Physics Chapter 6. Momentum and Its Conservation

Size: px
Start display at page:

Download "Physics Chapter 6. Momentum and Its Conservation"

Transcription

1 Physics Chapter 6 Moentu and Its Conservation

2 Linear Moentu The velocity and ass of an object deterine what is needed to change its otion. Linear Moentu (ρ) is the product of ass and velocity ρ =v Unit is kg /s

3 Exaple 1 Exaple 1. Find the agnitude of the oentu of each cart shown below, before the collision.

4 Exaple 1. Find the agnitude of the oentu of each cart shown below, before the collision. Given: Find: ρ A Solution: A = 450 kg B = 550 kg n A = 4.50 /s n B = 3.70 /s and ρ B ρ A = A n A = (450 kg)(4.50 /s) = 2025 = 2.0 x 10 3 kg. /s ρ B = B n B = (550 kg)(3.70 /s) = 2035 = 2.0 x 10 3 kg. /s

5 Exaple 2. The an in this picture has a ass of 85.0 kg. If he strikes the ground at 7.7 /s, what is his change in oentu (Dρ) Assue his ass reains the sae after the collision. Given: Find: Solution: = 85.0 kg n f = 0.0 /s n i = -7.7 /s (negative for down) D ρ D ρ = n f - n i = (n f - n i ) = (85.0 kg)((0.0 /s (-7.7 /s)) = 650 kg. /s

6 If the velocity is changed by an outside force, then the oentu is also changed. F=a= (Dv/Dt) = Dv/Dt = D ρ/dt F=Dρ/Dt FDt = D ρ =D v = v f -v i **Dt is the tie during which the force is applied. ** FDt is called ipulse in N s This is called the Ipulse- Moentu Theore.

7 Exaple 3. A player exerts a force (assue constant) of 12.5 N on a ball over a period of 0.35 s. Find the total ipulse. Given: F = 12.5 N Find: Ipulse Dt = 0.35 s Solution: Ipulse = FDt = (12.5 N)(0.35 s) = 4.4 N. s

8 Exaple 4: Water leaves a hose at a rate of 1.5 kg/s with a speed of 20 /s and is aied at the side of a car, which stops it without splashing it back (kind of a fake proble, but that s OK). What is the force exerted by the water on the car each second. = 1.5 kg v i =20/s v f =0/s Dt=1s

9 F C eans F C Dt =D ρ force on water by F C =D ρ /Dt car (F w is F C = (ρ f ρ i ) / Dt force on car by water F C = (v f v i ) / Dt which is F C = (v f v i ) / Dt equal and opposite) F C = 1.5 kg (0 /s 20 /s) / 1 s F WC,x C = -30 = -30 N N F W F= CW,x 30 = N30 N

10 6A and 6B, page 209 and 211

11 Stopping Distance Stopping distance depends on the Ipulse-Moentu Theore. A truck takes longer to stop than a bicycle Also, A change in oentu over a longer tie requires less force. Ex: nets, air attresses, padding (see fig. 6-5, pg. 214)

12 Calculating tie and distance Stopping tie can be calculated using FDt = D p, and solving for Dt. Stopping distance can be calculated using Dx = ½(v i +v f )Dt

13 Exaple A kg sphere traveling west slows fro /s to /s. How long does it take the sphere to decelerate if the force on the sphere is 840 N to the east? How far does the sphere travel during the deceleration?

14 First find change in tie =720.0kg v i = /s v f =-12.00/s F= +840N FDt=Dp Dt=Dp/F=(v f -v i )/F =[(720kgX-12.00/s)- (720.0kgX-230.0/s)]/840N=186.9s

15 Then find change in x Dx=1/2 (v i +v f )Dt= 1/2(-230.0/s-12.00/s)(186.9s) = = 23,000 to the West

16 Newton s 3 rd Law As two objects collide, the ipulse (FDt) is the sae for each. Newton s 3 rd law tells us that the forces are equal and opposite which leads to conservation of oentu. Forces in real collisions are not constant (see fig. 6-9, pg. 220)

17 Conservation of Moentu in Collisions When two objects collide, the oentu of the individual objects change, but the total oentu reains the sae. p 1,i + p 2,i = p 1,f + p 2,f 1 v 1,i + 2 v 2,i = 1 v 1,f + 2 v 2,f Friction is disregarded

18 Exaple pg. 218 A 76 kg person, initially at rest in a stationary 45 kg boat, steps out of the boat and onto the dock. If the person oves out of the boat with a velocity of 2.5 /s to the right, what is the final velocity of the boat?

19 List Knowns and Unknowns and forula v i,boat =0 v i,person =0 v f,boat =? v f,person =2.5/s person =76kg boat =45kg p v p,i + b v b,i = p v p,f + b v b,f = (76kg)(2.5/s) + (45kg)(v b,f ) V bf = - (76X2.5)/45 = -4.2/s (negative eans the boat is oving in the opposite direction)

20 Exaple 2. A proton with an initial velocity of 235 /s strikes a stationary alpha particle(he) and rebounds off with a velocity of 188 /s. Find the final velocity of the alpha particle. Mass of proton= 1.67 x kg Mass of alpha particle (He)= 6.64 x kg

21 Given: p = 1.67 x kg He = 6.64 x kg n p,i = 235 /s n He,i = 0.0 /s n p,f = -188 /s Find: n He,f Original Forula: p ν p,i He ν He,i ν p p,f He ν He,f Now, the initial velocity of He (alpha particle) is zero, so cross it out!

