Thermodynamics Lecture Series

Size: px
Start display at page:

Download "Thermodynamics Lecture Series"

Transcription

1 Therodynac Lecture Sere Dynac Enery Traner Heat, ork and Ma ppled Scence Educaton Reearch Group (SERG) Faculty o ppled Scence Unvert Teknolo MR Pure utance Properte o Pure Sutance- Revew CHPTER eal: drjjlanta@hotal.co Quote Exaple: tea power cycle. Stea Power Plant "Good judent coe ro experence. Experence coe ro ad judent - nonyou Con Product Fuel r Pup Stea Turne Heat Exchaner Mechancal Enery to Generator "The root o educaton are tter, ut the rut weet." -rtotle Cooln ater Syte Boundary or or Therodynac naly Phae Chane o ater Phae Chane o ater C. lqud Q n H O Sat. lqud Q n Sat. Lq. Q n Q n ater nteract wth theral enery T 50 C Q n T, C kpa 3 kpa 00 kpa 5 kpa, 50 C 3 [ + x 3 /k Copreed lqud: Good etaton or properte y takn y y can e ether,, u, h or.

2 Copyrht The McGraw -Hll Copane, Inc. Peron requred or reproducton or dplay. FIGURE -6 T-v dara o T v dara: Multple P contant - preure phae-chane procee o a pure utance at varou preure (nuercal value are or water) FIGURE -8 T-v dara o a pure utance. Copyrht The McGraw -Hll Copane, Inc. Peron requred or reproducton or dplay. T v dara: Multple P - -3 Phae Chane o ater - Preure Chane Phae Chane o ater- Preure Chane P 4.46 kpa P 4.46 kpa T at@00 kpa C P at@30 C 4.46 kpa P 4.46 kpa P kpa 00 P, kpa 30 C T at@00 kpa C P at@30 C 4.46 kpa n 30 C n 30 C n 3 [n + x n 30 C n 4 30 C 4.46 n 5 30 C C. lqud Sat. lqud Sat. Lq. ater when preure 30 C 3 30 C 5, 3 /k Copreed lqud: Good etaton or properte y takn y y can e ether,, u, h or. P, C,090, Phae Chane o C 00 C 00 C 0 C P- dara wth repect to the aturaton lne, 3 /k Saturated Lqud- Mxture Phae:, V,, n, u, h Lqud Phae:, V,, n, u, h Mxture:, V,, n,, u, h, x t Gven the preure, P, then T T at, y < y <y + av av + t x Sat. Lq. Mxture qualty x t Dvde y + total a, t ( t ) + x x + x

3 Saturated Lqud- Mxture Gven the preure, P, then T T at, y < y <y CHPTER 3 Phae:, V,, n, u, h Lqud Phae:, V,, n, u, h Mxture:, V,, n,, u, h, x + x y y + xy y Sat. Lq. Mxture qualty x t y y y can e n,, u, h Enery Traner y Heat, ork, and Ma Goal: Identy or o enery nteracton and way o repreentn t n therodynac procee I x known or ha een deterned, ue aove relaton to nd other properte. I ether n, u, h are known, ue t to nd qualty, x. Introducton Introducton Ojectve:. Identy the type o dynac enere nteractn wth a yte.. Dtnuh the derence and relate etween heat traner and theral enery. 3. rte the derent yol and the conventon ued to repreent heat traner. 4. Derentate etween heat traner and work done. Ojectve: 5. rte the yol and conventon ued or work done. 6. Otan a atheatcal relaton repreentn echancal work done or any yte. 7. Otan the aount o work done ro a P V or P - n raph. 8. rte down the relatonhp etween a and volue low rate. Ojectve: Introducton 9. Otan a atheatcal relaton repreentn a low rate n ter o the a velocte and the yte nlet or ext area. 0.rte the pecc enery carred y a lown a..ue all atheatcal relaton and raphn kll to olve prole nvolvn nteracton enere. SOD 5 C q n Enery Traner -Heat Traner q ou t Sat. Lq. Q n Oven Na Leak Le 0 C q n 00 C 3-3

4 FIGURE 3-9 Specyn the drecton o heat and work. Copyrht The McGraw -Hll Copane, Inc. Peron requred or reproducton or dplay. Iochorc Proce Cloed Syte Ioarc Proce Cloed Syte Syte expand, volue ncreae T 50 C C. lqud H O Sat. lqud Sat. Lq. Q n Q n Q n Q n Q n 3- Source o theral enery Ioarc Proce Cloed Syte Syte expand, volue ncreae T 50 C Syol and Conventon Heat traner Total heat entern, Q n 00, 5 k Specc heat Qn 00 qn 0 5 k k C. lqud H O Sat. lqud Sat. Lq. Q n Q Q n, q, n n Q, n or k k Source o theral enery Rate o heat traner heat allowed to nteract or 50 econd Q 00 n k 50 Q Syol and Conventon Heat traner Total heat leavn, Q 0, 5 k Specc heat q Q k 50 Q Q 0 4 5k k Rate o heat traner heat allowed to nteract or 50 econd Syol and Conventon Heat traner Net heat traner Q Q Net pecc heat traner q q Q, n Qn Q net Qnet, Qn Q 60 5 k n net, n k Net rate o heat traner heat allowed to nteract or 50 econd Q net, n Q. k Q n 4

