasser,

More information

arxiv: v3 [astro-ph.ep] 16 Feb 2017

arxiv: v3 [astro-ph.ep] 16 Feb 2017 Draft version March 13, 2018 Preprint typeset using L A TEX style emulateapj v. 12/16/11 TWO SMALL, TRANSITING PLANETS AND A POSSIBLE THIRD BODY ORBITING HD 106315 Ian J. M. Crossfield 1,2, David R. Ciardi

More information

The CHEOPS Mission Consortium David Ehrenreich

The CHEOPS Mission Consortium David Ehrenreich The CHEOPS Mission Consortium David Ehrenreich From super-earths to brown dwarfs: Who s who? Paris, 30 June 2015 Main science goals What CHEOPS will do: Perform 1st-step characterisation of super-earths

More information

Professional / Amateur collaborations in exoplanetary science

Professional / Amateur collaborations in exoplanetary science Professional / Amateur collaborations in exoplanetary science Alexandre Santerne Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto alexandre.santerne@astro.up.pt Outline Exoplanets:

More information

Habitability Outside the Solar System. A discussion of Bennett & Shostak Chapter 11 HNRS 228 Dr. H. Geller

Habitability Outside the Solar System. A discussion of Bennett & Shostak Chapter 11 HNRS 228 Dr. H. Geller Habitability Outside the Solar System A discussion of Bennett & Shostak Chapter 11 HNRS 228 Dr. H. Geller 1 Chapter Overview Distant Suns (11.1) Life cycle of stars and their habitability zones Extrasolar

More information

Addressing stellar activity at every step in the RV follow-up of small planets. Raphaëlle D. Haywood. Stellar activity or Earth-mass planet?

Addressing stellar activity at every step in the RV follow-up of small planets. Raphaëlle D. Haywood. Stellar activity or Earth-mass planet? Addressing stellar activity at every step in the RV follow-up of small planets Stellar activity or Earth-mass planet? Raphaëlle D. Haywood and the GTO Science Team NASA Sagan Fellow, Harvard College Observatory

More information

Calculating the Occurrence Rate of Earth-Like Planets from the NASA Kepler Mission

Calculating the Occurrence Rate of Earth-Like Planets from the NASA Kepler Mission Calculating the Occurrence Rate of Earth-Like Planets from the NASA Kepler Mission Jessie Christiansen Kepler Participating Scientist NASA Exoplanet Science Institute/Caltech jessie.christiansen@caltech.edu

More information

Revealing the Fundamental Properties of Exoplanets and their Host Stars with Alopeke

Revealing the Fundamental Properties of Exoplanets and their Host Stars with Alopeke Revealing the Fundamental Properties of Exoplanets and their Host Stars with Alopeke Steve B. Howell Chief, Space Science and Astrobiology Division NASA Ames Research Center Contributions by: Elliott Horch,

More information

Characterizing Small Planets via Spectroscopy of their Host Stars Johanna Teske in collaboration with

Characterizing Small Planets via Spectroscopy of their Host Stars Johanna Teske in collaboration with Characterizing Small Planets via Spectroscopy of their Host Stars Johanna Teske in collaboration with Robert Wilson, Steven Majewski, Katia Cunha, Verne Smith, Diogo Souto, Chad Bender, Suvrath Mahadevan,

More information

3.4 Transiting planets

3.4 Transiting planets 64 CHAPTER 3. TRANSITS OF PLANETS: MEAN DENSITIES 3.4 Transiting planets A transits of a planet in front of its parent star occurs if the line of sight is very close to the orbital plane. The transit probability

More information

Comparative Planetology: Transiting Exoplanet Science with JWST

Comparative Planetology: Transiting Exoplanet Science with JWST Comparative Planetology: Transiting Exoplanet Science with JWST Mark Clampin, JWST Science Working Group, JWST Transits Working Group, Drake Deming, and Don Lindler MarkClampin JWSTObservatoryProjectScientist

More information

Heather A. Knutson. Appointments. Research Interests. Education. Selected Awards and Prize Lectures. Teaching and Mentoring

Heather A. Knutson. Appointments. Research Interests. Education. Selected Awards and Prize Lectures. Teaching and Mentoring Heather A. Knutson CURRICULUM VITAE California Institute of Technology Tel: 1 (626) 395-4268 Division of Geological and Planetary Sciences Fax: 1 (626) 568-0935 1200 E California Blvd MC 150-21 hknutson@caltech.edu

More information

Amateur Astronomer Participation in the TESS Exoplanet Mission

Amateur Astronomer Participation in the TESS Exoplanet Mission Amateur Astronomer Participation in the TESS Exoplanet Mission Dennis M. Conti Chair, AAVSO Exoplanet Section Member, TESS Follow-up Observing Program Copyright Dennis M. Conti 2018 1 Copyright Dennis

More information

Extrasolar Planets = Exoplanets III.