22 Given: p = 1.67 x kg He = 6.64 x kg n p,i = 235 /s n He,i = 0.0 /s n p,f = -188 /s Find: n He,f Original Forula: p ν p,i ν p p,f He ν He,f Solve for n He,f

23 Given: p = 1.67 x kg He = 6.64 x kg n p = 235 /s n He = 0.0 /s n p,f = -188 /s Find: n He,f Working Forula: ν He,f p ν p,i - He p ν p, f

24 Given: p = 1.67 x kg He = 6.64 x kg n p = 235 /s n He = 0.0 /s n p,f = -188 /s Find: n He,f Working Forula: The ass of the proton doesn t change, so ν He,f p (ν p,i - He ν p,f )

25 ν He,f 1.67x / s kg(235 /s - (-188 /s)) 6.64 x kg

26 Practice 6C page 213 and 6D page 219 To be copleted in class toorrow no hoework tonight.

27 Perfectly Inelastic Collisions A collision is perfectly inelastic when they collide and ove together as one ass with a coon velocity. 1 v 1,i + 2 v 2,i = ( )v f

28 Exaple 1. A oving railroad car, ass=m, speed=3/s, collides with an identical car at rest. The cars lock together as a result of the collision. What is their coon speed afterward?

29 V i1 V i2 =0 M M before V f? M M after

30 V i1 V i2 =0 x V f? x M M M M before after p 1i = p 2f M(+V i1 ) + 0= (M+M)(V f ) V f = MV i1 / 2M = V i1 / 2 V f = (3/s) / 2 = 1.5/s

31 6E, page 224

32 Kinetic Energy and Perfectly Inelastic Collisions During perfectly inelastic collisions, soe kinetic energy is lost because the objects are defored. Once ass and velocities are known (using conservation of oentu), solve for initial and final kinetic energies (1/2v 2 ) using the forula fro Ch. 5 to deterine energy lost. KE i = KE 1,i + KE 2,i KE f = KE 1,f + KE 2,f DKE = KE f - KE i

33 Exaple 1. A red clay ball with a ass of 1.5 kg and an initial velocity of 4.5 /s strikes and sticks to a 2.8 kg black clay ball at rest. Find the final velocity of the cobined ass. Given: Find: n f r = 1.5 kg b = 2.8 kg n r,i = 4.5 /s n b,i = 0 /s, KE lost Original Forula: r ν r,i ν b b,i ( r b )νf

34 Exaple 1. A red clay ball with a ass of 1.5 kg and an initial velocity of 4.5 /s strikes and sticks to a 2.8 kg black clay ball at rest. Find the final velocity of the cobined ass. Then, find the loss of Kinetic Energy. Given: Find: r = 1.5 kg b = 2.8 kg n r,i = 4.5 /s n b,i = 0 /s n f, KE lost Original Forula: The black ball starts at rest, so r ν r,i ν b b,i ( r b )νf

35 Exaple 1. A red clay ball with a ass of 1.5 kg and an initial velocity of 4.5 /s strikes and sticks to a 2.8 kg black clay ball at rest. Find the final velocity of the cobined ass. Given: Find: r = 1.5 kg b = 2.8 kg n r,i = 4.5 /s n b,i = 0 /s n f, KE lost Original Forula: The black ball starts at rest, so r ν r,i ( r b )νf

36 Exaple 1. A red clay ball with a ass of 1.5 kg and an initial velocity of 4.5 /s strikes and sticks to a 2.8 kg black clay ball at rest. Find the final velocity of the cobined ass. Given: Find: r = 1.5 kg b = 2.8 kg n r = 4.5 /s n b = 0 /s n f, KE lost Working Forula: ν f ν r r ( r b )

37 Exaple 1. A red clay ball with a ass of 1.5 kg and an initial velocity of 4.5 /s strikes and sticks to a 2.8 kg black clay ball at rest. Find the final velocity of the cobined ass. Given: Find: Solution: r = 1.5 kg b = 2.8 kg n r,i = 4.5 /s n b,i = 0 /s n f, KE lost ν f ( ν r r r,i b ) (1.5 kg)(4.5 /s) (1.5 kg 2.8 kg) /s

38 Recall the forula for kinetic energy. KE 1 v 2 2 Was the kinetic energy conserved in exaple 1?

39 KE red KE 1 2 v black r 2 r v r (1.5 kg)(4.5 /s) 2 r 1 2 (2.8 kg)(0.0 /s) J 2 KE before = 15 J 0 J

40 KE after 1 2 rb v f (4.3 kg)(1.6 /s) J

41 KE before = 15 J KE after = 5.3 J DKE = 5.3 J-15 J = -9.7 J

42 Where does the issing kinetic energy go? Soe energy is converted to internal energy, soe is converted into sound.

43 6F page 226

44 Elastic Collisions Two objects collide and return to their original shape with no loss of Kinetic Energy. The two objects ove separately after the collision. Total oentu and KE reain constant. See page 230. Most collisions lose energy as sound, internal elastic potential energy and friction we assue perfect collisions.

45 Forula for elastic collisions 1 v 1,i + 2 v 2,i = 1 v 1,f + 2 v 2,f ½ 1 v 1,i2 + ½ 2 v 2,i 2 = ½ 1 v 1,f2 + ½ 2 v 2,f 2

46 Exaple 1. A kg blue arble oves right with a velocity of 17 /s and akes an elastic head-on collision with kg red arble oving left with a velocity of 15 /s. After the collision, the blue arble oves to the left with a velocity of 15.0 /s. Find the velocity of the red arble after the collision.

