5.5. Collisions in Two Dimensions: Glancing Collisions. Components of momentum. Mini Investigation

Size: px
Start display at page:

Download "5.5. Collisions in Two Dimensions: Glancing Collisions. Components of momentum. Mini Investigation"

Transcription

1 Colliion in Two Dienion: Glancing Colliion So ar, you have read aout colliion in one dienion. In thi ection, you will exaine colliion in two dienion. In Figure, the player i lining up the hot o that the cue all (the white all) will hit another illiard all at an angle, directing it toward the corner pocket. What coponent o the cue all oentu will e tranerred to the target all i the hot i ucceul? The law o conervation o oentu and conervation o kinetic energy will apply jut a they did or one-dienional interaction. However, to calculate oentu or two-dienional prole, conider the x-coponent and y-coponent o orce and otion independently. 5.5 Figure Bil liard require player to ater the ue o glancing colliion. Mini Invetigation glancing Colliion Mini Invetigation Skill: Peroring, Oerving, Analyzing, Counicating In thi invetigation, you will odel glancing colliion to oerve and analyze how they work. Equipent and Material: eye protection; air tale; puck; arle; illiard all. Put on your eye protection. Set up an air tale with two puck. When you unplug the air tale, pull the plug and not the cord. Wear cloed-toe hoe to protect your eet in cae the puck l ie o the tale. Puh the oject lightly and cautiouly.. Puh the i rt puck toward the econd to caue a gentle head-on colliion. Oerve the change in the peed o the puck ater the colliion. SKILLS HANDBOOK a. 3. Repeat thi proce, ut vary the angle o colliion and the initial peed o the i rt puck. Oerve the change in the peed o the puck and the direction o their i nal velocitie. 4. Try the ae invetigation uing dierent oject, uch a arle or illiard all. A. How doe the peed o the econd puck copare to the initial peed o the i rt puck a you vary the angle o colliion? K/u T/I a B. How did uing arle or illiard all aect the change in direction and velocity? How wa thi dierent ro uing the puck? Briel y uarize your oervation. T/I a Coponent o oentu Dealing with colliion in two dienion involve the ae aic idea a dealing with colliion in one dienion. Now, however, the inal velocity o each oject involve two unknown: the two coponent o the velocity vector. For oject in otion in two dienion, the change in oentu or each coponent can e conidered independently: SF > x Dt 5 Dp > x SF > ydt 5 Dp > y Siilarly, the conervation o oentu equation can e expreed in ter o horizontal and vertical coponent: p > i x p > i x 5 p > x p > x p > i y p > i y 5 p > y p > y 5.5 Colliion in Two Dienion: Glancing Colliion 49

2 glancing colliion a colliion in which the irt oject, ater an ipact with the econd oject, travel at an angle to the direction it wa originally travelling Conider the colliion o two illiard all hown in Figure. In thi hot, the cue all () will collide with the target all (), initially at ret, ending it at an angle toward the corner pocket, and the cue all will continue travelling at an angle u ro it original direction o travel. Both oject are travelling at an angle to the direction o their original coure. Thi type o colliion i called a glancing colliion. In the ollowing Tutorial, we ue coponent to analyze the phyic o a glancing colliion. v y x at ret v x v y Invetigation 5.5. v x? Conervation o Moentu in Two Direction (page 60) Ater learning aout the phyic o glancing colliion, peror Invetigation 5.5. to explore how oentu i conerved in colliion that occur in two dienion. y () Figure A cue all triking another all at an angle caue oth all to change direction. u x Tutorial Analyi o Glancing Colliion In thee Saple Prole, you will apply conervation o oentu in two dienion. Saple Prole : Analyi o a Glancing Colliion In a gae o curling, a colliion occur etween two tone o equal a. The oject tone i initially at ret. Ater the colliion, the tone that i thrown ha a peed o 0.56 / in oe direction, repreented y u in Figure 3. eore the colliion The oject tone acquire a velocity v > / at an angle o ro the original direction o otion o the thrown tone. Deterine the initial velocity o the thrown tone. ater the colliion p y p in u y v p x p co u i u x x p x p co () p y p in Figure 3 The curling tone collide with the oject tone in a glancing colliion. () Both curling tone ove o in dierent direction. We can analyze their inal velocitie to deterine the initial velocity o the thrown curling tone. v 50 Chapter 5 Moentu and Colliion

3 Given: 5 ; v > i 5 0 /; v > /; v > /; Required: v > i Analyi: Chooe a coordinate yte to identiy direction: let poitive x e to the right and negative x e to the let. Let poitive y e up and negative y e down. Apply conervation o oentu independently in the x-direction and the y-direction. Begin y applying conervation o oentu in the y-direction to deterine the direction o the inal velocity o the thrown tone. Then apply conervation o oentu in the x-direction to calculate the initial velocity o the thrown tone. Solution: In the y-direction, the total oentu eore and ater the colliion i zero. p Tiy 5 p Ty 5 0 Thereore, ater the colliion: y v y 5 0 Divide oth ide y and utitute the vertical coponent o each velocity vector. Note that the vertical coponent o the irt tone velocity i directed up, o it value i poitive, wherea the vertical coponent o the econd tone velocity i directed down, o it value i negative. y v y 5 0 in u v in 5 0 Rearrange thi equation to iolate in u. in u 5 v in in u 5 v in Sutitute the given value and olve or in u. in u / in / in u Apply the invere ine to oth ide to olve or u. u 5 in u 5.08 one extra digit carried The irt tone i travelling at an angle o aove the horizontal ater the colliion. Now ue conervation o oentu in the x-direction to olve or the initial peed o the thrown tone. p Tix 5 p Tx Note that the oject tone i at ret eore the colliion, o it initial oentu i zero. v ix v ix 5 x v x Divide oth ide o the equation y. v ix 5 v v x x v ix 5 x v x Sutitute the known value or the inal horizontal velocity coponent o the tone. Note that all vector are directed to the right, o all velocitie are poitive. v ix 5 co u v co co.08 / 0.4 co 308 / / / one extra digit carried v ix / Stateent: The initial velocity o the thrown tone i 0.88 / [right]. Saple Prole : Inelatic Glancing Colliion Two cro-country kier are kiing to a croing o horizontal trail in the wood a hown in Figure 4. Skier i travelling eat and ha a a o 84 kg. Skier i travelling north and ha a a o 7 kg. Both kier are travelling with an initial peed o 5. /. One o the kier orget to look, reulting in a right-angle colliion with the ki locked together ater the colliion. Calculate the inal velocity o the two kier. v i North v y v x v Eat v i Figure Colliion in Two Dienion: Glancing Colliion 5