Extrasolar Planets = Exoplanets III. Extrasolar Planets = Exoplanets III http://www.astro.keele.ac.uk/~rdj/planets/images/taugruishydra2.jpg Outline Gravitational microlensing Direct detection Exoplanet atmospheres Detecting planets by microlensing:

More information

@ CFHT. Isabelle Boisse (LAM) and the SPIRou team France, Canada, CFHT, Brazil, Hawaii, Taiwan, Switzerland & Portugal

@ CFHT. Isabelle Boisse (LAM) and the SPIRou team France, Canada, CFHT, Brazil, Hawaii, Taiwan, Switzerland & Portugal @ CFHT Isabelle Boisse (LAM) and the SPIRou team France, Canada, CFHT, Brazil, Hawaii, Taiwan, Switzerland & Portugal Consortium PIs Jean-François Donati (IRAP, France) - René Doyon (Canada) Project scientists

More information

Interferometry & Asteroseismology of Solar-like Stars

Interferometry & Asteroseismology of Solar-like Stars Interferometry & Asteroseismology of Solar-like Stars (+ their Connection to Exoplanets) Daniel Huber NASA Ames Research Center Feb 11 2014 Supergiants Giants Hot Dwarfs White Dwarfs Cool Dwarfs Griffith

More information

II Planet Finding.

II Planet Finding. II Planet Finding http://sgoodwin.staff.shef.ac.uk/phy229.html 1.0 Introduction There are a lot of slides in this lecture. Much of this should be familiar from PHY104 (Introduction to Astrophysics) and

More information

Design Reference Mission. DRM approach

Design Reference Mission. DRM approach Design Reference Mission The Design Reference Mission (DRM) is a set of observing programs which together provide a tool to assist with tradeoff decisions in the design of the E-ELT (examples of observing

More information

BENJAMIN T. MONTET. Department of Astronomy and Astrophysics 5640 S. Ellis Ave. Chicago, IL 60637

BENJAMIN T. MONTET. Department of Astronomy and Astrophysics 5640 S. Ellis Ave. Chicago, IL 60637 BENJAMIN T. MONTET Department of Astronomy and Astrophysics 5640 S. Ellis Ave. Chicago, IL 60637 bmontet@uchicago.edu http://www.astro.uchicago.edu/~bmontet SCIENTIFIC RESEARCH INTERESTS Planetary dynamics,

More information

A FIBER INJECTION UNIT FOR EXOPLANET SPECTROSCOPY

A FIBER INJECTION UNIT FOR EXOPLANET SPECTROSCOPY A FIBER INJECTION UNIT FOR EXOPLANET SPECTROSCOPY Presenter: Wenhao Xuan Mentor: Dimitri Mawet Collaboratorsrs: Garreth Ruane, James Kent Wallace, Daniel Echeverri, Michael Randolph Marois et al. 2008

More information

Science with Transiting Planets TIARA Winter School on Exoplanets 2008

Science with Transiting Planets TIARA Winter School on Exoplanets 2008 Science with Transiting Planets TIARA Winter School on Exoplanets 2008 Eric Agol University of Thanks to Josh Winn for slides 1 Venusian transit 2004 August 6, 2004 from Slovenia (Lajovic et al.) 2 History

More information

arxiv: v1 [astro-ph.ep] 14 Dec 2016

arxiv: v1 [astro-ph.ep] 14 Dec 2016 Draft version December 16, 216 Preprint typeset using L A TEX style emulateapj v. 1/23/15 MASS CONSTRAINTS OF THE WASP-47 PLANETARY SYSTEM FROM RADIAL VELOCITIES Evan Sinukoff 1,14, Andrew W. Howard 2,

More information

Searching For Planets Like Earth around stars like the Sun

Searching For Planets Like Earth around stars like the Sun Searching For Planets Like Earth around stars like the Sun Derek Buzasi FGCU Roadmap Who am I and how did I get here? Motivation for my research What makes a star like the Sun? How do we find planets?