47 Exaple 1. Given: Find: n r,f b = kg r = kg n b,i = 17 /s n r,i, = -15 /s n b,f = -15 /s Original Forula: b ν b,i ν r r,i ν b b,f r ν r,f ν r,f b ν b,i ν r r r,i - b ν b,f

48 ν r,f b ν b,i ν r r r,i - (0.025 kg)(17 /s) (0.025 kg)(-15 /s) kg b ν b,f - (0.025 kg)(-15 /s) =17/s

49 Now you can plug the nubers into the conservation of kinetic energy forula to check your work which they will ask you to do! (Reeber there is NO LOSS OF KINETIC ENERGY with elastic collisions!!) ½ 1 v 1,i2 + ½ 2 v 2,i 2 = ½ 1 v 1,f2 + ½ 2 v 2,f 2

50 ½ 1 v 1,i2 + ½ 2 v 2,i 2 = ½ 1 v 1,f2 + ½ 2 v 2,f 2 ½ (.025)(17) 2 + ½ (.025)(-15) 2 = ½ (.025)(-15) 2 + ½ (.025)(17) J = 6.425J

51 Hoework Probles 6G, page 229

52 Review Probles pg ,15,16,17,18,24,26,27,29, 31,32,34, 36,38,40,54

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant Chapter 7 Ipulse and Moentu So far we considered only constant force/s BUT There are any situations when the force on an object is not constant Force varies with tie 7. The Ipulse-Moentu Theore DEFINITION

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Ipulse and Moentu 7. The Ipulse-Moentu Theore 7. The Ipulse-Moentu Theore There are any situations when the force on an object is not constant. 7. The Ipulse-Moentu Theore DEFINITION OF IMPULSE

More information

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant Chapter 7 Ipulse and Moentu So far we considered only constant force/s BUT There are any situations when the force on an object is not constant JUST IN TIME TEACHING E-ail or bring e your questions prior

More information

We last left off by talking about how the area under a force vs. time curve is impulse.

We last left off by talking about how the area under a force vs. time curve is impulse. Lecture 11 Ipulse and Moentu We last left off by talking about how the area under a force vs. tie curve is ipulse. Recall that for our golf ball we had a strongly peaked force curve: F F avg t You have

More information

Applied Physics I (Phys 182)

Applied Physics I (Phys 182) Applied Physics I (Phys 182) Dr. Joseph J. Trout E-ail: joseph.trout@drexel.edu Cell: (610)348-6495 Office: Disque 902 1 Moentu Ipulse Conservation of Moentu Explosions Inelastic Collisions Elastic Collisions

More information

Today s s topics are: Collisions and Momentum Conservation. Momentum Conservation

Today s s topics are: Collisions and Momentum Conservation. Momentum Conservation Today s s topics are: Collisions and P (&E) Conservation Ipulsive Force Energy Conservation How can we treat such an ipulsive force? Energy Conservation Ipulsive Force and Ipulse [Exaple] an ipulsive force

More information

CHAPTER 7: Linear Momentum

CHAPTER 7: Linear Momentum CHAPTER 7: Linear Moentu Solution Guide to WebAssign Probles 7.1 [1] p v ( 0.08 kg) ( 8.4 s) 0.4 kg s 7. [] Fro Newton s second law, p Ft. For a constant ass object, p v. Equate the two expression for

More information

Compare the momentum of the same object moving with different velocities. Identify examples of change in the momentum of an object.

Compare the momentum of the same object moving with different velocities. Identify examples of change in the momentum of an object. HOLT CH 6 notes Objectives :Compare the momentum of different moving objects. Compare the momentum of the same object moving with different velocities. Identify examples of change in the momentum of an

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Ipulse and Moentu 7. The Ipulse-Moentu Theore There are any situations when the force on an object is not constant. 7. The Ipulse-Moentu Theore DEFINITION OF IMPULSE The ipulse of a force is

More information

Section 1 Momentum and Impulse. Chapter 6. Preview. Objectives Linear Momentum. Houghton Mifflin Harcourt Publishing Company

Section 1 Momentum and Impulse. Chapter 6. Preview. Objectives Linear Momentum. Houghton Mifflin Harcourt Publishing Company Section 1 Momentum and Impulse Preview Objectives Linear Momentum Section 1 Momentum and Impulse Objectives Compare the momentum of different moving objects. Compare the momentum of the same object moving

More information

5.1 m is therefore the maximum height of the ball above the window. This is 25.1 m above the ground. (b)

5.1 m is therefore the maximum height of the ball above the window. This is 25.1 m above the ground. (b) .6. Model: This is a case of free fall, so the su of the kinetic and gravitational potential energy does not change as the ball rises and falls. The figure shows a ball s before-and-after pictorial representation

More information

Momentum. February 15, Table of Contents. Momentum Defined. Momentum Defined. p =mv. SI Unit for Momentum. Momentum is a Vector Quantity.