4 Given: inelatic colliion; 5 84 kg; 5 7 kg; v > i 5 5. / [E]; v > i 5 5. / [N] Required: v > Analyi: According to the law o conervation o oentu, p > T i 5 p > T. Since the initial velocitie are at right angle to each other, a hown in Figure 5, you can calculate the total velocity and oentu uing the Pythagorean theore and trigonoetry: p 5 p p, and tan u 5 a p p north p O Figure 5 p p p p eat Solution: The irt kier oentu i p > 5 v > 5 84 kg a5. 3E4 p > 5 48 kg# / 3E4 one extra digit carried The econd kier oentu i p > 5 v > 5 7 kg a5. 3N4 p > kg# / 3N4 one extra digit carried The agnitude o the total oentu can e calculated y applying the Pythagorean theore: p 5 p p p 5 "p p 5 a48 kg # kg# a367 Å p kg# / one extra digit carried The direction can e deterined y applying the tangent ratio: tan u 5 a p p u 5 tan a p p 48 kg # 5 tan ± kg# 367 u The direction o the two kier i [N 49 E]. Conervation o oentu tell u that the inal total oentu o the kier ut equal thi initial oentu. Since the colliion i perectly inelatic, oth kier have the ae inal velocity: p > 5 v > v > 5 v > v > p > kg # 5 3N 498 E4 84 kg 7 kg v > / 3N 498 E4 Stateent: Ater the colliion, the kier are travelling together with a velocity o 3.6 / [N 49 E]. Practice. Two reight train have a copletely inelatic colliion at a track croing. Engine ha a a o kg and i initially travelling at 45 k/h [N]. Engine ha a a o kg and i initially travelling at 53 k/h [W]. Calculate the inal velocity. T/I A [an: 9.7 / [N 5 W]. A tar o a kg oving with a velocity o / [E] collide with a econd tar o a kg oving with a velocity o / at a right angle to the path o the irt tar. I the two join together, what i their coon velocity? T/I A [an: / [58 to the initial path o the econd tar]] 5 Chapter 5 Moentu and Colliion

5 5.5 Review Suary The law o conervation o oentu and conervation o kinetic energy or colliion in two dienion are the ae a they are or onedienional colliion. Moentu i conerved or elatic and inelatic colliion. Kinetic energy i conerved only in elatic colliion. The act that oentu i a vector quantity ean that prole involving two-dienional colliion can e olved y independently analyzing the x-coponent and y-coponent. Quetion. Two all o equal a undergo a colliion (ee Figure 6). Ball i initially travelling horizontally with a peed o 0.0 /, and all i initially at ret. Ater the colliion, all ove away with a velocity o 4.7 / at an angle o u ro it original path and all ove away at an unknown angle. Deterine the agnitude and direction o velocity o all ater the colliion. K/u T/I () Figure 6 v i 0.0 / 4.7 / u 60.0 v i 0 / v?. A hockey puck o a 0.6 kg, liding on a nearly rictionle urace o ice with a velocity o.0 / [E], trike a econd puck at ret with a a o 0.7 kg. The irt puck ha a velocity o.5 / [N 3 E] ater the colliion. Deterine the velocity o the econd puck ater the colliion. T/I a 3. Two hockey puck o equal a approach each other. Puck ha an initial velocity o 0.0 / [S 45 E], and puck ha an initial velocity o 5 / [S 45 W]. Ater the colliion, the irt puck i oving with a velocity o 0.0 / [S 45 W]. K/u T/I C Deterine the inal velocity o the econd puck. () I thi colliion elatic, perectly inelatic, or (non-perectly) inelatic? Explain your reaoning. 4. An autooile collide with a truck at an interection. The car, o a kg, i travelling at 3 k/h [S]; the truck ha a a o kg and i travelling at 48 k/h [E]. The colliion i perectly inelatic. Deterine their velocity jut ater the colliion. T/I 5. Two all o equal a undergo a colliion. One all i initially tationary. Ater the colliion, the velocitie o the all ake angle o 5.5 and 45.9 relative to the original direction o otion o the oving all. T/I C Draw and lael a diagra to how the all eore and ater the colliion. Lael the angle u and. () Calculate the inal peed o the all i the initial all had a peed o 3.63 /. 6. A caron-4 nucleu, initially at ret, undergoe a nuclear reaction known a eta decay. The nucleu eit two particle horizontally: one with oentu kg. / [E] and another with oentu kg. / [S]. T/I a Calculate the direction o the otion o the nucleu iediately ollowing the reaction. () Deterine the inal oentu o the nucleu. (c) The a o the reidual caron-4 nucleu i kg. Deterine it inal velocity. 7. A neutron o a kg, travelling at. k/, hit a tationary heliu nucleu o a kg. Ater the colliion, the velocity o the heliu nucleu i 0.53 k/ at 5 to the original direction o otion o the neutron. Deterine the inal velocity o the neutron. T/I 8. Your claate ake the ollowing tateent: For a head-on elatic colliion etween two oject o equal a, the ater-colliion velocitie o the oject are at right angle to each other. Evaluate the accuracy o thi tateent. K/u T/I a 5.5 Colliion in Two Dienion: Glancing Colliion 53

AP Physics Momentum AP Wrapup

AP Physics Momentum AP Wrapup AP Phyic Moentu AP Wrapup There are two, and only two, equation that you get to play with: p Thi i the equation or oentu. J Ft p Thi i the equation or ipule. The equation heet ue, or oe reaon, the ybol

