We last left off by talking about how the area under a force vs. time curve is impulse.

Size: px
Start display at page:

Download "We last left off by talking about how the area under a force vs. time curve is impulse."

Transcription

1 Lecture 11 Ipulse and Moentu We last left off by talking about how the area under a force vs. tie curve is ipulse. Recall that for our golf ball we had a strongly peaked force curve: F F avg t You have to have a changing force because as you initiate contact, you have a rapid increase and as you take the club away, you lose that contact. If we find the ipulse (Δp), what we ve found is the area under the F avg curve since ipulse Δp F avg Δt. So now that we know all about ipulse, we can talk about conservation of oentu. Reeber that conservation eans initial final. Recall that we did a specific exaple where ass was conserved. Let s look at a situation where we have a collision. Collisions are the archetypal situation for studying oentu. We have two balls of equal ass, one oving toward the other at rest. The initial oentu of this syste is easy. It s the oentu of ball 1. Now consider the final oentu. Ball 1 strikes ball 2 and it shoots off with a lot of oentu while ball 1 oves with just a little oentu. So the final oentu is the addition of these two. In this way we can see the initial and final oentu atch. It is just a atter of how the coponents of the syste share the oentu. So how do we justify this conservation. It s not exactly an obvious conclusion. We can start fro Newton s Second Law: a "v v f # v i p f # p i "p "p

2 Fro here we can ask the question, what happens when 0? "p 0 # "p 0,so p f p i The significance of this is that when there is no net external force in a syste, oentu is conserved. Now let s do an exaple to clarify soe of the details. We take a syste of two blocks separated by a spring. 1 2 If we allow the spring to expand and push the blocks away fro one another we can use the conservation of oentu to analyze the syste. The spring force is an internal force to the syste (no external forces, like friction), so we can say that 0, and hence, Δp 0. We then define our initial and final conditions. Initially, the syste is at rest. In the final state you have two separate contributions to the oentu, p 1 and p 2. Now, let s assign soe quantities to the proble. Let 1 1.0kg and 2 2.0kg. If 1 has a velocity of 1.8 /s to the left, what is the velocity of 2? Because the only force acting in this proble is the spring which is internal to the syste we can eploy conservation of oentu. Recall that we can use the conservation of oentu since there are no external forces (i.e. friction). "P 0 p 1 p 2 P i P f 0 p 2 # p 1 p 2 p 1 2 v 2 1 v 1 v 2 1 v 1 2 (1.0kg)(1.8 /s) (2.0kg) 0.9 /s, to the right

3 Another good exaple to try: A 2000 kg car is traveling north at 15 /s when it overtakes and crashes into a 5000 kg truck also traveling north and oving with a speed of 10 /s. Find the velocity of the cobined wreckage the instant after the collision. Initially we have the oentu of the car and truck separately. In the final state we have the collective velocity of the car and truck stuck to each other. P i p car + p truck P f p car+truck Since there are no external forces (the forces of the car crashing into the truck are internal) ΔP 0, so P i P f Pi car v car + truck v truck Pf ( car + truck )V car v car + truck v truck ( car + truck )V V ( car v car + truck v truck )/( car + truck ) ( )/(7000) 11.4 /s This has the right units, and it also falls between 10/s and 15/s. A 10g bullet is fired into a 1kg wood block, where it lodges. Subsequently, the block slides 4.00 across a wood floor (µ k 0.2 for wood on wood). What was the bullet s speed? First we need to define our initial and final conditions: Initially we have the bullet oving and the block at rest: B v B M 1kg V P i p bullet P f P block+bullet ΔP 0 since there are no external forces.