Momentum. February 15, Table of Contents. Momentum Defined. Momentum Defined. p =mv. SI Unit for Momentum. Momentum is a Vector Quantity. Table of Contents Click on the topic to go to that section Moentu Ipulse-Moentu Equation The Moentu of a Syste of Objects Conservation of Moentu Types of Collisions Collisions in Two Diensions Moentu Return

More information

Phys101 Lectures 13, 14 Momentum and Collisions

Phys101 Lectures 13, 14 Momentum and Collisions Phs0 Lectures 3, 4 Moentu and ollisions Ke points: Moentu and ipulse ondition for conservation of oentu and wh How to solve collision probles entre of ass Ref: 7-,,3,4,5,6,7,8,9,0. Page Moentu is a vector:

More information

Chapter 9 Centre of Mass and Linear Momentum

Chapter 9 Centre of Mass and Linear Momentum Chater 9 Centre o Mass and Linear Moentu Centre o ass o a syste o articles / objects Linear oentu Linear oentu o a syste o articles Newton s nd law or a syste o articles Conseration o oentu Elastic and

More information

CHAPTER 7 TEST REVIEW -- MARKSCHEME

CHAPTER 7 TEST REVIEW -- MARKSCHEME AP PHYSICS Nae: Period: Date: Points: 53 Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response

More information

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10 There are 10 ultiple choice questions. Select the correct answer for each one and ark it on the bubble for on the cover sheet. Each question has only one correct answer. (2 arks each) 1. An inertial reference

More information

UNIT HOMEWORK MOMENTUM ANSWER KEY

UNIT HOMEWORK MOMENTUM ANSWER KEY UNIT HOMEWORK MOMENTUM ANSWER KEY MOMENTUM FORMULA & STUFF FROM THE PAST: p = v, TKE = ½v 2, d = v t 1. An ostrich with a ass of 146 kg is running to the right with a velocity of 17 /s. a. Calculate the

More information

Physics 231 Lecture 13

Physics 231 Lecture 13 Physics 3 Lecture 3 Mi Main points it o td today s lecture: Elastic collisions in one diension: ( ) v = v0 + v0 + + ( ) v = v0 + v0 + + Multiple ipulses and rocket propulsion. F Δ t = Δ v Δ v propellant

More information

Momentum, p = m v. Collisions and Work(L8) Crash! Momentum and Collisions. Conservation of Momentum. elastic collisions

Momentum, p = m v. Collisions and Work(L8) Crash! Momentum and Collisions. Conservation of Momentum. elastic collisions Collisions and Work(L8) Crash! collisions can be ery coplicated two objects bang into each other and exert strong forces oer short tie interals fortunately, een though we usually do not know the details

More information

26 Impulse and Momentum

26 Impulse and Momentum 6 Ipulse and Moentu First, a Few More Words on Work and Energy, for Coparison Purposes Iagine a gigantic air hockey table with a whole bunch of pucks of various asses, none of which experiences any friction

More information

Description: Conceptual: A bullet embeds in a stationary, frictionless block: type of collision? what is conserved? v_final?

Description: Conceptual: A bullet embeds in a stationary, frictionless block: type of collision? what is conserved? v_final? Chapter 8 [ Edit ] Overview Suary View Diagnostics View Print View with Answers Chapter 8 Due: 11:59p on Sunday, October 23, 2016 To understand how points are awarded, read the Grading Policy for this

More information

Chapter 8. Momentum, Impulse and Collisions. 10/22/14 Physics 218

Chapter 8. Momentum, Impulse and Collisions. 10/22/14 Physics 218 Chapter 8 Moentu, Ipulse and Collisions 0//4 Physics 8 Learning Goals n n n n n n The eaning of the oentu of a particle(syste) and how the ipulse of the net force acting on a particle causes the oentu

More information

Physics 11 HW #7 Solutions

Physics 11 HW #7 Solutions hysics HW #7 Solutions Chapter 7: Focus On Concepts: 2, 6, 0, 3 robles: 8, 7, 2, 22, 32, 53, 56, 57 Focus On Concepts 7-2 (d) Moentu is a ector quantity that has a agnitude and a direction. The agnitudes

More information

Momentum Conceptual Questions. 1. Which variable has more impact on an object s motion? Its mass or its velocity?

Momentum Conceptual Questions. 1. Which variable has more impact on an object s motion? Its mass or its velocity? AP Physics I Momentum Conceptual Questions 1. Which variable has more impact on an object s motion? Its mass or its velocity? 2. Is momentum a vector or a scalar? Explain. 3. How does changing the duration

More information

Momentum and Collisions

Momentum and Collisions Physics in Action Soccer players must consider an enormous amount of information every time they set the ball = or themselves into motion. Once a player knows where the ball should go, the player has to

More information

Page 1. Physics 131: Lecture 16. Today s Agenda. Collisions. Elastic Collision

Page 1. Physics 131: Lecture 16. Today s Agenda. Collisions. Elastic Collision Physics 131: Lecture 16 Today s Agenda Elastic Collisions Definition Exaples Work and Energy Definition of work Exaples Physics 01: Lecture 10, Pg 1 Collisions Moentu is alost always consered during as

More information

CHAPTER 1 MOTION & MOMENTUM

CHAPTER 1 MOTION & MOMENTUM CHAPTER 1 MOTION & MOMENTUM SECTION 1 WHAT IS MOTION? All atter is constantly in MOTION Motion involves a CHANGE in position. An object changes position relative to a REFERENCE POINT. DISTANCE is the total

More information

Momentum, p. Crash! Collisions (L8) Momentum is conserved. Football provides many collision examples to think about!