More information

Linear Momentum. calculate the momentum of an object solve problems involving the conservation of momentum. Labs, Activities & Demonstrations:

Linear Momentum. calculate the momentum of an object solve problems involving the conservation of momentum. Labs, Activities & Demonstrations: Add Important Linear Momentum Page: 369 Note/Cue Here NGSS Standard: HS-PS2-2 Linear Momentum MA Curriculum Framework (2006): 2.5 AP Phyic 1 Learning Objective: 3.D.1.1, 3.D.2.1, 3.D.2.2, 3.D.2.3, 3.D.2.4,

More information

Momentum. Momentum. Impulse. Impulse Momentum Theorem. Deriving Impulse. v a t. Momentum and Impulse. Impulse. v t

Momentum. Momentum. Impulse. Impulse Momentum Theorem. Deriving Impulse. v a t. Momentum and Impulse. Impulse. v t Moentu and Iule Moentu Moentu i what Newton called the quantity of otion of an object. lo called Ma in otion The unit for oentu are: = oentu = a = elocity kg Moentu Moentu i affected by a and elocity eeding

More information

Practice Problem Solutions. Identify the Goal The acceleration of the object Variables and Constants Known Implied Unknown m = 4.

Practice Problem Solutions. Identify the Goal The acceleration of the object Variables and Constants Known Implied Unknown m = 4. Chapter 5 Newton Law Practice Proble Solution Student Textbook page 163 1. Frae the Proble - Draw a free body diagra of the proble. - The downward force of gravity i balanced by the upward noral force.

More information

3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honors Physics Impulse-Momentum Theorem. Name: Answer Key Mr. Leonard

3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honors Physics Impulse-Momentum Theorem. Name: Answer Key Mr. Leonard 3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honor Phyic Impule-Momentum Theorem Spring, 2017 Intruction: Complete the following workheet. Show all of you work. Name: Anwer Key Mr. Leonard 1. A 0.500 kg ball i dropped

More information

Physics 30 Lesson 3 Impulse and Change in Momentum

Physics 30 Lesson 3 Impulse and Change in Momentum Phyic 30 Leon 3 Ipule and Change in Moentu I. Ipule and change in oentu According to Newton nd Law of Motion (Phyic Principle 1 on the Data Sheet), to change the otion (i.e. oentu) of an object an unbalanced

More information

Conditions for equilibrium (both translational and rotational): 0 and 0

Conditions for equilibrium (both translational and rotational): 0 and 0 Leon : Equilibriu, Newton econd law, Rolling, Angular Moentu (Section 8.3- Lat tie we began dicuing rotational dynaic. We howed that the rotational inertia depend on the hape o the object and the location

More information

15 N 5 N. Chapter 4 Forces and Newton s Laws of Motion. The net force on an object is the vector sum of all forces acting on that object.

15 N 5 N. Chapter 4 Forces and Newton s Laws of Motion. The net force on an object is the vector sum of all forces acting on that object. Chapter 4 orce and ewton Law of Motion Goal for Chapter 4 to undertand what i force to tudy and apply ewton irt Law to tudy and apply the concept of a and acceleration a coponent of ewton Second Law to

More information

5.4 Conservation of Momentum in Two Dimensions

5.4 Conservation of Momentum in Two Dimensions Phyic Tool bo 5.4 Coneration of Moentu in Two Dienion Law of coneration of Moentu The total oentu before a colliion i equal to the total oentu after a colliion. Thi i written a Tinitial Tfinal If the net

More information

Conservation of Energy

Conservation of Energy Add Iportant Conervation of Energy Page: 340 Note/Cue Here NGSS Standard: HS-PS3- Conervation of Energy MA Curriculu Fraework (006):.,.,.3 AP Phyic Learning Objective: 3.E.., 3.E.., 3.E..3, 3.E..4, 4.C..,

More information

Physics Sp Exam #3 Name:

Physics Sp Exam #3 Name: Phyic 160-0 Sp. 017 Exa #3 Nae: 1) In electrodynaic, a agnetic field produce a force on a oving charged particle that i alway perpendicular to the direction the particle i oving. How doe thi force affect

More information

Work and Energy Problems

Work and Energy Problems 06-08- orce F o trength 0N act on an object o a 3kg a it ove a ditance o 4. I F i perpendicular to the 4 diplaceent, the work done i equal to: Work and Energy Proble a) 0J b) 60J c) 80J d) 600J e) 400J

More information

PHYSICS 211 MIDTERM II 12 May 2004

PHYSICS 211 MIDTERM II 12 May 2004 PHYSIS IDTER II ay 004 Exa i cloed boo, cloed note. Ue only your forula heet. Write all wor and anwer in exa boolet. The bac of page will not be graded unle you o requet on the front of the page. Show

More information

Physics 20 Lesson 16 Friction

Physics 20 Lesson 16 Friction Phyic 0 Leon 16 riction In the previou leon we learned that a rictional orce i any orce that reit, retard or ipede the otion o an object. In thi leon we will dicu how riction reult ro the contact between

More information

s s 1 s = m s 2 = 0; Δt = 1.75s; a =? mi hr

s s 1 s = m s 2 = 0; Δt = 1.75s; a =? mi hr Flipping Phyic Lecture Note: Introduction to Acceleration with Priu Brake Slaing Exaple Proble a Δv a Δv v f v i & a t f t i Acceleration: & flip the guy and ultiply! Acceleration, jut like Diplaceent

More information

Second Law of Motion. Force mass. Increasing mass. (Neglect air resistance in this example)

Second Law of Motion. Force mass. Increasing mass. (Neglect air resistance in this example) Newton Law of Motion Moentu and Energy Chapter -3 Second Law of Motion The acceleration of an object i directly proportional to the net force acting on the object, i in the direction of the net force,

More information

4 Conservation of Momentum

4 Conservation of Momentum hapter 4 oneration of oentu 4 oneration of oentu A coon itake inoling coneration of oentu crop up in the cae of totally inelatic colliion of two object, the kind of colliion in which the two colliding