5 Exaple: tea power cycle. Con Product Fuel r Q n Pup Stea Power Plant Stea Turne Heat Exchaner Mechancal Enery to Generator Mechancal work: Pton ove up Boundary work done y yte Enery Traner ork Done pw, Electrcal work done on yte No heat traner T ncreae ater oe te n Q Cooln ater Syte Boundary or or Therodynac naly Sat. lqud e V e VDt, Voltae, V Syol and conventon or ork Iotheral Proce Syte expand, volue ncreae-oundary work done P 4.46 kpa C. lqud Sat. lqud Sat. Lq. P 4.46 kpa P 4.46 kpa T at@00 kpa C P at@30 C 4.46 kpa P kpa ater when preure reduced no theral enery or heat Copyrht The McGraw -Hll Copane, Inc. Peron requred or reproducton or dplay. Boundary ork,, ork done nvolve orce ovn an oject n the drecton o oveent Fnal, n FIGURE 3-9 a doe a derental aount o work d a t orce the pton to ove y a derental aount d. δ F d Total work done y yte to expand ro ntal to nal tate δ δ, + δ, δ, n δ F d + F d +... Intal + F d n n Copyrht The McGraw -Hll Copane, Inc. Peron requred or reproducton or dplay. FIGURE 3-9 a doe a derental aount o work d a t orce the pton to ove y a derental aount d. d approache zero δ F d Boundary ork,, Preure exerted on a urace the rato o orce appled w.r.t. the area o urace F P, kpa Fnal, n Intal Copyrht The McGraw -Hll Copane, Inc. Peron requred or reproducton or dplay. FIGURE 3-9 a doe a derental aount o work d a t orce the pton to ove y a derental aount d. Boundary ork,, Fnal, n Preure exerted on a urace the rato o orce appled w.r.t. the area o urace Intal F P So But F d P d d dv Hence δ PdV 5

6 Copyrht The McGraw -Hll Copane, Inc. Peron requred or reproducton or dplay. FIGURE 3-9 a doe a derental aount o work d a t orce the pton to ove y a derental aount d. Boundary ork,, Fnal, n hen the preure kept contant, Ioarc proce, Intal PdV PV ( V ) Copyrht The McGraw -Hll Copane, Inc. Peron requred or reproducton or dplay. Specc Boundary ork, w, FIGURE 3-9 a doe a derental aount o work d a t orce the pton to ove y a derental aount d. Fnal, n hen the preure kept contant, Ioarc proce, Intal ω Pd P ( ), k Or PdV PV P V P P cont P Or ω Pd P P, k P P cont P FIGURE 3-0 The area under the proce curve on a P-V dara repreent the oundary work. 3-3 F Copyrht The McGraw -Hll Copane, Inc. Peron requred or reproducton or dplay. d P PdV d Boundary work on a P V raph rea d 0 0 PdV FIGURE 3- The net work done durn a cycle the derence etween the work done y the yte and the work done on the yte. PdV 3-4 ω Pd Copyrht The McGraw -Hll Copane, Inc. Peron requred or reproducton or dplay. ork done - Cyclc proce Total work area o nu area o B. Total work haded area Output power,, k Input power, n, k Copyrht The McGraw -Hll Copane, Inc. Peron requred or reproducton or dplay. ork done Flow work Enery Traner Ma Conervaton Flow work enery requred to overcoe retance at the Boundary oth whle entern and leavn the yte 3-5 FIGURE 3-48 Scheatc or low work. PV, ω P, k / PV, ω P, k / Ext Conder a lown throuh cylnder o lenth l and area Ma ut e conerved n any proce. n, k y Lenth, l or n k y, For teady low Ext y 0 n 6

7 Enery Traner Enery o Movn Ma Conder a lown throuh cylnder o lenth l and area Let the a low throuh or te Let the a low nterval o Dt, uch a 0 econd wth a velocty Snce volue V Lenth, l volue V low rate Ext or V 3, a V k Flow rate, Enery Traner Enery o Movn Ma Conder a lown throuh cylnder o lenth l and area Let the a low throuh or te Let the a low nterval o Dt, uch a 0 econd wth a velocty Snce volue V l volue V l low rate or 3 V υ r, Ext Lenth, l r a V υ k Flow, rate Copyrht The McGraw -Hll Copane, Inc. Peron requred or reproducton or dplay. Enery Traner Enery o Movn Ma Knetc enery, ke Potental enery, pe r? h ke, pe, 000 k 000 k Internal enery, u u, k Ga Mxture Ideal Gae Equaton o State - P--T ehavour PV RT Hence, can alo wrte PV NR u T FIGURE 3-5 The total enery cont o three part or a nonlown lud and our part or a lown lud. N no o kloole, kol, M olar a n k/kole and R unveral a contant; u R u MR. R u 8.34 /kol kol K K R u Hh denty Low denty 7

A Tale of Friction Student Notes

A Tale of Friction Student Notes Nae: Date: Cla:.0 Bac Concept. Rotatonal Moeent Kneatc Anular Velocty Denton A Tale o Frcton Student Note t Aerae anular elocty: Intantaneou anular elocty: anle : radan t d Tanental Velocty T t Aerae tanental

More information

CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS

CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS 103 Phy 1 9.1 Lnear Momentum The prncple o energy conervaton can be ued to olve problem that are harder to olve jut ung Newton law. It ued to decrbe moton

More information

The gravitational field energy density for symmetrical and asymmetrical systems

The gravitational field energy density for symmetrical and asymmetrical systems The ravtatonal eld enery denty or yetrcal and ayetrcal yte Roald Sonovy Techncal Unverty 90 St. Peterbur Rua E-al:roov@yandex Abtract. The relatvtc theory o ravtaton ha the conderable dculte by decrpton

More information

1 cos. where v v sin. Range Equations: for an object that lands at the same height at which it starts. v sin 2 i. t g. and. sin g

1 cos. where v v sin. Range Equations: for an object that lands at the same height at which it starts. v sin 2 i. t g. and. sin g SPH3UW Unt.5 Projectle Moton Pae 1 of 10 Note Phc Inventor Parabolc Moton curved oton n the hape of a parabola. In the drecton, the equaton of oton ha a t ter Projectle Moton the parabolc oton of an object,

More information

Main components of the above cycle are: 1) Boiler (steam generator) heat exchanger 2) Turbine generates work 3) Condenser heat exchanger 4) Pump

Main components of the above cycle are: 1) Boiler (steam generator) heat exchanger 2) Turbine generates work 3) Condenser heat exchanger 4) Pump Introducton to Terodynacs, Lecture -5 Pro. G. Cccarell (0 Applcaton o Control olue Energy Analyss Most terodynac devces consst o a seres o coponents operatng n a cycle, e.g., stea power plant Man coponents

More information

Chapter 13. Gas Mixtures. Study Guide in PowerPoint. Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A.