4 P i P f p bullet p block +bullet v (M + )V v (M + )V We have all the asses, but we don t know the velocity of the ass+block syste. So we have to go back to our kineatics equations. We can list our knowns and unknowns:? v f 0 Δx 4.0 a? But we can find a using Newton s Second Law! a We should go ahead and ake a free body diagra: ( ) x " f a x f µn f N W # "µn a x ( ) y N " W a y 0 N W g a x " f " µg "µg "0.2(9.8) 1.96 "2.0/ s2 Now we can go back to find the velocity using kineatic equations:

5 v a"x v 2 # 2a"x 0 # (2)(#2 /s 2 )(4.0) 4 /s Now recall the original solution we cae up with for the bullet: v v (M + )V (1kg +.01kg)(4 /s) (.01kg) 404 /s

CHAPTER 7: Linear Momentum

CHAPTER 7: Linear Momentum CHAPTER 7: Linear Moentu Solution Guide to WebAssign Probles 7.1 [1] p v ( 0.08 kg) ( 8.4 s) 0.4 kg s 7. [] Fro Newton s second law, p Ft. For a constant ass object, p v. Equate the two expression for

More information

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant Chapter 7 Ipulse and Moentu So far we considered only constant force/s BUT There are any situations when the force on an object is not constant Force varies with tie 7. The Ipulse-Moentu Theore DEFINITION

More information

Physics Chapter 6. Momentum and Its Conservation

Physics Chapter 6. Momentum and Its Conservation Physics Chapter 6 Moentu and Its Conservation Linear Moentu The velocity and ass of an object deterine what is needed to change its otion. Linear Moentu (ρ) is the product of ass and velocity ρ =v Unit

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Ipulse and Moentu 7. The Ipulse-Moentu Theore 7. The Ipulse-Moentu Theore There are any situations when the force on an object is not constant. 7. The Ipulse-Moentu Theore DEFINITION OF IMPULSE

More information

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant Chapter 7 Ipulse and Moentu So far we considered only constant force/s BUT There are any situations when the force on an object is not constant JUST IN TIME TEACHING E-ail or bring e your questions prior

More information

Today s s topics are: Collisions and Momentum Conservation. Momentum Conservation

Today s s topics are: Collisions and Momentum Conservation. Momentum Conservation Today s s topics are: Collisions and P (&E) Conservation Ipulsive Force Energy Conservation How can we treat such an ipulsive force? Energy Conservation Ipulsive Force and Ipulse [Exaple] an ipulsive force

More information

Applied Physics I (Phys 182)

Applied Physics I (Phys 182) Applied Physics I (Phys 182) Dr. Joseph J. Trout E-ail: joseph.trout@drexel.edu Cell: (610)348-6495 Office: Disque 902 1 Moentu Ipulse Conservation of Moentu Explosions Inelastic Collisions Elastic Collisions

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Ipulse and Moentu 7. The Ipulse-Moentu Theore There are any situations when the force on an object is not constant. 7. The Ipulse-Moentu Theore DEFINITION OF IMPULSE The ipulse of a force is

More information

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10 There are 10 ultiple choice questions. Select the correct answer for each one and ark it on the bubble for on the cover sheet. Each question has only one correct answer. (2 arks each) 1. An inertial reference

More information

Conservation of Momentum

Conservation of Momentum Conseration of Moentu We left off last with the idea that when one object () exerts an ipulse onto another (), exerts an equal and opposite ipulse onto. This happens in the case of a classic collision,

More information

Page 1. Physics 131: Lecture 16. Today s Agenda. Collisions. Elastic Collision

Page 1. Physics 131: Lecture 16. Today s Agenda. Collisions. Elastic Collision Physics 131: Lecture 16 Today s Agenda Elastic Collisions Definition Exaples Work and Energy Definition of work Exaples Physics 01: Lecture 10, Pg 1 Collisions Moentu is alost always consered during as

More information

26 Impulse and Momentum

26 Impulse and Momentum 6 Ipulse and Moentu First, a Few More Words on Work and Energy, for Coparison Purposes Iagine a gigantic air hockey table with a whole bunch of pucks of various asses, none of which experiences any friction

More information

Momentum. February 15, Table of Contents. Momentum Defined. Momentum Defined. p =mv. SI Unit for Momentum. Momentum is a Vector Quantity.