Momentum, p. Crash! Collisions (L8) Momentum is conserved. Football provides many collision examples to think about! Collisions (L8) Crash! collisions can be ery coplicated two objects bang into each other and exert strong forces oer short tie interals fortunately, een though we usually do not know the details of the

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.it.edu 8.012 Physics I: Classical Mechanics Fall 2008 For inforation about citing these aterials or our Ters of Use, isit: http://ocw.it.edu/ters. MASSACHUSETTS INSTITUTE

More information

Relativity and Astrophysics Lecture 26 Terry Herter. Reading Spacetime Physics: Chapters 8

Relativity and Astrophysics Lecture 26 Terry Herter. Reading Spacetime Physics: Chapters 8 Relativity and Astrophysics Lecture 6 Terry Herter Outline Conservation of Moenergy Particle collision exaple Concept Suary s Collisions Conserved quantities Photons Reading Spacetie Physics: Chapters

More information

Physics 201, Lecture 15

Physics 201, Lecture 15 Physics 0, Lecture 5 Today s Topics q More on Linear Moentu And Collisions Elastic and Perfect Inelastic Collision (D) Two Diensional Elastic Collisions Exercise: Billiards Board Explosion q Multi-Particle

More information

Momentum. Momentum. Momentum. January 25, momentum presentation Table of Contents. Momentum Defined. Grade:«grade»

Momentum. Momentum. Momentum. January 25, momentum presentation Table of Contents. Momentum Defined. Grade:«grade» oentu presentation 2016 New Jersey Center for Teaching and Learning Progressive Science Initiative This aterial is ade freely available at wwwnjctlorg and is intended for the non coercial use of students

More information

Chapter 1. Momentum. Fun and physics on screen

Chapter 1. Momentum. Fun and physics on screen Chapter 1 Moentu Objectives e-learning Fun and physics on screen If you play coputer gaes (Figure 1.1) you will be failiar with the way in which characters ove about the screen. Cars accelerate and decelerate

More information

Work, Energy and Momentum

Work, Energy and Momentum Work, Energy and Moentu Work: When a body oves a distance d along straight line, while acted on by a constant force of agnitude F in the sae direction as the otion, the work done by the force is tered

More information

y scalar component x scalar component A. 770 m 250 m file://c:\users\joe\desktop\physics 2A\PLC Assignments - F10\2a_PLC7\index.

y scalar component x scalar component A. 770 m 250 m file://c:\users\joe\desktop\physics 2A\PLC Assignments - F10\2a_PLC7\index. Page 1 of 6 1. A certain string just breaks when it is under 400 N of tension. A boy uses this string to whirl a 10-kg stone in a horizontal circle of radius 10. The boy continuously increases the speed

More information

Lesson 24: Newton's Second Law (Motion)

Lesson 24: Newton's Second Law (Motion) Lesson 24: Newton's Second Law (Motion) To really appreciate Newton s Laws, it soeties helps to see how they build on each other. The First Law describes what will happen if there is no net force. The

More information

Conservation of Momentum

Conservation of Momentum Conservation of Momentum Law of Conservation of Momentum The sum of the momenta before a collision equal the sum of the momenta after the collision in an isolated system (=no external forces acting).

More information

23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the

23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the 23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the axis. The force varies in magnitude, and the impulse has

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

Collisions. Conservation of Momentum Elastic and inelastic collisions. Serway For practice: Chapter 9, problems 10, 11, 23, 70, 75

Collisions. Conservation of Momentum Elastic and inelastic collisions. Serway For practice: Chapter 9, problems 10, 11, 23, 70, 75 Collisions Conservation of Momentum Elastic and inelastic collisions Serway 9.3-9.4 For practice: Chapter 9, problems 10, 11, 23, 70, 75 Momentum: p = mv Impulse (a vector) is defined as F t (for a constant

More information

Lecture 6. Announcements. Conservation Laws: The Most Powerful Laws of Physics. Conservation Laws Why they are so powerful

Lecture 6. Announcements. Conservation Laws: The Most Powerful Laws of Physics. Conservation Laws Why they are so powerful Conseration Laws: The Most Powerful Laws of Physics Potential Energy gh Moentu p = + +. Energy E = PE + KE +. Kinetic Energy / Announceents Mon., Sept. : Second Law of Therodynaics Gie out Hoework 4 Wed.,

More information

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K affan_414@live.co https://prootephysics.wordpress.co [MOTION] CHAPTER NO. 3 In this chapter we are going to discuss otion in one diension in which we

More information

Phys101 Lectures 14, 15, 16 Momentum and Collisions

Phys101 Lectures 14, 15, 16 Momentum and Collisions Phys101 Lectures 14, 15, 16 Momentum and Collisions Key points: Momentum and impulse Condition for conservation of momentum and why How to solve collision problems Centre of mass Ref: 9-1,2,3,4,5,6,7,8,9.

More information

Chapter 9 Linear Momentum

Chapter 9 Linear Momentum Chapter 9 Linear Momentum 7 12/7 16/7 Units of Chapter 9 Momentum, Impulse and Collisions Momentum and Impulse Define momentum Force and rate of change of momentum; resultant force as rate of change of

More information

Relativity and Astrophysics Lecture 25 Terry Herter. Momenergy Momentum-energy 4-vector Magnitude & components Invariance Low velocity limit

Relativity and Astrophysics Lecture 25 Terry Herter. Momenergy Momentum-energy 4-vector Magnitude & components Invariance Low velocity limit Mo Mo Relativity and Astrophysics Lecture 5 Terry Herter Outline Mo Moentu- 4-vector Magnitude & coponents Invariance Low velocity liit Concept Suary Reading Spacetie Physics: Chapter 7 Hoework: (due Wed.