Chapter 13. Gas Mixtures. Study Guide in PowerPoint. Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A. Chapter 3 Gas Mxtures Study Gude n PowerPont to accopany Therodynacs: An Engneerng Approach, 5th edton by Yunus A. Çengel and Mchael A. Boles The dscussons n ths chapter are restrcted to nonreactve deal-gas

More information

Not at Steady State! Yes! Only if reactions occur! Yes! Ideal Gas, change in temperature or pressure. Yes! Class 15. Is the following possible?

Not at Steady State! Yes! Only if reactions occur! Yes! Ideal Gas, change in temperature or pressure. Yes! Class 15. Is the following possible? Chapter 5-6 (where we are gong) Ideal gae and lqud (today) Dente Partal preure Non-deal gae (next tme) Eqn. of tate Reduced preure and temperature Compreblty chart (z) Vapor-lqud ytem (Ch. 6) Vapor preure

More information

No! Yes! Only if reactions occur! Yes! Ideal Gas, change in temperature or pressure. Survey Results. Class 15. Is the following possible?

No! Yes! Only if reactions occur! Yes! Ideal Gas, change in temperature or pressure. Survey Results. Class 15. Is the following possible? Survey Reult Chapter 5-6 (where we are gong) % of Student 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% Hour Spent on ChE 273 1-2 3-4 5-6 7-8 9-10 11+ Hour/Week 2008 2009 2010 2011 2012 2013 2014 2015 2017 F17

More information

Introduction to Interfacial Segregation. Xiaozhe Zhang 10/02/2015

Introduction to Interfacial Segregation. Xiaozhe Zhang 10/02/2015 Introducton to Interfacal Segregaton Xaozhe Zhang 10/02/2015 Interfacal egregaton Segregaton n materal refer to the enrchment of a materal conttuent at a free urface or an nternal nterface of a materal.

More information

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics Lecture 16 Chapter 11 Physcs I Energy Dsspaton Lnear Momentum Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Department o Physcs and Appled Physcs IN IN THIS CHAPTER, you wll learn

More information

Quick Visit to Bernoulli Land

Quick Visit to Bernoulli Land Although we have een the Bernoull equaton and een t derved before, th next note how t dervaton for an uncopreble & nvcd flow. The dervaton follow that of Kuethe &Chow ot cloely (I lke t better than Anderon).

More information

5.5. Collisions in Two Dimensions: Glancing Collisions. Components of momentum. Mini Investigation

5.5. Collisions in Two Dimensions: Glancing Collisions. Components of momentum. Mini Investigation Colliion in Two Dienion: Glancing Colliion So ar, you have read aout colliion in one dienion. In thi ection, you will exaine colliion in two dienion. In Figure, the player i lining up the hot o that the

More information

PHYS 1443 Section 002 Lecture #20

PHYS 1443 Section 002 Lecture #20 PHYS 1443 Secton 002 Lecture #20 Dr. Jae Condtons for Equlbru & Mechancal Equlbru How to Solve Equlbru Probles? A ew Exaples of Mechancal Equlbru Elastc Propertes of Solds Densty and Specfc Gravty lud

More information

How does the momentum before an elastic and an inelastic collision compare to the momentum after the collision?

How does the momentum before an elastic and an inelastic collision compare to the momentum after the collision? Experent 9 Conseraton o Lnear Moentu - Collsons In ths experent you wll be ntroduced to the denton o lnear oentu. You wll learn the derence between an elastc and an nelastc collson. You wll explore how

More information

APPLICATIONS: CHEMICAL AND PHASE EQUILIBRIA

APPLICATIONS: CHEMICAL AND PHASE EQUILIBRIA 5.60 Sprn 2007 Lecture #28 pae PPLICTIOS: CHMICL D PHS QUILIBRI pply tattcal mechanc to develop mcrocopc model for problem you ve treated o far wth macrocopc thermodynamc 0 Product Reactant Separated atom

More information

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum Physcs or Scentsts and Engneers Chapter 9 Impulse and Momentum Sprng, 008 Ho Jung Pak Lnear Momentum Lnear momentum o an object o mass m movng wth a velocty v s dened to be p mv Momentum and lnear momentum

More information

Projectile Motion. Parabolic Motion curved motion in the shape of a parabola. In the y direction, the equation of motion has a t 2.

Projectile Motion. Parabolic Motion curved motion in the shape of a parabola. In the y direction, the equation of motion has a t 2. Projectle Moton Phc Inentor Parabolc Moton cured oton n the hape of a parabola. In the drecton, the equaton of oton ha a t ter Projectle Moton the parabolc oton of an object, where the horzontal coponent

More information

Chapter.4 MAGNETIC CIRCUIT OF A D.C. MACHINE

Chapter.4 MAGNETIC CIRCUIT OF A D.C. MACHINE Chapter.4 MAGNETIC CIRCUIT OF A D.C. MACHINE The dfferent part of the dc machne manetc crcut / pole are yoke, pole, ar ap, armature teeth and armature core. Therefore, the ampere-turn /pole to etablh the

More information

v v at 1 2 d vit at v v 2a d

v v at 1 2 d vit at v v 2a d SPH3UW Unt. Accelerton n One Denon Pge o 9 Note Phyc Inventory Accelerton the rte o chnge o velocty. Averge ccelerton, ve the chnge n velocty dvded by the te ntervl, v v v ve. t t v dv Intntneou ccelerton

More information

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy?