More information

Elastic Collisions Definition Examples Work and Energy Definition of work Examples. Physics 201: Lecture 10, Pg 1

Elastic Collisions Definition Examples Work and Energy Definition of work Examples. Physics 201: Lecture 10, Pg 1 Phyic 131: Lecture Today Agenda Elatic Colliion Definition i i Example Work and Energy Definition of work Example Phyic 201: Lecture 10, Pg 1 Elatic Colliion During an inelatic colliion of two object,

More information

PHYSICS 151 Notes for Online Lecture 2.3

PHYSICS 151 Notes for Online Lecture 2.3 PHYSICS 151 Note for Online Lecture.3 riction: The baic fact of acrocopic (everda) friction are: 1) rictional force depend on the two aterial that are liding pat each other. bo liding over a waed floor

More information

Physics 30 Lesson 1 Momentum and Conservation of Momentum in One Dimension

Physics 30 Lesson 1 Momentum and Conservation of Momentum in One Dimension Phyic 30 Leon 1 Moentu and Conervation of Moentu in One Dienion I. Phyic rincile Student often ak e if Phyic 30 i harder than Phyic 0. Thi, of coure, deend on the atitude, attitude and work ethic of the

More information

Name: Answer Key Date: Regents Physics. Energy

Name: Answer Key Date: Regents Physics. Energy Nae: Anwer Key Date: Regent Phyic Tet # 9 Review Energy 1. Ue GUESS ethod and indicate all vector direction.. Ter to know: work, power, energy, conervation of energy, work-energy theore, elatic potential

More information

Chapter 9 Review. Block: Date:

Chapter 9 Review. Block: Date: Science 10 Chapter 9 Review Name: KEY Block: Date: 1. A change in velocity occur when the peed o an object change, or it direction o motion change, or both. Thee change in velocity can either be poitive

More information

Physics 6A. Practice Midterm #2 solutions

Physics 6A. Practice Midterm #2 solutions Phyic 6A Practice Midter # olution 1. A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train forward at acceleration a. If 3 of the car

More information

Physics 6A. Practice Final (Fall 2009) solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6A. Practice Final (Fall 2009) solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic 6A Practice inal (all 009) olution or Capu Learning Aitance Service at UCSB . A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train

More information

Impulse. calculate the impulse given to an object calculate the change in momentum as the result of an impulse

Impulse. calculate the impulse given to an object calculate the change in momentum as the result of an impulse Add Important Impule Page: 386 Note/Cue Here NGSS Standard: N/A Impule MA Curriculum Framework (2006): 2.5 AP Phyic 1 Learning Objective: 3.D.2.1, 3.D.2.2, 3.D.2.3, 3.D.2.4, 4.B.2.1, 4.B.2.2 Knowledge/Undertanding

More information

Physics 6A. Practice Midterm #2 solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6A. Practice Midterm #2 solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic 6A Practice Midter # olution or apu Learning Aitance Service at USB . A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train forward

More information

Practice Problems Solutions. 1. Frame the Problem - Sketch and label a diagram of the motion. Use the equation for acceleration.

Practice Problems Solutions. 1. Frame the Problem - Sketch and label a diagram of the motion. Use the equation for acceleration. Chapter 3 Motion in a Plane Practice Proble Solution Student Textbook page 80 1. Frae the Proble - Sketch and label a diagra of the otion. 40 v(/) 30 0 10 0 4 t () - The equation of otion apply to the

More information

Example 1: Example 1: Example 2: a.) the elevator is at rest. Example 2: Example 2: c.) the elevator accelerates downward at 1.

Example 1: Example 1: Example 2: a.) the elevator is at rest. Example 2: Example 2: c.) the elevator accelerates downward at 1. Exaple 1: 60 kg, v 1 100 N (wet), v 2 220 N (eat), a? Exaple 1: wo force parallel to the ground act upon a box with a a of 60 kg. One force i directed wet and ha a trength of 100 N. he other force i directed

More information

Practice Midterm #1 Solutions. Physics 6A

Practice Midterm #1 Solutions. Physics 6A Practice Midter # Solution Phyic 6A . You drie your car at a peed of 4 k/ for hour, then low down to k/ for the next k. How far did you drie, and what wa your aerage peed? We can draw a iple diagra with

More information

Physics Sp Exam #4 Name:

Physics Sp Exam #4 Name: Phyic 160-0 Sp. 017 Ea #4 Nae: 1) A coputer hard dik tart ro ret. It peed up with contant angular acceleration until it ha an angular peed o 700 rp. I it coplete 150 revolution while peeding up, what i

More information

TP A.30 The effect of cue tip offset, cue weight, and cue speed on cue ball speed and spin

TP A.30 The effect of cue tip offset, cue weight, and cue speed on cue ball speed and spin technical proof TP A.30 The effect of cue tip offet, cue weight, and cue peed on cue all peed and pin technical proof upporting: The Illutrated Principle of Pool and Billiard http://illiard.colotate.edu

More information

( kg) (410 m/s) 0 m/s J. W mv mv m v v. 4 mv

( kg) (410 m/s) 0 m/s J. W mv mv m v v. 4 mv PHYS : Solution to Chapter 6 Home ork. RASONING a. The work done by the gravitational orce i given by quation 6. a = (F co θ). The gravitational orce point downward, oppoite to the upward vertical diplacement

More information

Solution to Theoretical Question 1. A Swing with a Falling Weight. (A1) (b) Relative to O, Q moves on a circle of radius R with angular velocity θ, so

Solution to Theoretical Question 1. A Swing with a Falling Weight. (A1) (b) Relative to O, Q moves on a circle of radius R with angular velocity θ, so Solution to Theoretical uetion art Swing with a Falling Weight (a Since the length of the tring Hence we have i contant, it rate of change ut be zero 0 ( (b elative to, ove on a circle of radiu with angular

More information

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant Chapter 7 Ipulse and Moentu So far we considered only constant force/s BUT There are any situations when the force on an object is not constant Force varies with tie 7. The Ipulse-Moentu Theore DEFINITION