More information

Chapter 5, Conceptual Questions

Chapter 5, Conceptual Questions Chapter 5, Conceptual Questions 5.1. Two forces are present, tension T in the cable and gravitational force 5.. F G as seen in the figure. Four forces act on the block: the push of the spring F, sp gravitational

More information

Test, Lesson 4 Energy-Work-Power- Answer Key Page 1

Test, Lesson 4 Energy-Work-Power- Answer Key Page 1 Test, Lesson 4 Energy-Work-Power- Answer Key Page 1 1. What is the axial height for the ond hup on a roller coaster if the roller coaster is traveling at 108 k just before hr clibing the ond hup? The ond

More information

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40%

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40% NAME NUMER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002 PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2.5 Q1 ( ) 2 Q2 Q3 Total 40% Use the followings: Magnitude of acceleration due to gravity

More information

Momentum and impulse Book page 73-79

Momentum and impulse Book page 73-79 Momentum and impulse Book page 73-79 Definition The rate of change of linear momentum is directly proportional to the resultant force acting upon it and takes place in the direction of the resultant force

More information

2009 Academic Challenge

2009 Academic Challenge 009 Acadeic Challenge PHYSICS TEST - REGIONAL This Test Consists of 5 Questions Physics Test Production Tea Len Stor, Eastern Illinois University Author/Tea Leader Doug Brandt, Eastern Illinois University

More information

AP PHYSICS C Momentum Name: AP Review

AP PHYSICS C Momentum Name: AP Review AP PHYSICS C Momentum Name: AP Review Momentum How hard it is to stop a moving object. Related to both mass and velocity. For one particle p = mv For a system of multiple particles P = p i = m ivi Units:

More information

Conservation of Momentum

Conservation of Momentum Conseration of Moentu We left off last with the idea that when one object () exerts an ipulse onto another (), exerts an equal and opposite ipulse onto. This happens in the case of a classic collision,

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

Physics 120 Final Examination

Physics 120 Final Examination Physics 120 Final Exaination 12 August, 1998 Nae Tie: 3 hours Signature Calculator and one forula sheet allowed Student nuber Show coplete solutions to questions 3 to 8. This exaination has 8 questions.

More information

Unit 6: Linear Momentum

Unit 6: Linear Momentum Unit 6: Linear Momentum The concept of linear momentum is closely tied to the concept of force in fact, Newton first defined his Second Law not in terms of mass and acceleration, but in terms of momentum.

More information

Momentum and Collisions. Chapter 6. Table of Contents. Section 1 Momentum and Impulse. Section 2 Conservation of Momentum

Momentum and Collisions. Chapter 6. Table of Contents. Section 1 Momentum and Impulse. Section 2 Conservation of Momentum Table of Contents Momentum and Section 2 Conservation of Momentum Objectives Compare the momentum of different moving objects. Compare the momentum of the same object moving with different velocities.

More information

Physics 218 Exam 3 Fall 2010, Sections

Physics 218 Exam 3 Fall 2010, Sections Physics 28 Exa 3 Fall 200, Sections 52-524 Do not fill out the inforation below until instructed to do so! Nae Signature Student ID E-ail Section # : SOUTIONS ules of the exa:. You have the full class

More information

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ Physics 1 Lesson 8 Forces and Momentum Homework Outcomes 1. Define linear momentum. 2. Determine the total linear momentum of a system. 3. Apply the Law of Conservation of Momentum to solve problems. 4.

More information

Momentum Practice Problems

Momentum Practice Problems Momentum Practice Problems PSI AP Physics C Name Multiple Choice 1. A steel ball and a piece of clay have equal mass. They are dropped from the same height on a horizontal steel platform. The ball bounces

More information

Note-A-Rific: Mechanical

Note-A-Rific: Mechanical Note-A-Rific: Mechanical Kinetic You ve probably heard of inetic energy in previous courses using the following definition and forula Any object that is oving has inetic energy. E ½ v 2 E inetic energy

More information

Announcements. The second midterm exam is March 8, 5-7 PM in White B51 (this room).

Announcements. The second midterm exam is March 8, 5-7 PM in White B51 (this room). Announcements The second midterm exam is March 8, 5-7 PM in White B51 (this room). The makeup exam is March 5, 5-7 PM in Clark 317. All exam info, including this, is at the class webpage, http://community.wvu.edu/

More information

Year 12 Physics Holiday Work

Year 12 Physics Holiday Work Year 1 Physics Holiday Work 1. Coplete questions 1-8 in the Fields assessent booklet and questions 1-3 In the Further Mechanics assessent booklet (repeated below in case you have lost the booklet).. Revise

More information

Definition of Work, The basics

Definition of Work, The basics Physics 07 Lecture 16 Lecture 16 Chapter 11 (Work) v Eploy conservative and non-conservative forces v Relate force to potential energy v Use the concept of power (i.e., energy per tie) Chapter 1 v Define

More information

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015 Physics 2210 Fall 2015 sartphysics 20 Conservation of Angular Moentu 21 Siple Haronic Motion 11/23/2015 Exa 4: sartphysics units 14-20 Midter Exa 2: Day: Fri Dec. 04, 2015 Tie: regular class tie Section

More information

PHYSICS 2210 Fall Exam 4 Review 12/02/2015

PHYSICS 2210 Fall Exam 4 Review 12/02/2015 PHYSICS 10 Fall 015 Exa 4 Review 1/0/015 (yf09-049) A thin, light wire is wrapped around the ri of a unifor disk of radius R=0.80, as shown. The disk rotates without friction about a stationary horizontal

More information

Common Exam 2 Physics 111 Fall 2006 Name A

Common Exam 2 Physics 111 Fall 2006 Name A Coon Ea Physics Fall 006 Nae A Total Nuber of Points is 5 (Multiple Choice and Worout Probles). Multiple Choice Probles are Point per Question..) A toy car oving at constant speed copletes one lap around

More information

Physics Circular Motion: Energy and Momentum Conservation. Science and Mathematics Education Research Group

Physics Circular Motion: Energy and Momentum Conservation. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Departent of Curriculu and Pedagogy Physics Circular Motion: Energy and Moentu Conservation Science and Matheatics Education Research Group Supported

More information

Momentum Practice Test

Momentum Practice Test Momentum Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following equations can be used to directly calculate an object s momentum,

More information

Impulse/Momentum And Its Conservation

Impulse/Momentum And Its Conservation Impulse/Momentum And Its Conservation Which is easier to stop? Truck, car, bowling ball, or baseball all moving at 30 mph. Baseball -it is the least massive. Baseball at 30 mph or a baseball at 90 mph.