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy? Perod & Frequency Perod (T): Tme to complete one ull rotaton Frequency (): Number o rotatons completed per second. = 1/T, T = 1/ v = πr/t Work and Energy Work: W = F!d (pcks out parallel components) F

More information

Force = F Piston area = A

Force = F Piston area = A CHAPTER III Ths chapter s an mportant transton between the propertes o pure substances and the most mportant chapter whch s: the rst law o thermodynamcs In ths chapter, we wll ntroduce the notons o heat,

More information

8 Waves in Uniform Magnetized Media

8 Waves in Uniform Magnetized Media 8 Wave n Unform Magnetzed Meda 81 Suceptblte The frt order current can be wrtten j = j = q d 3 p v f 1 ( r, p, t) = ɛ 0 χ E For Maxwellan dtrbuton Y n (λ) = f 0 (v, v ) = 1 πvth exp (v V ) v th 1 πv th

More information

i-clicker i-clicker A B C a r Work & Kinetic Energy

i-clicker i-clicker A B C a r Work & Kinetic Energy ork & c Energ eew of Preou Lecture New polc for workhop You are epected to prnt, read, and thnk about the workhop ateral pror to cong to cla. (Th part of the polc not new!) There wll be a prelab queton

More information

Problem Free Expansion of Ideal Gas

Problem Free Expansion of Ideal Gas Problem 4.3 Free Expanon o Ideal Ga In general: ds ds du P dv P dv NR V dn Snce U o deal ga ndependent on olume (du=), and N = cont n the proce: dv In a ere o nntemal ree expanon, entropy change by: S

More information

Thermodynamics and Gases

Thermodynamics and Gases hermodynamcs and Gases Last tme Knetc heory o Gases or smple (monatomc) gases Atomc nature o matter Demonstrate deal gas law Atomc knetc energy nternal energy Mean ree path and velocty dstrbutons From

More information

Chapter 7: Conservation of Energy

Chapter 7: Conservation of Energy Lecture 7: Conservaton o nergy Chapter 7: Conservaton o nergy Introucton I the quantty o a subject oes not change wth tme, t means that the quantty s conserve. The quantty o that subject remans constant

More information

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property.

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property. Unt Eght Calculatons wth Entropy Mechancal Engneerng 370 Thermodynamcs Larry Caretto October 6, 010 Outlne Quz Seven Solutons Second law revew Goals for unt eght Usng entropy to calculate the maxmum work

More information

p p +... = p j + p Conservation Laws in Physics q Physical states, process, and state quantities: Physics 201, Lecture 14 Today s Topics

p p +... = p j + p Conservation Laws in Physics q Physical states, process, and state quantities: Physics 201, Lecture 14 Today s Topics Physcs 0, Lecture 4 Conseraton Laws n Physcs q Physcal states, process, and state quanttes: Today s Topcs Partcle Syste n state Process Partcle Syste n state q Lnear Moentu And Collsons (Chapter 9.-9.4)

More information

v c motion is neither created nor destroyed, but transferred via interactions. Fri. Wed (.18,.19) Introducing Potential Energy RE 6.

v c motion is neither created nor destroyed, but transferred via interactions. Fri. Wed (.18,.19) Introducing Potential Energy RE 6. r. 6.5-.7 (.) Rest Mass,ork by Changng orces Columba Rep 3pm, here RE 6.b (last day to drop) ed. 6.8-.9(.8,.9) Introducng Potental Energy RE 6.c Tues. H6: Ch 6 Pr s 58,59, 99(a-c), 05(a-c) moton s nether

More information

Spring Force and Power

Spring Force and Power Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi IN THIS CHAPTER, you wll learn how to solve problems

More information

Class: Life-Science Subject: Physics

Class: Life-Science Subject: Physics Class: Lfe-Scence Subject: Physcs Frst year (6 pts): Graphc desgn of an energy exchange A partcle (B) of ass =g oves on an nclned plane of an nclned angle α = 3 relatve to the horzontal. We want to study

More information

Chapter One Mixture of Ideal Gases

Chapter One Mixture of Ideal Gases herodynacs II AA Chapter One Mxture of Ideal Gases. Coposton of a Gas Mxture: Mass and Mole Fractons o deterne the propertes of a xture, we need to now the coposton of the xture as well as the propertes

More information

Chapter 5. Answers to Even Numbered Problems m kj. 6. (a) 900 J (b) (a) 31.9 J (b) 0 (c) 0 (d) 31.9 J. 10.

Chapter 5. Answers to Even Numbered Problems m kj. 6. (a) 900 J (b) (a) 31.9 J (b) 0 (c) 0 (d) 31.9 J. 10. Answers to Even Numbered Problems Chapter 5. 3.6 m 4..6 J 6. (a) 9 J (b).383 8. (a) 3.9 J (b) (c) (d) 3.9 J. 6 m s. (a) 68 J (b) 84 J (c) 5 J (d) 48 J (e) 5.64 m s 4. 9. J 6. (a). J (b) 5. m s (c) 6.3

More information

COMPUTATIONAL HEAT PRADIP DUTTA INDIAN INSTITUTE OF SCIENCE BANGALORE

COMPUTATIONAL HEAT PRADIP DUTTA INDIAN INSTITUTE OF SCIENCE BANGALORE COMPUTATIONAL HEAT TRANSFER AND FLUID FLOW PRADIP DUTTA DEPARTMENT OF MECHANICAL ENGINEERING INDIAN INSTITUTE OF SCIENCE BANGALORE Otlne Bac of Heat ttranfer Mathematcalh l decrpton of fld flow and heat

More information

HPLC Separation and Identification of Parabens Homologs

HPLC Separation and Identification of Parabens Homologs HPLC Separaton and Identcaton o Paraben Hoolog Experent Objectve By experent, learn the bac prncple o chroatographc analy and the bac operaton o the ntruent, and undertand the proce o data analy. Learn