More information

THE BICYCLE RACE ALBERT SCHUELLER

THE BICYCLE RACE ALBERT SCHUELLER THE BICYCLE RACE ALBERT SCHUELLER. INTRODUCTION We will conider the ituation of a cyclit paing a refrehent tation in a bicycle race and the relative poition of the cyclit and her chaing upport car. The

More information

SPH3UW/SPH4UI Unit 2.4 Friction Force Page 1 of 8. Notes. : The kind of friction that acts when a body slides over a surface. Static Friction Force, f

SPH3UW/SPH4UI Unit 2.4 Friction Force Page 1 of 8. Notes. : The kind of friction that acts when a body slides over a surface. Static Friction Force, f SPH3UW/SPH4UI Unit 2.4 Friction Force Page o 8 ote Phyic Tool Box Kinetic Friction Force, : The ind o riction that act when a body lide over a urace. Static Friction Force, : Friction orce when there i

More information

Physics Exam 3 Formulas

Physics Exam 3 Formulas Phyic 10411 Exam III November 20, 2009 INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam i cloed book, and you may have only pen/pencil and a calculator (no tored equation or

More information

Newton s Laws & Inclined Planes

Newton s Laws & Inclined Planes GP: ewton Law & Inclined Plane Phyic Mcutt Date: Period: ewton Law & Inclined Plane The ormal orce, Static and Kinetic rictional orce The normal orce i the perpendicular orce that a urace exert on an object.

More information

Seat: PHYS 1500 (Fall 2006) Exam #2, V1. After : p y = m 1 v 1y + m 2 v 2y = 20 kg m/s + 2 kg v 2y. v 2x = 1 m/s v 2y = 9 m/s (V 1)

Seat: PHYS 1500 (Fall 2006) Exam #2, V1. After : p y = m 1 v 1y + m 2 v 2y = 20 kg m/s + 2 kg v 2y. v 2x = 1 m/s v 2y = 9 m/s (V 1) Seat: PHYS 1500 (Fall 006) Exa #, V1 Nae: 5 pt 1. Two object are oving horizontally with no external force on the. The 1 kg object ove to the right with a peed of 1 /. The kg object ove to the left with

More information

The Electric Potential Energy

The Electric Potential Energy Lecture 6 Chapter 28 Phyic II The Electric Potential Energy Coure webite: http://aculty.uml.edu/andriy_danylov/teaching/phyicii New Idea So ar, we ued vector quantitie: 1. Electric Force (F) Depreed! 2.

More information

Midterm Review - Part 1

Midterm Review - Part 1 Honor Phyic Fall, 2016 Midterm Review - Part 1 Name: Mr. Leonard Intruction: Complete the following workheet. SHOW ALL OF YOUR WORK. 1. Determine whether each tatement i True or Fale. If the tatement i

More information

( ) Physics 1401 Homework Solutions - Walker, Chapter 9

( ) Physics 1401 Homework Solutions - Walker, Chapter 9 Phyic 40 Conceptual Quetion CQ No Fo exaple, ey likely thee will be oe peanent deoation o the ca In thi cae, oe o the kinetic enegy that the two ca had beoe the colliion goe into wok that each ca doe on

More information

All Division 01 students, START HERE. All Division 02 students skip the first 10 questions, begin on # (D)

All Division 01 students, START HERE. All Division 02 students skip the first 10 questions, begin on # (D) ATTENTION: All Diviion 01 tudent, START HERE. All Diviion 0 tudent kip the firt 10 quetion, begin on # 11. 1. Approxiately how any econd i it until the PhyicBowl take place in the year 109? 10 (B) 7 10

More information

= s = 3.33 s s. 0.3 π 4.6 m = rev = π 4.4 m. (3.69 m/s)2 = = s = π 4.8 m. (5.53 m/s)2 = 5.

= s = 3.33 s s. 0.3 π 4.6 m = rev = π 4.4 m. (3.69 m/s)2 = = s = π 4.8 m. (5.53 m/s)2 = 5. Seat: PHYS 500 (Fall 0) Exa #, V 5 pt. Fro book Mult Choice 8.6 A tudent lie on a very light, rigid board with a cale under each end. Her feet are directly over one cale and her body i poitioned a hown.

More information

Lesson 27 Conservation of Energy

Lesson 27 Conservation of Energy Physics 0 Lesson 7 Conservation o nergy In this lesson we will learn about one o the ost powerul tools or solving physics probles utilizing the Law o Conservation o nergy. I. Law o Conservation o nergy

More information

Holt Physics Problem 3E

Holt Physics Problem 3E NAME DATE CLASS Holt Phyic Problem 3E PROJECTILES LAUNCHED AT AN ANGLE PROBLEM SOLUTION 1. DEFINE. PLAN A flying fih leap out of the water with a peed of 15.3. Normally thee fih ue winglike fin to glide

More information

Pearson Physics Level 20 Unit III Circular Motion, Work, and Energy: Unit III Review Solutions

Pearson Physics Level 20 Unit III Circular Motion, Work, and Energy: Unit III Review Solutions Pearon Phyic Level 0 Unit III Circular Motion, Work, and Energy: Unit III Review Solution Student Book page 6 9 Vocabulary. artificial atellite: a huan-ade object in orbit around a celetial body axi of

More information

Discover the answer to this question in this chapter.

Discover the answer to this question in this chapter. At liftoff, a rocket initially at ret tart to eject ga with a peed of v ep = 000 /. The ga i ejected at a rate of 1000 kg/. The initial a of the rocket i 100 ton, including 60 ton of ga to be ejected.