More information

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard.

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard. MOMENTUM The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard General Physics How hard would a puck have to be shot to be able to knock

More information

Name: Class: Date: p 1 = p 2. Given m = 0.15 kg v i = 5.0 m/s v f = 3.0 m/s Solution

Name: Class: Date: p 1 = p 2. Given m = 0.15 kg v i = 5.0 m/s v f = 3.0 m/s Solution Assessment Chapter Test A Teacher Notes and Answers Momentum and Collisions CHAPTER TEST A (GENERAL) 1. c 2. c 3. b 4. c 5. a p i = 4.0 kg m/s p f = 4.0 kg m/s p = p f p i = ( 4.0 kg m/s) 4.0 kg m/s =

More information

One Dimensional Collisions

One Dimensional Collisions One Diensional Collisions These notes will discuss a few different cases of collisions in one diension, arying the relatie ass of the objects and considering particular cases of who s oing. Along the way,

More information

Name: Partner(s): Date: Angular Momentum

Name: Partner(s): Date: Angular Momentum Nae: Partner(s): Date: Angular Moentu 1. Purpose: In this lab, you will use the principle of conservation of angular oentu to easure the oent of inertia of various objects. Additionally, you develop a

More information

Momentum. Conservation of Linear Momentum. Slide 1 / 140 Slide 2 / 140. Slide 3 / 140. Slide 4 / 140. Slide 6 / 140. Slide 5 / 140.

Momentum. Conservation of Linear Momentum. Slide 1 / 140 Slide 2 / 140. Slide 3 / 140. Slide 4 / 140. Slide 6 / 140. Slide 5 / 140. Slide 1 / 140 Slide 2 / 140 Moentu www.njctl.org Slide 3 / 140 Slide 4 / 140 Table of Contents Click on the topic to go to that section Conservation of Linear Moentu Ipulse - Moentu Equation Collisions

More information

Momentum. Conservation of Linear Momentum. Slide 1 / 140 Slide 2 / 140. Slide 3 / 140. Slide 4 / 140. Slide 6 / 140. Slide 5 / 140.

Momentum. Conservation of Linear Momentum. Slide 1 / 140 Slide 2 / 140. Slide 3 / 140. Slide 4 / 140. Slide 6 / 140. Slide 5 / 140. Slide 1 / 140 Slide 2 / 140 Moentu www.njctl.org Slide 3 / 140 Slide 4 / 140 Table of Contents Click on the topic to go to that section Conservation of Linear Moentu Ipulse - Moentu Equation Collisions

More information

Chapter 7- Linear Momentum

Chapter 7- Linear Momentum Chapter 7- Linear Momentum Old assignments and midterm exams (solutions have been posted on the web) can be picked up in my office (LB-212) All marks, including assignments, have been posted on the web.

More information

Block 7-Momentum and Collision Day 1 odd 11/18 even 11/19 Day 2 odd 11/20 even 11/30 Day 3 odd 12/1 even 12/2 Day 4 odd 12/3 even 12/4 Due Day

Block 7-Momentum and Collision Day 1 odd 11/18 even 11/19 Day 2 odd 11/20 even 11/30 Day 3 odd 12/1 even 12/2 Day 4 odd 12/3 even 12/4 Due Day Block 7-Momentum and Collision Day 1 odd 11/18 even 11/19 Day 2 odd 11/20 even 11/30 Day 3 odd 12/1 even 12/2 Day 4 odd 12/3 even 12/4 Due Day https://www.youtube.com/watch?v=o87qlo3gzma comets asteroids

More information

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard.

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard. MOMENTUM The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard Honors Physics CONSERVATION OF Energy Linear Momentum Angular Momentum Electric

More information

Momentum and Its Relation to Force

Momentum and Its Relation to Force Linear Momentum Momentum and Its Relation to Force The linear momentum, or momentum, of an object is defined as the product of its mass and its velocity. Momentum, p, is a vector and its direction is the

More information

1. A 1,160-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a

1. A 1,160-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a Collisions Worksheet Honors: Name: Date: 1. A 1,160-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a 9,900-kg truck moving in the same direction

More information

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics Lecture 2 Key Concepts Newtonian echanics and relation to Kepler's laws The Virial Theore Tidal forces Collision physics Newton's Laws 1) An object at rest will reain at rest and an object in otion will

More information

,... m n. , m 2. , m 3. 2, r. is called the moment of mass of the particle w.r.t O. and m 2

,... m n. , m 2. , m 3. 2, r. is called the moment of mass of the particle w.r.t O. and m 2 CENTRE OF MASS CENTRE OF MASS Every physical syste has associated with it a certain point whose otion characterises the otion of the whole syste. When the syste oves under soe external forces, then this

More information

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 11 Lecture RANDALL D. KNIGHT Chapter 11 Impulse and Momentum IN THIS CHAPTER, you will learn to use the concepts of impulse and momentum.