More information

Chemical Engineering Department University of Washington

Chemical Engineering Department University of Washington Chemcal Engneerng Department Unversty of Washngton ChemE 60 - Exam I July 4, 003 - Mass Flow Rate of Steam Through a Turbne (5 onts) Steam enters a turbne at 70 o C and.8 Ma and leaves at 00 ka wth a qualty

More information

Unit 12 Refrigeration and air standard cycles November 30, 2010

Unit 12 Refrigeration and air standard cycles November 30, 2010 Unit Rerigeration and air tandard cycle Noveber 0, 00 Unit Twelve Rerigeration and Air Standard Cycle Mechanical Engineering 70 Therodynaic Larry Caretto Noveber 0, 00 Outline Two oewhat related topic

More information

> To construct a potential representation of E and B, you need a vector potential A r, t scalar potential ϕ ( F,t).

> To construct a potential representation of E and B, you need a vector potential A r, t scalar potential ϕ ( F,t). MIT Departent of Chestry p. 54 5.74, Sprng 4: Introductory Quantu Mechancs II Instructor: Prof. Andre Tokakoff Interacton of Lght wth Matter We want to derve a Haltonan that we can use to descrbe the nteracton

More information

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Frank L. H. Wolfs Department of Physcs and Astronomy, Unversty of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Course Informaton: Lab report # 3. Exam # 2. Mult-Partcle

More information

Elastic Collisions. Definition: two point masses on which no external forces act collide without losing any energy.

Elastic Collisions. Definition: two point masses on which no external forces act collide without losing any energy. Elastc Collsons Defnton: to pont asses on hch no external forces act collde thout losng any energy v Prerequstes: θ θ collsons n one denson conservaton of oentu and energy occurs frequently n everyday

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Solutions to Practice Problems

Solutions to Practice Problems Phys A Solutons to Practce Probles hapter Inucton an Maxwell s uatons (a) At t s, the ef has a agntue of t ag t Wb s t Wb s Wb s t Wb s V t 5 (a) Table - gves the resstvty of copper Thus, L A 8 9 5 (b)

More information

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Physics 207: Lecture 20. Today s Agenda Homework for Monday Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems

More information

A Result on a Cyclic Polynomials

A Result on a Cyclic Polynomials Gen. Math. Note, Vol. 6, No., Feruary 05, pp. 59-65 ISSN 9-78 Copyrght ICSRS Pulcaton, 05.-cr.org Avalale free onlne at http:.geman.n A Reult on a Cyclc Polynomal S.A. Wahd Department of Mathematc & Stattc

More information

Step 1: Draw a diagram to represent the system. Draw a T-s process diagram to better visualize the processes occurring during the cycle.

Step 1: Draw a diagram to represent the system. Draw a T-s process diagram to better visualize the processes occurring during the cycle. ENSC 61 Tutorial, eek#8 Ga Refrigeration Cycle A refrigeration yte ug a the workg fluid, conit of an ideal Brayton cycle run revere with a teperature and preure at the let of the copreor of 37C and 100

More information

Momentum and Collisions. Rosendo Physics 12-B

Momentum and Collisions. Rosendo Physics 12-B Moentu and Collsons Rosendo Physcs -B Conseraton o Energy Moentu Ipulse Conseraton o Moentu -D Collsons -D Collsons The Center o Mass Lnear Moentu and Collsons February 7, 08 Conseraton o Energy D E =

More information

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014 PHYS 1443 Secton 004 Lecture #1 Thursday, Oct., 014 Work-Knetc Energy Theorem Work under rcton Potental Energy and the Conservatve Force Gravtatonal Potental Energy Elastc Potental Energy Conservaton o

More information

Physics 123. Exam #1. October 11, 2006

Physics 123. Exam #1. October 11, 2006 hyscs Exa # October, 006 roble /0 roble /0 roble /0 roble 4 /0 roble 5 /0 roble 6 /0 roble 7 /0 roble 8 /0 roble 9 /0 roble 0 /0 Total /00 Free-Response robles: lease show all work n order to receve partal

More information

EMU Physics Department

EMU Physics Department Physcs 0 Lecture 8 Potental Energy and Conservaton Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aovgun.com Denton o Work W q The work, W, done by a constant orce on an object s dened as the product

More information

Quantum Particle Motion in Physical Space

Quantum Particle Motion in Physical Space Adv. Studes Theor. Phys., Vol. 8, 014, no. 1, 7-34 HIKARI Ltd, www.-hkar.co http://dx.do.org/10.1988/astp.014.311136 Quantu Partcle Moton n Physcal Space A. Yu. Saarn Dept. of Physcs, Saara State Techncal

More information

SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 9 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition

SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 9 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 9 SONNTAG BORGNAKKE VAN WYLEN FUNDAMENTALS of Thermodynamc Sxth Edton CONTENT SUBSECTION PROB NO. Concept-Study Gude Problem 134-141 Steady Sngle Flow Devce

More information

1. The number of significant figures in the number is a. 4 b. 5 c. 6 d. 7

1. The number of significant figures in the number is a. 4 b. 5 c. 6 d. 7 Name: ID: Anwer Key There a heet o ueul ormulae and ome converon actor at the end. Crcle your anwer clearly. All problem are pont ecept a ew marked wth ther own core. Mamum core 100. There are a total

More information

ONE-DIMENSIONAL COLLISIONS

ONE-DIMENSIONAL COLLISIONS Purpose Theory ONE-DIMENSIONAL COLLISIONS a. To very the law o conservaton o lnear momentum n one-dmensonal collsons. b. To study conservaton o energy and lnear momentum n both elastc and nelastc onedmensonal