More information

Characterizing Exoplanet Atmospheres: a new frontier

Characterizing Exoplanet Atmospheres: a new frontier Characterizing Exoplanet Atmospheres: a new frontier Mark Swain Jet Propulsion Laboratory, California Institute of Technology Collaborators: Jeroen Bouman, Gautam Vasisht, Giovanna Tinetti, & Angelle Tanner

More information

Planet Detection. AST 105 Intro Astronomy The Solar System

Planet Detection. AST 105 Intro Astronomy The Solar System Review AST 105 Intro Astronomy The Solar System MIDTERM III this THURSDAY 04/8 covering LECT. 17 through We ve talked about the Terrestrial Planets and the Jovian Planets - What about planets around other

More information

UNDERSTANDING THE EFFECTS OF STELLAR MULTIPLICITY ON THE DERIVED PLANET RADII FROM TRANSIT SURVEYS: IMPLICATIONS FOR KEPLER, K2, AND TESS

UNDERSTANDING THE EFFECTS OF STELLAR MULTIPLICITY ON THE DERIVED PLANET RADII FROM TRANSIT SURVEYS: IMPLICATIONS FOR KEPLER, K2, AND TESS 2015. The American Astronomical Society. All rights reserved. doi:10.1088/0004-637x/805/1/16 UNDESTANDING THE EFFECTS OF STELLA MULTIPLICITY ON THE DEIVED PLANET ADII FOM TANSIT SUVEYS: IMPLICATIONS FO

More information

Detailed chemical abundances of M-dwarf planet hosts from APOGEE observations

Detailed chemical abundances of M-dwarf planet hosts from APOGEE observations Detailed chemical abundances of M-dwarf planet hosts from APOGEE observations Diogo Souto Observatório Nacional - ON/MCTI + Katia Cunha Anibal Verne Smith C. Allende Prieto Garcia Hernandez Olga Zamora

More information

The Gravitational Microlensing Planet Search Technique from Space

The Gravitational Microlensing Planet Search Technique from Space The Gravitational Microlensing Planet Search Technique from Space David Bennett & Sun Hong Rhie (University of Notre Dame) Abstract: Gravitational microlensing is the only known extra-solar planet search

More information

Probabilistic modeling and Inference in Astronomy

Probabilistic modeling and Inference in Astronomy Probabilistic modeling and Inference in Astronomy Dan Foreman-Mackey Sagan Fellow, University of Washington github.com/dfm // @exoplaneteer // dfm.io Dan Foreman-Mackey Sagan Fellow, University of Washington

More information

Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets

Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets Lecture #15: Plan Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets Resolving Power (review) The bigger the size of the telescope, the better it is at discerning fine details

More information

arxiv: v1 [astro-ph.ep] 21 May 2018

arxiv: v1 [astro-ph.ep] 21 May 2018 Draft version May 23, 2018 Typeset using LATEX twocolumn style in AASTeX61 THE EXOPLANET POPULATION OBSERVATION SIMULATOR. I - THE INNER EDGES OF PLANETARY SYSTEMS Gijs D. Mulders, 1, 2 Ilaria Pascucci,

More information

GJ 436. Michaël Gillon (Geneva)

GJ 436. Michaël Gillon (Geneva) Michaël Gillon (Geneva) Michelson Summer Workshop - July 25, 2007 2004: first hot Neptunes detected by radial velocity Among them: b (Butler et al. 2004, Maness et al. 2007) M * ~ 0.44 M Sun (M2.5V) R

More information

The Physics of Exoplanets

The Physics of Exoplanets The Physics of Exoplanets Heike Rauer Institut für Planetenforschung, DLR, Berlin-Adlershof, Zentrum für Astronomie und Astrophysik, TU Berlin Formation in protoplanetary disk, migration Loss of primary,