More information

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant Chapter 7 Ipulse and Moentu So far we considered only constant force/s BUT There are any situations when the force on an object is not constant JUST IN TIME TEACHING E-ail or bring e your questions prior

More information

Prof. Dr. Ibraheem Nasser Examples_6 October 13, Review (Chapter 6)

Prof. Dr. Ibraheem Nasser Examples_6 October 13, Review (Chapter 6) Prof. Dr. Ibraheem Naer Example_6 October 13, 017 Review (Chapter 6) cceleration of a loc againt Friction (1) cceleration of a bloc on horizontal urface When body i moving under application of force P,

More information

Today s s topics are: Collisions and Momentum Conservation. Momentum Conservation

Today s s topics are: Collisions and Momentum Conservation. Momentum Conservation Today s s topics are: Collisions and P (&E) Conservation Ipulsive Force Energy Conservation How can we treat such an ipulsive force? Energy Conservation Ipulsive Force and Ipulse [Exaple] an ipulsive force

More information

Chemistry I Unit 3 Review Guide: Energy and Electrons

Chemistry I Unit 3 Review Guide: Energy and Electrons Cheitry I Unit 3 Review Guide: Energy and Electron Practice Quetion and Proble 1. Energy i the capacity to do work. With reference to thi definition, decribe how you would deontrate that each of the following

More information

Physics 20 Lesson 28 Simple Harmonic Motion Dynamics & Energy

Physics 20 Lesson 28 Simple Harmonic Motion Dynamics & Energy Phyic 0 Leon 8 Siple Haronic Motion Dynaic & Energy Now that we hae learned about work and the Law of Coneration of Energy, we are able to look at how thee can be applied to the ae phenoena. In general,

More information

1.3.3 Statistical (or precision) uncertainty Due to transient variations, spatial variations 100%

1.3.3 Statistical (or precision) uncertainty Due to transient variations, spatial variations 100% 1.1 Why eaure, and why tudy eaureent? 1. Introductory Exaple Exaple: Meauring your weight: The eaureent i not the thing. 1.3 Practical Source o Meaureent Uncertainty Exaple: Meauring T o roo. 1.3.1 Reading

More information

Physics 231 Lecture 13

Physics 231 Lecture 13 Physics 3 Lecture 3 Mi Main points it o td today s lecture: Elastic collisions in one diension: ( ) v = v0 + v0 + + ( ) v = v0 + v0 + + Multiple ipulses and rocket propulsion. F Δ t = Δ v Δ v propellant

More information

Linear Motion, Speed & Velocity

Linear Motion, Speed & Velocity Add Important Linear Motion, Speed & Velocity Page: 136 Linear Motion, Speed & Velocity NGSS Standard: N/A MA Curriculum Framework (006): 1.1, 1. AP Phyic 1 Learning Objective: 3.A.1.1, 3.A.1.3 Knowledge/Undertanding

More information

Uniform Acceleration Problems Chapter 2: Linear Motion

Uniform Acceleration Problems Chapter 2: Linear Motion Name Date Period Uniform Acceleration Problem Chapter 2: Linear Motion INSTRUCTIONS: For thi homework, you will be drawing a coordinate axi (in math lingo: an x-y board ) to olve kinematic (motion) problem.

More information

Halliday/Resnick/Walker 7e Chapter 6

Halliday/Resnick/Walker 7e Chapter 6 HRW 7e Chapter 6 Page of Halliday/Renick/Walker 7e Chapter 6 3. We do not conider the poibility that the bureau might tip, and treat thi a a purely horizontal motion problem (with the peron puh F in the

More information

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10 There are 10 ultiple choice questions. Select the correct answer for each one and ark it on the bubble for on the cover sheet. Each question has only one correct answer. (2 arks each) 1. An inertial reference

More information

Engineering Mechanics - Dynamics Chapter 12

Engineering Mechanics - Dynamics Chapter 12 Engineering Mechanic - Dynaic Chapter 1 ρ 50 ft t 4 3 ft c 3 ft 3 t 1 3 v t + ct a t + ct At t 1 v 1 t 1 + ct 1 v 1 a t1 + ct 1 a n1 ρ a 1 a t1 + a n1 a 1 1.63 ft Ditance traveled d 1 t 1 c + 3 t 1 3 d

More information

CHAPTER 7 TEST REVIEW -- MARKSCHEME

CHAPTER 7 TEST REVIEW -- MARKSCHEME AP PHYSICS Nae: Period: Date: Points: 53 Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response

More information

PHY 171 Practice Test 3 Solutions Fall 2013

PHY 171 Practice Test 3 Solutions Fall 2013 PHY 171 Practice et 3 Solution Fall 013 Q1: [4] In a rare eparatene, And a peculiar quietne, hing One and hing wo Lie at ret, relative to the ground And their wacky hairdo. If hing One freeze in Oxford,

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Departent of Physics and Engineering Physics 05 Saskatchewan High School Physics Scholarship Copetition May, 05 Tie allowed: 90 inutes This copetition is based on the Saskatchewan

More information

Phys101 Lectures 13, 14 Momentum and Collisions

Phys101 Lectures 13, 14 Momentum and Collisions Phs0 Lectures 3, 4 Moentu and ollisions Ke points: Moentu and ipulse ondition for conservation of oentu and wh How to solve collision probles entre of ass Ref: 7-,,3,4,5,6,7,8,9,0. Page Moentu is a vector:

More information

PHY 211: General Physics I 1 CH 10 Worksheet: Rotation

PHY 211: General Physics I 1 CH 10 Worksheet: Rotation PHY : General Phyic CH 0 Workheet: Rotation Rotational Variable ) Write out the expreion for the average angular (ω avg ), in ter of the angular diplaceent (θ) and elaped tie ( t). ) Write out the expreion

More information

Tarzan s Dilemma for Elliptic and Cycloidal Motion

Tarzan s Dilemma for Elliptic and Cycloidal Motion Tarzan Dilemma or Elliptic and Cycloidal Motion Yuji Kajiyama National Intitute o Technology, Yuge College, Shimo-Yuge 000, Yuge, Kamijima, Ehime, 794-593, Japan kajiyama@gen.yuge.ac.jp btract-in thi paper,

More information

TAP 518-7: Fields in nature and in particle accelerators

TAP 518-7: Fields in nature and in particle accelerators TAP - : Field in nature and in particle accelerator Intruction and inforation Write your anwer in the pace proided The following data will be needed when anwering thee quetion: electronic charge 9 C a

More information

84 ZHANG Jing-Shang Vol. 39 of which would emit 5 He rather than 3 He. 5 He i untable and eparated into n + pontaneouly, which can alo be treated a if