Momentum. February 15, Table of Contents. Momentum Defined. Momentum Defined. p =mv. SI Unit for Momentum. Momentum is a Vector Quantity. Table of Contents Click on the topic to go to that section Moentu Ipulse-Moentu Equation The Moentu of a Syste of Objects Conservation of Moentu Types of Collisions Collisions in Two Diensions Moentu Return

More information

CHAPTER 1 MOTION & MOMENTUM

CHAPTER 1 MOTION & MOMENTUM CHAPTER 1 MOTION & MOMENTUM SECTION 1 WHAT IS MOTION? All atter is constantly in MOTION Motion involves a CHANGE in position. An object changes position relative to a REFERENCE POINT. DISTANCE is the total

More information

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015 Physics 2210 Fall 2015 sartphysics 20 Conservation of Angular Moentu 21 Siple Haronic Motion 11/23/2015 Exa 4: sartphysics units 14-20 Midter Exa 2: Day: Fri Dec. 04, 2015 Tie: regular class tie Section

More information

Physics 201, Lecture 15

Physics 201, Lecture 15 Physics 0, Lecture 5 Today s Topics q More on Linear Moentu And Collisions Elastic and Perfect Inelastic Collision (D) Two Diensional Elastic Collisions Exercise: Billiards Board Explosion q Multi-Particle

More information

Definition of Work, The basics

Definition of Work, The basics Physics 07 Lecture 16 Lecture 16 Chapter 11 (Work) v Eploy conservative and non-conservative forces v Relate force to potential energy v Use the concept of power (i.e., energy per tie) Chapter 1 v Define

More information

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K affan_414@live.co https://prootephysics.wordpress.co [MOTION] CHAPTER NO. 3 In this chapter we are going to discuss otion in one diension in which we

More information

Description: Conceptual: A bullet embeds in a stationary, frictionless block: type of collision? what is conserved? v_final?

Description: Conceptual: A bullet embeds in a stationary, frictionless block: type of collision? what is conserved? v_final? Chapter 8 [ Edit ] Overview Suary View Diagnostics View Print View with Answers Chapter 8 Due: 11:59p on Sunday, October 23, 2016 To understand how points are awarded, read the Grading Policy for this

More information

Lesson 24: Newton's Second Law (Motion)

Lesson 24: Newton's Second Law (Motion) Lesson 24: Newton's Second Law (Motion) To really appreciate Newton s Laws, it soeties helps to see how they build on each other. The First Law describes what will happen if there is no net force. The

More information

Momentum, p = m v. Collisions and Work(L8) Crash! Momentum and Collisions. Conservation of Momentum. elastic collisions

Momentum, p = m v. Collisions and Work(L8) Crash! Momentum and Collisions. Conservation of Momentum. elastic collisions Collisions and Work(L8) Crash! collisions can be ery coplicated two objects bang into each other and exert strong forces oer short tie interals fortunately, een though we usually do not know the details

More information

General Physics I Momentum

General Physics I Momentum General Physics I Momentum Linear Momentum: Definition: For a single particle, the momentum p is defined as: p = mv (p is a vector since v is a vector). So p x = mv x etc. Units of linear momentum are

More information

Chapter 8. Momentum, Impulse and Collisions. 10/22/14 Physics 218

Chapter 8. Momentum, Impulse and Collisions. 10/22/14 Physics 218 Chapter 8 Moentu, Ipulse and Collisions 0//4 Physics 8 Learning Goals n n n n n n The eaning of the oentu of a particle(syste) and how the ipulse of the net force acting on a particle causes the oentu

More information

CHAPTER 7 TEST REVIEW -- MARKSCHEME

CHAPTER 7 TEST REVIEW -- MARKSCHEME AP PHYSICS Nae: Period: Date: Points: 53 Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response

More information

PS 11 GeneralPhysics I for the Life Sciences

PS 11 GeneralPhysics I for the Life Sciences PS GeneralPhysics I for the Life Sciences W O R K N D E N E R G Y D R. E N J M I N C H N S S O C I T E P R O F E S S O R P H Y S I C S D E P R T M E N T J N U R Y 0 4 Questions and Probles for Conteplation