More information

Planet Occurrence Within 0.25 AU

Planet Occurrence Within 0.25 AU Planet Occurrence Within 0.25 AU Andrew W. Howard UC Berkeley California Planet Search Team: Geoff Marcy, Debra Fischer, John Johnson, Jason Wright, Howard Isaacson, Julien Spronck, Jeff ValenO, Jay Anderson,

More information

Observations of Transiting Exoplanets with the James Webb Space Telescope (JWST)

Observations of Transiting Exoplanets with the James Webb Space Telescope (JWST) Observations of Transiting Exoplanets with the James Webb Space Telescope (JWST) Charles Beichman NASA Exoplanet Science Institute, California Institute of Technology, Jet Propulsion Laboratory Bjoern

More information

Planet Detection! Estimating f p!

Planet Detection! Estimating f p! Planet Detection! Estimating f p! Can We See Them?! Not easily! Best cases were reported in late 2008! Will see these later! Problem is separating planet light from star light! Star is 10 9 times brighter

More information

Michaël Gillon (Université de Liège, Belgium)

Michaël Gillon (Université de Liège, Belgium) 12th Meeting of the FNRS Contact Group Astronomie & Astrophysique 17 May 2011 Planetarium, Brussels Michaël Gillon (Université de Liège, Belgium) michael.gillon@ulg.ac.be ~1% pour Soleil + Jupiter Brown

More information

Exoplanet Forum: Transit Chapter

Exoplanet Forum: Transit Chapter Exoplanet Forum: Transit Chapter A condensed version of the Transits Chapter from the Exoplanet Forum Proceedings, made available to the Decadal Survey, Planetary Systems and Star Formation Panel Drake

More information

How Sagan Fellows are shaping the success of NASA s K2 Mission. Geert Barentsen K2 GO Director 2017 Nov 9

How Sagan Fellows are shaping the success of NASA s K2 Mission. Geert Barentsen K2 GO Director 2017 Nov 9 How Sagan Fellows are shaping the success of NASA s K2 Mission Geert Barentsen K2 GO Director 2017 Nov 9 K2 recently surpassed 300 publications! # Unique (co-)authors: 1422 # Citations: 3285 Doug Wiemer

More information

arxiv: v1 [astro-ph.ep] 22 Jan 2019

arxiv: v1 [astro-ph.ep] 22 Jan 2019 Accepted for publication in the Astronomical Journal Discovery and Vetting of Exoplanets I: Benchmarking K2 Vetting Tools arxiv:1901.07459v1 [astro-ph.ep] 22 Jan 2019 Veselin B. Kostov 1,2, Susan E. Mullally

More information

The Search for Habitable Worlds Lecture 3: The role of TESS

The Search for Habitable Worlds Lecture 3: The role of TESS The Search for Habitable Worlds Lecture 3: The role of TESS David W. Latham Lucchin PhD School, Asiago, 26 June 2013 A aaaaaaaa Dave Latham, Science Director, CfA AAAAAAAAAAAA Selected for launch in 2017

More information

Can We See Them?! Planet Detection! Planet is Much Fainter than Star!

Can We See Them?! Planet Detection! Planet is Much Fainter than Star! Can We See Them?! Planet Detection! Estimating f p! Not easily! Best cases were reported in late 2008! Will see these later! Problem is separating planet light from star light! Star is 10 9 times brighter

More information

Spitzer Space Telescope Current Status and Future Plans

Spitzer Space Telescope Current Status and Future Plans Spitzer Space Telescope Current Status and Future Plans Great Observatories Workshop Pasadena, 22-24 May 2006 Current Status Instruments and Observatory are operating well Observing efficiency has continued

More information

Title: Survival Function Analysis of Planet Orbit Semi-major Axis Distribution and Occurrence Rate Estimate

Title: Survival Function Analysis of Planet Orbit Semi-major Axis Distribution and Occurrence Rate Estimate Title: Survival Function Analysis of Planet Orbit Semi-major Axis Distribution and Occurrence Rate Estimate Authors: Li Zeng* 1, Stein B. Jacobsen 1, Dimitar D. Sasselov 2, Andrew Vanderburg 3 Affiliations:

More information

The formation & evolution of solar systems

The formation & evolution of solar systems The formation & evolution of solar systems Content expectations Birth of the Solar System What did the material that eventually became the Sun and planets look like originally? Interstellar clouds like

More information