More information

#64. ΔS for Isothermal Mixing of Ideal Gases

#64. ΔS for Isothermal Mixing of Ideal Gases #64 Carnot Heat Engne ΔS for Isothermal Mxng of Ideal Gases ds = S dt + S T V V S = P V T T V PV = nrt, P T ds = v T = nr V dv V nr V V = nrln V V = - nrln V V ΔS ΔS ΔS for Isothermal Mxng for Ideal Gases

More information

PHYS 705: Classical Mechanics. Newtonian Mechanics

PHYS 705: Classical Mechanics. Newtonian Mechanics 1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: -An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]

More information

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F)

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F) EN40: Dynacs and Vbratons Hoework 4: Work, Energy and Lnear Moentu Due Frday March 6 th School of Engneerng Brown Unversty 1. The Rydberg potental s a sple odel of atoc nteractons. It specfes the potental

More information

Chapter 12 Lyes KADEM [Thermodynamics II] 2007

Chapter 12 Lyes KADEM [Thermodynamics II] 2007 Chapter 2 Lyes KDEM [Therodynacs II] 2007 Gas Mxtures In ths chapter we wll develop ethods for deternng therodynac propertes of a xture n order to apply the frst law to systes nvolvng xtures. Ths wll be

More information

Page 1. SPH4U: Lecture 7. New Topic: Friction. Today s Agenda. Surface Friction... Surface Friction...

Page 1. SPH4U: Lecture 7. New Topic: Friction. Today s Agenda. Surface Friction... Surface Friction... SPH4U: Lecture 7 Today s Agenda rcton What s t? Systeatc catagores of forces How do we characterze t? Model of frcton Statc & Knetc frcton (knetc = dynac n soe languages) Soe probles nvolvng frcton ew

More information

m 5 ME-200 Fall 2017 HW-19 1/2 Given Diffuser and two-stage compressor with intercooling in a turbojet engine

m 5 ME-200 Fall 2017 HW-19 1/2 Given Diffuser and two-stage compressor with intercooling in a turbojet engine ME-00 Fall 07 HW-9 / Gven Dffuer and two-tage compreor wth ntercoolng n a turbojet engne Fnd (a) Temperature (K) of ar at the dffuer ext (b) Ma flow rate (/) of ar through the engne (c) Total power nput

More information

PHYS 100 Worked Examples Week 05: Newton s 2 nd Law

PHYS 100 Worked Examples Week 05: Newton s 2 nd Law PHYS 00 Worked Eaple Week 05: ewton nd Law Poor Man Acceleroeter A drver hang an ar frehener fro ther rearvew rror wth a trng. When acceleratng onto the hghwa, the drver notce that the ar frehener ake

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

Conservation of Energy

Conservation of Energy Add Iportant Conervation of Energy Page: 340 Note/Cue Here NGSS Standard: HS-PS3- Conervation of Energy MA Curriculu Fraework (006):.,.,.3 AP Phyic Learning Objective: 3.E.., 3.E.., 3.E..3, 3.E..4, 4.C..,

More information

Obtaining U and G based on A above arrow line: )

Obtaining U and G based on A above arrow line: ) Suary or ch,,3,4,5,6,7 (Here soe olar propertes wthout underlne) () he three laws o herodynacs - st law: otal energy o syste (SYS) plus surroundng (SUR) s conserved. - nd law: otal change o entropy o the

More information

Chapter 25: Machining Centers, Machine Tool Structures and Machining Economics

Chapter 25: Machining Centers, Machine Tool Structures and Machining Economics Manufacturng Engneerng echnology n SI Unts, 6 th Edton Chapter 25: Machnng Centers, Machne ool Structures and Machnng Econocs Copyrght 200 Pearson Educaton South Asa Pte Ltd Chapter Outlne 2 Introducton

More information

Physics 105: Mechanics Lecture 13

Physics 105: Mechanics Lecture 13 Physcs 05: Mechancs Lecture 3 Wenda Cao NJIT Physcs Department Momentum and Momentum Conseraton Momentum Impulse Conseraton o Momentum Collsons Lnear Momentum A new undamental quantty, lke orce, energy

More information

Chapter 8. Momentum Impulse and Collisions. Analysis of motion: 2 key ideas. Newton s laws of motion. Conservation of Energy

Chapter 8. Momentum Impulse and Collisions. Analysis of motion: 2 key ideas. Newton s laws of motion. Conservation of Energy Chapter 8 Moentu Ipulse and Collsons Analyss o oton: key deas Newton s laws o oton Conseraton o Energy Newton s Laws st Law: An object at rest or traelng n unor oton wll rean at rest or traelng n unor

More information

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph A Tale o Frcton Basc Rollercoaster Physcs Fahrenhet Rollercoaster, Hershey, PA max heght = 11 t max speed = 58 mph PLAY PLAY PLAY PLAY Rotatonal Movement Knematcs Smlar to how lnear velocty s dened, angular

More information

Physics 231. Topic 8: Rotational Motion. Alex Brown October MSU Physics 231 Fall

Physics 231. Topic 8: Rotational Motion. Alex Brown October MSU Physics 231 Fall Physcs 231 Topc 8: Rotatonal Moton Alex Brown October 21-26 2015 MSU Physcs 231 Fall 2015 1 MSU Physcs 231 Fall 2015 2 MSU Physcs 231 Fall 2015 3 Key Concepts: Rotatonal Moton Rotatonal Kneatcs Equatons

More information

5/24/2007 Collisions ( F.Robilliard) 1

5/24/2007 Collisions ( F.Robilliard) 1 5/4/007 Collsons ( F.Robllard) 1 Interactons: In our earler studes o orce and work, we saw, that both these quanttes arse n the context o an nteracton between two bodes. We wll now look ore closely at

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

where v means the change in velocity, and t is the

where v means the change in velocity, and t is the 1 PHYS:100 LECTURE 4 MECHANICS (3) Ths lecture covers the eneral case of moton wth constant acceleraton and free fall (whch s one of the more mportant examples of moton wth constant acceleraton) n a more