84 ZHANG Jing-Shang Vol. 39 of which would emit 5 He rather than 3 He. 5 He i untable and eparated into n + pontaneouly, which can alo be treated a if Commun. Theor. Phy. (Beijing, China) 39 (003) pp. 83{88 c International Academic Publiher Vol. 39, No. 1, January 15, 003 Theoretical Analyi of Neutron Double-Dierential Cro Section of n+ 11 B at 14. MeV

More information

Phy 212: General Physics II 1/31/2008 Chapter 17 Worksheet: Waves II 1

Phy 212: General Physics II 1/31/2008 Chapter 17 Worksheet: Waves II 1 Phy : General Phyic /3/008 Chapter 7 orkheet: ae. Ethanol ha a denity o 659 kg/ 3. the peed o in ethanol i 6 /, what i it adiabatic bulk odulu? 9 N B = ρ = 8.90x0 ethanol ethanol. A phyic tudent eaure

More information

Physics 11 HW #6 Solutions

Physics 11 HW #6 Solutions Physics HW #6 Solutions Chapter 6: Focus On Concepts:,,, Probles: 8, 4, 4, 43, 5, 54, 66, 8, 85 Focus On Concepts 6- (b) Work is positive when the orce has a coponent in the direction o the displaceent.

More information

Ocean currents II. Wind-water interaction and drag forces Ekman transport, circular and geostrophic flow General ocean flow pattern

Ocean currents II. Wind-water interaction and drag forces Ekman transport, circular and geostrophic flow General ocean flow pattern Ocean current II Wind-water interaction and drag orce Ekan tranport, circular and geotrophic low General ocean low pattern Wind-Water urace interaction Water otion at the urace o the ocean (ixed layer)

More information

2. REASONING According to the impulse-momentum theorem, the rocket s final momentum mv f

2. REASONING According to the impulse-momentum theorem, the rocket s final momentum mv f CHAPTER 7 IMPULSE AND MOMENTUM PROLEMS. REASONING According to the ipulse-oentu theore, the rocket s inal oentu diers ro its initial oentu by an aount equal to the ipulse ( ΣF ) o the net orce eerted on

More information

ROUTH HURWITZ ANALYSIS

ROUTH HURWITZ ANALYSIS ROUTH HURWITZ ANALYSIS The Routh Hurwitz analyi tell you how many root are located in the a) let-hand plane, ) right-hand plane, and c) on the jω-axi. The technique i illutrated here with an example. The

More information

Tutorial 1 Calculating the Kinetic Energy of a Moving Object

Tutorial 1 Calculating the Kinetic Energy of a Moving Object 5. Energy As you learned in Section 5.1, mechanical work is done by applying orces on objects and displacing them. How are people, machines, and Earth able to do mechanical work? The answer is energy:

More information

5.1 m is therefore the maximum height of the ball above the window. This is 25.1 m above the ground. (b)

5.1 m is therefore the maximum height of the ball above the window. This is 25.1 m above the ground. (b) .6. Model: This is a case of free fall, so the su of the kinetic and gravitational potential energy does not change as the ball rises and falls. The figure shows a ball s before-and-after pictorial representation

More information

SPH4U/SPH3UW Unit 2.3 Applying Newton s Law of Motion Page 1 of 7. Notes

SPH4U/SPH3UW Unit 2.3 Applying Newton s Law of Motion Page 1 of 7. Notes SPH4U/SPH3UW Unit.3 Appling Newton Law of Motion Page 1 of 7 Note Phic Tool Bo Solving Newton Law of Motion Proble o Read quetion to enure full undertanding o Draw and label a ree Bod Diagra o Separate

More information

a = f s,max /m = s g. 4. We first analyze the forces on the pig of mass m. The incline angle is.

a = f s,max /m = s g. 4. We first analyze the forces on the pig of mass m. The incline angle is. Chapter 6 1. The greatet deceleration (of magnitude a) i provided by the maximum friction force (Eq. 6-1, with = mg in thi cae). Uing ewton econd law, we find a = f,max /m = g. Eq. -16 then give the hortet

More information

Description: Conceptual: A bullet embeds in a stationary, frictionless block: type of collision? what is conserved? v_final?

Description: Conceptual: A bullet embeds in a stationary, frictionless block: type of collision? what is conserved? v_final? Chapter 8 [ Edit ] Overview Suary View Diagnostics View Print View with Answers Chapter 8 Due: 11:59p on Sunday, October 23, 2016 To understand how points are awarded, read the Grading Policy for this

More information

26 Impulse and Momentum

26 Impulse and Momentum 6 Ipulse and Moentu First, a Few More Words on Work and Energy, for Coparison Purposes Iagine a gigantic air hockey table with a whole bunch of pucks of various asses, none of which experiences any friction

More information

1.1 Speed and Velocity in One and Two Dimensions

1.1 Speed and Velocity in One and Two Dimensions 1.1 Speed and Velocity in One and Two Dienion The tudy of otion i called kineatic. Phyic Tool box Scalar quantity ha agnitude but no direction,. Vector ha both agnitude and direction,. Aerage peed i total

More information

Physics Chapter 6. Momentum and Its Conservation

Physics Chapter 6. Momentum and Its Conservation Physics Chapter 6 Moentu and Its Conservation Linear Moentu The velocity and ass of an object deterine what is needed to change its otion. Linear Moentu (ρ) is the product of ass and velocity ρ =v Unit

More information

Impulse and Momentum

Impulse and Momentum Impule and Momentum 1. A ca poee 20,000 unit of momentum. What would be the ca' new momentum if... A. it elocity wee doubled. B. it elocity wee tipled. C. it ma wee doubled (by adding moe paenge and a

More information

Answer keys. EAS 1600 Lab 1 (Clicker) Math and Science Tune-up. Note: Students can receive partial credit for the graphs/dimensional analysis.