More information

On the Mutual Coefficient of Restitution in Two Car Collinear Collisions

On the Mutual Coefficient of Restitution in Two Car Collinear Collisions /4/006 physics/06068 On the Mutual Coefficient of Restitution in Two Car Collinear Collisions Milan Batista University of Ljubljana, Faculty of Maritie Studies and Transportation Pot poorscakov 4, Slovenia,

More information

1 A freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car?

1 A freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car? Slide 1 / 26 1 freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car? 30,000 kg m/s 3,000 kg m/s 300,000 kg m/s

More information

PSI AP Physics I Momentum

PSI AP Physics I Momentum PSI AP Physics I Momentum Multiple-Choice questions 1. A truck moves along a frictionless level road at a constant speed. The truck is open on top. A large load of gravel is suddenly dumped into the truck.

More information

WYSE Academic Challenge Sectional Physics 2006 Solution Set

WYSE Academic Challenge Sectional Physics 2006 Solution Set WYSE Acadeic Challenge Sectional Physics 6 Solution Set. Correct answer: d. Using Newton s nd Law: r r F 6.N a.kg 6./s.. Correct answer: c. 6. sin θ 98. 3. Correct answer: b. o 37.8 98. N 6. N Using Newton

More information

The total momentum in any closed system will remain constant.

The total momentum in any closed system will remain constant. The total momentum in any closed system will remain constant. When two or more objects collide, the collision does not change the total momentum of the two objects. Whatever momentum is lost by one object

More information

Page 1. t F t m v. N s kg s. J F t SPH4U. From Newton Two New Concepts Impulse & Momentum. Agenda

Page 1. t F t m v. N s kg s. J F t SPH4U. From Newton Two New Concepts Impulse & Momentum. Agenda SPH4U Agenda Fro Newton Two New Concepts Ipulse & oentu Ipulse Collisions: you gotta consere oentu! elastic or inelastic (energy consering or not) Inelastic collisions in one diension and in two diensions

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PH105-007 Exam 2 VERSION A Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 1.0-kg block and a 2.0-kg block are pressed together on a horizontal

More information

increases. In part (b) the impulse and initial momentum are in opposite directions and the velocity decreases.

increases. In part (b) the impulse and initial momentum are in opposite directions and the velocity decreases. 8IDENTIFY and SET U: p = K = EXECUTE: (a) 5 p = (, kg)( /s) = kg /s 5 p kg /s (b) (i) = = = 6 /s (ii) kg =, so T T SUV SUV, kg ( /s) 68 /s T SUV = T = = SUV kg EVALUATE:The SUV ust hae less speed to hae

More information

PS 11 GeneralPhysics I for the Life Sciences

PS 11 GeneralPhysics I for the Life Sciences PS GeneralPhysics I for the Life Sciences W O R K N D E N E R G Y D R. E N J M I N C H N S S O C I T E P R O F E S S O R P H Y S I C S D E P R T M E N T J N U R Y 0 4 Questions and Probles for Conteplation

More information

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change 1. A car of mass m, traveling at speed v, stops in time t when maximum braking force is applied. Assuming the braking force is independent of mass, what time would be required to stop a car of mass m traveling

More information

Massachusetts Institute of Technology Quantum Mechanics I (8.04) Spring 2005 Solutions to Problem Set 4

Massachusetts Institute of Technology Quantum Mechanics I (8.04) Spring 2005 Solutions to Problem Set 4 Massachusetts Institute of Technology Quantu Mechanics I (8.04) Spring 2005 Solutions to Proble Set 4 By Kit Matan 1. X-ray production. (5 points) Calculate the short-wavelength liit for X-rays produced

More information

UNIT 2 REVIEW. (Pages ) mv = 2 2 mv = p =

UNIT 2 REVIEW. (Pages ) mv = 2 2 mv = p = UNI REVIEW (Pages 07 Understanding Concepts. One situation is a person carrying a book at a constant height across a level floor. A satellite in circular orbit or pushing on a brick wall are two other

More information

p = mv and its units are kg m/s or N.s Momentum is a vector quantity that has the same direction as the velocity

p = mv and its units are kg m/s or N.s Momentum is a vector quantity that has the same direction as the velocity Physics Notes Ch. 6 Momentum and Collisions I. Momentum - inertia in motion equal to mass times velocity Momentum describes a given object s motion Q: So can a company truly have momentum like my investment

More information

1 kg. 10,000 kg. 1 Page. Momentum is a vector so it has a magnitude and a velocity. Its magnitude is the product of its mass and velocity, p = mv.

1 kg. 10,000 kg. 1 Page. Momentum is a vector so it has a magnitude and a velocity. Its magnitude is the product of its mass and velocity, p = mv. Momentum The momentum of a single object is simply equal to the product of its mass and its velocity. The symbol for momentum is p. Since mass is a scalar and velocity is a vector, momentum is also a vector.

More information

Conservation of Momentum. The total momentum of a closed, isolated system does not change.

Conservation of Momentum. The total momentum of a closed, isolated system does not change. Conservation of Momentum In the 17 th century, Newton and others had measured the momentum of colliding objects before and after collision, and had discovered a strange phenomenon: the total momentum of

More information

Physics. Impulse & Momentum

Physics. Impulse & Momentum Physics Impulse & Momentum Warm up - Write down everything you know about impulse and momentum. Objectives Students will learn the definitions and equations for impulse, momentum, elastic and inelastic

More information

Physics 131: Lecture 15. Today s Agenda

Physics 131: Lecture 15. Today s Agenda Physics 131: Lecture 15 Today s Agenda Impulse and Momentum (or the chapter where physicists run out of letters) Non-constant t forces Impulse-momentum thm Conservation of Linear momentum External/Internal

More information