More information

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force. Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act

More information

Name: Answer Key Date: Regents Physics. Energy

Name: Answer Key Date: Regents Physics. Energy Nae: Anwer Key Date: Regent Phyic Tet # 9 Review Energy 1. Ue GUESS ethod and indicate all vector direction.. Ter to know: work, power, energy, conervation of energy, work-energy theore, elatic potential

More information

Collisions! Short, Sharp Shocks

Collisions! Short, Sharp Shocks d b n, b d,, -4 Introducng Collsons Quz 9 L9 Mult-artcle Systes 6-8 Scatterng 9- Collson Colcatons L Collsons 5, Derent Reerence Fraes ranslatonal ngular Moentu Quz RE a RE b RE c EP9 RE a; HW: Pr s 3*,,

More information

Electrical Circuits II (ECE233b)

Electrical Circuits II (ECE233b) Electrcal Crcut II (ECE33b) Applcaton of Laplace Tranform to Crcut Analy Anet Dounav The Unverty of Wetern Ontaro Faculty of Engneerng Scence Crcut Element Retance Tme Doman (t) v(t) R v(t) = R(t) Frequency

More information

Linear Momentum. Center of Mass.

Linear Momentum. Center of Mass. Lecture 6 Chapter 9 Physcs I 03.3.04 Lnear omentum. Center of ass. Course webste: http://faculty.uml.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcssprng.html

More information

= 1.23 m/s 2 [W] Required: t. Solution:!t = = 17 m/s [W]! m/s [W] (two extra digits carried) = 2.1 m/s [W]

= 1.23 m/s 2 [W] Required: t. Solution:!t = = 17 m/s [W]! m/s [W] (two extra digits carried) = 2.1 m/s [W] Secton 1.3: Acceleraton Tutoral 1 Practce, page 24 1. Gven: 0 m/s; 15.0 m/s [S]; t 12.5 s Requred: Analyss: a av v t v f v t a v av f v t 15.0 m/s [S] 0 m/s 12.5 s 15.0 m/s [S] 12.5 s 1.20 m/s 2 [S] Statement:

More information

PHY 2048 Spring 2014 Acosta, Rinzler. Exam 2 Solutions

PHY 2048 Spring 2014 Acosta, Rinzler. Exam 2 Solutions PHY 048 Sprng 014 Acota, Rnzler Exam oluton Exam Soluton Note that there are everal varaton o ome problem, ndcated by choce n parenthee. Problem 1 Four dentcal oda can ntally at ret have a recracker explode

More information

PHYS 1441 Section 002 Lecture #16

PHYS 1441 Section 002 Lecture #16 PHYS 1441 Secton 00 Lecture #16 Monday, Mar. 4, 008 Potental Energy Conservatve and Non-conservatve Forces Conservaton o Mechancal Energy Power Today s homework s homework #8, due 9pm, Monday, Mar. 31!!

More information

General Formulas applicable to ALL processes in an Ideal Gas:

General Formulas applicable to ALL processes in an Ideal Gas: Calormetrc calculatons: dq mcd or dq ncd ( specc heat) Q ml ( latent heat) General Formulas applcable to ALL processes n an Ideal Gas: P nr du dq dw dw Pd du nc d C R ( monoatomc) C C R P Specc Processes:

More information

Work and Energy (Work Done by a Varying Force)

Work and Energy (Work Done by a Varying Force) Lecture 1 Chpter 7 Physcs I 3.5.14 ork nd Energy (ork Done y Vryng Force) Course weste: http://fculty.uml.edu/andry_dnylov/techng/physcsi Lecture Cpture: http://echo36.uml.edu/dnylov13/physcs1fll.html

More information

Static Error EECS240 Spring Settling. Static Error (cont.) Step Response. Dynamic Errors. c 1 FA { V 1. Lecture 13: Settling

Static Error EECS240 Spring Settling. Static Error (cont.) Step Response. Dynamic Errors. c 1 FA { V 1. Lecture 13: Settling Statc Error EES240 Srng 200 Lecture 3: Settlng KL o c FA { T o Elad Alon Det. o EES - o /A v tatc error te wth F + + c EES240 Lecture 3 4 Settlng Why ntereted n ettlng? Ocllocoe: track nut waveor wthout

More information

CHAPTER X PHASE-CHANGE PROBLEMS

CHAPTER X PHASE-CHANGE PROBLEMS Chapter X Phae-Change Problem December 3, 18 917 CHAPER X PHASE-CHANGE PROBLEMS X.1 Introducton Clacal Stefan Problem Geometry of Phae Change Problem Interface Condton X. Analytcal Soluton for Soldfcaton

More information

Scattering of two identical particles in the center-of. of-mass frame. (b)

Scattering of two identical particles in the center-of. of-mass frame. (b) Lecture # November 5 Scatterng of two dentcal partcle Relatvtc Quantum Mechanc: The Klen-Gordon equaton Interpretaton of the Klen-Gordon equaton The Drac equaton Drac repreentaton for the matrce α and

More information

10/9/2003 PHY Lecture 11 1

10/9/2003 PHY Lecture 11 1 Announcements 1. Physc Colloquum today --The Physcs and Analyss of Non-nvasve Optcal Imagng. Today s lecture Bref revew of momentum & collsons Example HW problems Introducton to rotatons Defnton of angular

More information

Chapter 7. Principles of Unsteady - State and Convective Mass Transfer

Chapter 7. Principles of Unsteady - State and Convective Mass Transfer Suppleental Material for Tranport Proce and Separation Proce Principle hapter 7 Principle of Unteady - State and onvective Ma Tranfer Thi chapter cover different ituation where a tranfer i taking place,

More information

Problem 1 The turbine is an open system. We identify the steam contained the turbine as the control volume. dt + + =