Answer keys. EAS 1600 Lab 1 (Clicker) Math and Science Tune-up. Note: Students can receive partial credit for the graphs/dimensional analysis. Anwer key EAS 1600 Lab 1 (Clicker) Math and Science Tune-up Note: Student can receive partial credit for the graph/dienional analyi. For quetion 1-7, atch the correct forula (fro the lit A-I below) to

More information

Frames of Reference and Relative Velocity

Frames of Reference and Relative Velocity 1.5 frame of reference coordinate ytem relative to which motion i oberved Frame of Reference and Relative Velocity Air how provide element of both excitement and danger. When high-peed airplane fly in

More information

Chapter 9 Centre of Mass and Linear Momentum

Chapter 9 Centre of Mass and Linear Momentum Chater 9 Centre o Mass and Linear Moentu Centre o ass o a syste o articles / objects Linear oentu Linear oentu o a syste o articles Newton s nd law or a syste o articles Conseration o oentu Elastic and

More information

Assessment Schedule 2017 Scholarship Physics (93103)

Assessment Schedule 2017 Scholarship Physics (93103) Scholarhip Phyic (93103) 201 page 1 of 5 Aement Schedule 201 Scholarhip Phyic (93103) Evidence Statement Q Evidence 1-4 mark 5-6 mark -8 mark ONE (a)(i) Due to the motion of the ource, there are compreion

More information

AP Physics Charge Wrap up

AP Physics Charge Wrap up AP Phyic Charge Wrap up Quite a few complicated euation for you to play with in thi unit. Here them babie i: F 1 4 0 1 r Thi i good old Coulomb law. You ue it to calculate the force exerted 1 by two charge

More information

CHAPTER 7 IMPULSE AND MOMENTUM

CHAPTER 7 IMPULSE AND MOMENTUM CHAPTER 7 IMPULSE AND MOMENTUM PROBLEMS 1. SSM REASONING The ipulse that the olleyball player applies to the ball can be ound ro the ipulse-oentu theore, Equation 7.4. Two orces act on the olleyball while

More information

Math Skills. Scientific Notation. Uncertainty in Measurements. Appendix A5 SKILLS HANDBOOK

Math Skills. Scientific Notation. Uncertainty in Measurements. Appendix A5 SKILLS HANDBOOK ppendix 5 Scientific Notation It i difficult to work with very large or very mall number when they are written in common decimal notation. Uually it i poible to accommodate uch number by changing the SI

More information

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass BALLISTIC PENDULUM INTRODUCTION: In this experient you will use the principles of conservation of oentu and energy to deterine the speed of a horizontally projected ball and use this speed to predict the

More information

Application of Newton s Laws. F fr

Application of Newton s Laws. F fr Application of ewton Law. A hocey puc on a frozen pond i given an initial peed of 0.0/. It lide 5 before coing to ret. Deterine the coefficient of inetic friction ( μ between the puc and ice. The total

More information

Fair Game Review. Chapter 7 A B C D E Name Date. Complete the number sentence with <, >, or =

Fair Game Review. Chapter 7 A B C D E Name Date. Complete the number sentence with <, >, or = Name Date Chapter 7 Fair Game Review Complete the number entence with , or =. 1. 3.4 3.45 2. 6.01 6.1 3. 3.50 3.5 4. 0.84 0.91 Find three decimal that make the number entence true. 5. 5.2 6. 2.65 >

More information

Page 1. t F t m v. N s kg s. J F t SPH4U. From Newton Two New Concepts Impulse & Momentum. Agenda

Page 1. t F t m v. N s kg s. J F t SPH4U. From Newton Two New Concepts Impulse & Momentum. Agenda SPH4U Agenda Fro Newton Two New Concepts Ipulse & oentu Ipulse Collisions: you gotta consere oentu! elastic or inelastic (energy consering or not) Inelastic collisions in one diension and in two diensions

More information

Tactics Box 2.1 Interpreting Position-versus-Time Graphs

Tactics Box 2.1 Interpreting Position-versus-Time Graphs 1D kineatic Retake Assignent Due: 4:32p on Friday, October 31, 2014 You will receive no credit for ites you coplete after the assignent is due. Grading Policy Tactics Box 2.1 Interpreting Position-versus-Tie

More information

before the collision and v 1 f and v 2 f after the collision. Since conservation of the linear momentum

before the collision and v 1 f and v 2 f after the collision. Since conservation of the linear momentum Lecture 7 Collisions Durin the preious lecture we stared our discussion of collisions As it was stated last tie a collision is an isolated eent in which two or ore odies (the collidin odies) exert relatiely

More information

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K affan_414@live.co https://prootephysics.wordpress.co [MOTION] CHAPTER NO. 3 In this chapter we are going to discuss otion in one diension in which we

More information

I. Understand get a conceptual grasp of the problem

I. Understand get a conceptual grasp of the problem MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departent o Physics Physics 81T Fall Ter 4 Class Proble 1: Solution Proble 1 A car is driving at a constant but unknown velocity,, on a straightaway A otorcycle is

More information

3. In an interaction between two objects, each object exerts a force on the other. These forces are equal in magnitude and opposite in direction.

3. In an interaction between two objects, each object exerts a force on the other. These forces are equal in magnitude and opposite in direction. Lecture quiz toda. Small change to webite. Problem 4.30 the peed o the elevator i poitive even though it i decending. The WebAign anwer i wrong. ewton Law o Motion (page 9-99) 1. An object velocit vector

More information

4.7. Springs and Conservation of Energy. Conservation of Mechanical Energy

4.7. Springs and Conservation of Energy. Conservation of Mechanical Energy Springs and Conservation of Energy Most drivers try to avoid collisions, but not at a deolition derby like the one shown in Figure 1. The point of a deolition derby is to crash your car into as any other

More information

Momentum, p = m v. Collisions and Work(L8) Crash! Momentum and Collisions. Conservation of Momentum. elastic collisions

Momentum, p = m v. Collisions and Work(L8) Crash! Momentum and Collisions. Conservation of Momentum. elastic collisions Collisions and Work(L8) Crash! collisions can be ery coplicated two objects bang into each other and exert strong forces oer short tie interals fortunately, een though we usually do not know the details

More information