More information

Elastic Force: A Force Balance: Elastic & Gravitational Force: Force Example: Determining Spring Constant. Some Other Forces

Elastic Force: A Force Balance: Elastic & Gravitational Force: Force Example: Determining Spring Constant. Some Other Forces Energy Balance, Units & Proble Solving: Mechanical Energy Balance ABET Course Outcoes: 1. solve and docuent the solution of probles involving eleents or configurations not previously encountered (e) (e.g.

More information

PHYSICS - CLUTCH CH 05: FRICTION, INCLINES, SYSTEMS.

PHYSICS - CLUTCH CH 05: FRICTION, INCLINES, SYSTEMS. !! www.clutchprep.co INTRO TO FRICTION Friction happens when two surfaces are in contact f = μ =. KINETIC FRICTION (v 0 *): STATIC FRICTION (v 0 *): - Happens when ANY object slides/skids/slips. * = Point

More information

Test, Lesson 4 Energy-Work-Power- Answer Key Page 1

Test, Lesson 4 Energy-Work-Power- Answer Key Page 1 Test, Lesson 4 Energy-Work-Power- Answer Key Page 1 1. What is the axial height for the ond hup on a roller coaster if the roller coaster is traveling at 108 k just before hr clibing the ond hup? The ond

More information

Momentum, p. Crash! Collisions (L8) Momentum is conserved. Football provides many collision examples to think about!

Momentum, p. Crash! Collisions (L8) Momentum is conserved. Football provides many collision examples to think about! Collisions (L8) Crash! collisions can be ery coplicated two objects bang into each other and exert strong forces oer short tie interals fortunately, een though we usually do not know the details of the

More information

increases. In part (b) the impulse and initial momentum are in opposite directions and the velocity decreases.

increases. In part (b) the impulse and initial momentum are in opposite directions and the velocity decreases. 8IDENTIFY and SET U: p = K = EXECUTE: (a) 5 p = (, kg)( /s) = kg /s 5 p kg /s (b) (i) = = = 6 /s (ii) kg =, so T T SUV SUV, kg ( /s) 68 /s T SUV = T = = SUV kg EVALUATE:The SUV ust hae less speed to hae

More information

Momentum. Conservation of Linear Momentum. Slide 1 / 140 Slide 2 / 140. Slide 3 / 140. Slide 4 / 140. Slide 6 / 140. Slide 5 / 140.

Momentum. Conservation of Linear Momentum. Slide 1 / 140 Slide 2 / 140. Slide 3 / 140. Slide 4 / 140. Slide 6 / 140. Slide 5 / 140. Slide 1 / 140 Slide 2 / 140 Moentu www.njctl.org Slide 3 / 140 Slide 4 / 140 Table of Contents Click on the topic to go to that section Conservation of Linear Moentu Ipulse - Moentu Equation Collisions

More information

the static friction is replaced by kinetic friction. There is a net force F net = F push f k in the direction of F push.

the static friction is replaced by kinetic friction. There is a net force F net = F push f k in the direction of F push. the static friction is replaced by kinetic friction. There is a net force F net = F push f k in the direction of F push. Exaple of kinetic friction. Force diagra for kinetic friction. Again, we find that

More information

For a situation involving gravity near earth s surface, a = g = jg. Show. that for that case v 2 = v 0 2 g(y y 0 ).