Problem 1 The turbine is an open system. We identify the steam contained the turbine as the control volume. dt + + = ME Fall 8 HW olution Problem he turbe i an open ytem. We identiy the team contaed the turbe a the control volume. Ma conervation: t law o thermodynamic: Aumption: dm m m m dt + + de V V V m h + + gz +

More information

SOLVING NONLINEAR OPTIMIZATION PROBLEMS BY MEANS OF THE NETWORK PROGRAMMING METHOD

SOLVING NONLINEAR OPTIMIZATION PROBLEMS BY MEANS OF THE NETWORK PROGRAMMING METHOD Internatonal Sypou on Stocatc Model n Relalty Engneerng, Le Scence and Operaton Manageent (SMRLO'0) SOLVING NONLINEAR OPTIMIZATION PROBLEMS BY MEANS O THE NETWORK PROGRAMMING METHOD Vladr N. BURKOV Pro.,

More information

Thermodynamics II. Department of Chemical Engineering. Prof. Kim, Jong Hak

Thermodynamics II. Department of Chemical Engineering. Prof. Kim, Jong Hak Thermodynamcs II Department o Chemca ngneerng ro. Km, Jong Hak .5 Fugacty & Fugacty Coecent : ure Speces µ > provdes undamenta crteron or phase equbrum not easy to appy to sove probem Lmtaton o gn (.9

More information

Name: SID: Discussion Session:

Name: SID: Discussion Session: Name: SID: Dscusson Sesson: Chemcal Engneerng Thermodynamcs 141 -- Fall 007 Thursday, November 15, 007 Mdterm II SOLUTIONS - 70 mnutes 110 Ponts Total Closed Book and Notes (0 ponts) 1. Evaluate whether

More information

a) No books or notes are permitted. b) You may use a calculator.

a) No books or notes are permitted. b) You may use a calculator. PHYS 050 Sprng 06 Name: Test 3 Aprl 7, 06 INSTRUCTIONS: a) No books or notes are permtted. b) You may use a calculator. c) You must solve all problems begnnng wth the equatons on the Inormaton Sheet provded

More information

THERMODYNAMICS of COMBUSTION

THERMODYNAMICS of COMBUSTION Internal Cobuston Engnes MAK 493E THERMODYNAMICS of COMBUSTION Prof.Dr. Ce Soruşbay Istanbul Techncal Unversty Internal Cobuston Engnes MAK 493E Therodynacs of Cobuston Introducton Proertes of xtures Cobuston

More information

Ch04 Work, Energy and Power What is work in physics?

Ch04 Work, Energy and Power What is work in physics? Eunl Won Dept o Physcs, Korea Unversty 1 Ch04 Work, Energy and Power What s work n physcs? Eunl Won Dept o Physcs, Korea Unversty Eunl Won Dept o Physcs, Korea Unversty 3 Work W F d W Fd cosφ W Fd ο cos

More information

Inductance Calculation for Conductors of Arbitrary Shape

Inductance Calculation for Conductors of Arbitrary Shape CRYO/02/028 Aprl 5, 2002 Inductance Calculaton for Conductors of Arbtrary Shape L. Bottura Dstrbuton: Internal Summary In ths note we descrbe a method for the numercal calculaton of nductances among conductors

More information

The 7 th Balkan Conference on Operational Research BACOR 05 Constanta, May 2005, Romania

The 7 th Balkan Conference on Operational Research BACOR 05 Constanta, May 2005, Romania The 7 th alan onerence on Oeratonal Reearch AOR 5 ontanta, May 5, Roana THE ESTIMATIO OF THE GRAPH OX DIMESIO OF A LASS OF FRATALS ALIA ÃRULESU Ovdu Unverty, ontanta, Roana Abtract Fractal denon are the

More information

AP Physics Momentum AP Wrapup

AP Physics Momentum AP Wrapup AP Phyic Moentu AP Wrapup There are two, and only two, equation that you get to play with: p Thi i the equation or oentu. J Ft p Thi i the equation or ipule. The equation heet ue, or oe reaon, the ybol

More information

Chapters 18 & 19: Themodynamics review. All macroscopic (i.e., human scale) quantities must ultimately be explained on the microscopic scale.

Chapters 18 & 19: Themodynamics review. All macroscopic (i.e., human scale) quantities must ultimately be explained on the microscopic scale. Chapters 18 & 19: Themodynamcs revew ll macroscopc (.e., human scale) quanttes must ultmately be explaned on the mcroscopc scale. Chapter 18: Thermodynamcs Thermodynamcs s the study o the thermal energy

More information

Problem #1. Known: All required parameters. Schematic: Find: Depth of freezing as function of time. Strategy:

Problem #1. Known: All required parameters. Schematic: Find: Depth of freezing as function of time. Strategy: BEE 3500 013 Prelm Soluton Problem #1 Known: All requred parameter. Schematc: Fnd: Depth of freezng a functon of tme. Strategy: In thee mplfed analy for freezng tme, a wa done n cla for a lab geometry,

More information

18. Heat Engine, Entropy and the second law of thermodynamics

18. Heat Engine, Entropy and the second law of thermodynamics 8. Heat Engne, Entropy and te seond law o terodynas In nature, ost o proesses are rreversble. due to te seond Law o terodynas Heat alwasys lows ro Hot to old. 8-. Heat Engne and te eond Law o erodynas

More information

Rectilinear motion. Lecture 2: Kinematics of Particles. External motion is known, find force. External forces are known, find motion

Rectilinear motion. Lecture 2: Kinematics of Particles. External motion is known, find force. External forces are known, find motion Lecture : Kneatcs of Partcles Rectlnear oton Straght-Lne oton [.1] Analtcal solutons for poston/veloct [.1] Solvng equatons of oton Analtcal solutons (1 D revew) [.1] Nuercal solutons [.1] Nuercal ntegraton

More information