For a situation involving gravity near earth s surface, a = g = jg. Show. that for that case v 2 = v 0 2 g(y y 0 ). Reading: Energy 1, 2. Key concepts: Scalar products, work, kinetic energy, work-energy theore; potential energy, total energy, conservation of echanical energy, equilibriu and turning points. 1.! In 1-D

More information

Phys101 Lectures 13, 14 Momentum and Collisions

Phys101 Lectures 13, 14 Momentum and Collisions Phs0 Lectures 3, 4 Moentu and ollisions Ke points: Moentu and ipulse ondition for conservation of oentu and wh How to solve collision probles entre of ass Ref: 7-,,3,4,5,6,7,8,9,0. Page Moentu is a vector:

More information

Momentum. Momentum. Momentum. January 25, momentum presentation Table of Contents. Momentum Defined. Grade:«grade»

Momentum. Momentum. Momentum. January 25, momentum presentation Table of Contents. Momentum Defined. Grade:«grade» oentu presentation 2016 New Jersey Center for Teaching and Learning Progressive Science Initiative This aterial is ade freely available at wwwnjctlorg and is intended for the non coercial use of students

More information

6.1 Momentum and Impulse A. What is momentum? Newton defined momentum as the quantity of motion

6.1 Momentum and Impulse A. What is momentum? Newton defined momentum as the quantity of motion AP Physics Mechanics Chapter 6 Momentum and Collisions Text chapter 6 - Reading pp. 141-161 - textbook HW -- #1,3,4,6,9,15,16,20,21,23,26,27,25,34,63,70,71 1 6.1 Momentum and Impulse A. What is momentum?

More information

F = 0. x o F = -k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = -k x 1. PHYSICS 151 Notes for Online Lecture 2.4.

F = 0. x o F = -k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = -k x 1. PHYSICS 151 Notes for Online Lecture 2.4. PHYSICS 151 Notes for Online Lecture.4 Springs, Strings, Pulleys, and Connected Objects Hook s Law F = 0 F = -k x 1 x = 0 x = x 1 Let s start with a horizontal spring, resting on a frictionless table.

More information

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 11 Lecture RANDALL D. KNIGHT Chapter 11 Impulse and Momentum IN THIS CHAPTER, you will learn to use the concepts of impulse and momentum.

More information

3. In the figure below, the coefficient of friction between the center mass and the surface is

3. In the figure below, the coefficient of friction between the center mass and the surface is Physics 04A Exa October 9, 05 Short-answer probles: Do any seven probles in your exa book. Start each proble on a new page and and clearly indicate the proble nuber for each. If you attept ore than seven

More information

Page 1. t F t m v. N s kg s. J F t SPH4U. From Newton Two New Concepts Impulse & Momentum. Agenda

Page 1. t F t m v. N s kg s. J F t SPH4U. From Newton Two New Concepts Impulse & Momentum. Agenda SPH4U Agenda Fro Newton Two New Concepts Ipulse & oentu Ipulse Collisions: you gotta consere oentu! elastic or inelastic (energy consering or not) Inelastic collisions in one diension and in two diensions

More information

Momentum. Conservation of Linear Momentum. Slide 1 / 140 Slide 2 / 140. Slide 3 / 140. Slide 4 / 140. Slide 6 / 140. Slide 5 / 140.

Momentum. Conservation of Linear Momentum. Slide 1 / 140 Slide 2 / 140. Slide 3 / 140. Slide 4 / 140. Slide 6 / 140. Slide 5 / 140. Slide 1 / 140 Slide 2 / 140 Moentu www.njctl.org Slide 3 / 140 Slide 4 / 140 Table of Contents Click on the topic to go to that section Conservation of Linear Moentu Ipulse - Moentu Equation Collisions

More information

Relativity and Astrophysics Lecture 25 Terry Herter. Momenergy Momentum-energy 4-vector Magnitude & components Invariance Low velocity limit

Relativity and Astrophysics Lecture 25 Terry Herter. Momenergy Momentum-energy 4-vector Magnitude & components Invariance Low velocity limit Mo Mo Relativity and Astrophysics Lecture 5 Terry Herter Outline Mo Moentu- 4-vector Magnitude & coponents Invariance Low velocity liit Concept Suary Reading Spacetie Physics: Chapter 7 Hoework: (due Wed.

More information

Physics 30 Lesson 3 Impulse and Change in Momentum

Physics 30 Lesson 3 Impulse and Change in Momentum Phyic 30 Leon 3 Ipule and Change in Moentu I. Ipule and change in oentu According to Newton nd Law of Motion (Phyic Principle 1 on the Data Sheet), to change the otion (i.e. oentu) of an object an unbalanced

More information

PHYSICS 2210 Fall Exam 4 Review 12/02/2015

PHYSICS 2210 Fall Exam 4 Review 12/02/2015 PHYSICS 10 Fall 015 Exa 4 Review 1/0/015 (yf09-049) A thin, light wire is wrapped around the ri of a unifor disk of radius R=0.80, as shown. The disk rotates without friction about a stationary horizontal

More information

1. A 1,160-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a

1. A 1,160-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a Collisions Worksheet Honors: Name: Date: 1. A 1,160-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a 9,900-kg truck moving in the same direction

More information

Physically Based Modeling CS Notes Spring 1997 Particle Collision and Contact

Physically Based Modeling CS Notes Spring 1997 Particle Collision and Contact Physically Based Modeling CS 15-863 Notes Spring 1997 Particle Collision and Contact 1 Collisions with Springs Suppose we wanted to ipleent a particle siulator with a floor : a solid horizontal plane which

More information

UNIT HOMEWORK MOMENTUM ANSWER KEY

UNIT HOMEWORK MOMENTUM ANSWER KEY UNIT HOMEWORK MOMENTUM ANSWER KEY MOMENTUM FORMULA & STUFF FROM THE PAST: p = v, TKE = ½v 2, d = v t 1. An ostrich with a ass of 146 kg is running to the right with a velocity of 17 /s. a. Calculate the

More information

Physics 120 Final Examination

Physics 120 Final Examination Physics 120 Final Exaination 12 August, 1998 Nae Tie: 3 hours Signature Calculator and one forula sheet allowed Student nuber Show coplete solutions to questions 3 to 8. This exaination has 8 questions.

More information

AP Physics Momentum Practice Test. Answers: A,E,E,A,E,B,D,C,B,A,B,E,D,C 16.(a)5450,5650 (b)2.25e7 (c)3 (d)1.5e7 17.(a)9 (b)2 (c)1.5 (d) (e).

AP Physics Momentum Practice Test. Answers: A,E,E,A,E,B,D,C,B,A,B,E,D,C 16.(a)5450,5650 (b)2.25e7 (c)3 (d)1.5e7 17.(a)9 (b)2 (c)1.5 (d) (e). AP Physics Momentum Practice Test Answers: A,E,E,A,E,B,D,C,B,A,B,E,D,C 16.(a)5450,5650 (b).5e7 (c)3 (d)1.5e7 17.(a)9 (b) (c)1.5 (d)-4.75 (e).65 For multiple choice ( points) write the CAPITAL letter of

More information

Chapter 9 Centre of Mass and Linear Momentum

Chapter 9 Centre of Mass and Linear Momentum Chater 9 Centre o Mass and Linear Moentu Centre o ass o a syste o articles / objects Linear oentu Linear oentu o a syste o articles Newton s nd law or a syste o articles Conseration o oentu Elastic and

More information

Physics 231 Lecture 13

Physics 231 Lecture 13 Physics 3 Lecture 3 Mi Main points it o td today s lecture: Elastic collisions in one diension: ( ) v = v0 + v0 + + ( ) v = v0 + v0 + + Multiple ipulses and rocket propulsion. F Δ t = Δ v Δ v propellant

More information

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass BALLISTIC PENDULUM INTRODUCTION: In this experient you will use the principles of conservation of oentu and energy to deterine the speed of a horizontally projected ball and use this speed to predict the

More information

Momentum_P2 1 NA 2NA. 3a. [2 marks] A girl on a sledge is moving down a snow slope at a uniform speed.

Momentum_P2 1 NA 2NA. 3a. [2 marks] A girl on a sledge is moving down a snow slope at a uniform speed. Momentum_P2 1 NA 2NA 3a. [2 marks] A girl on a sledge is moving down a snow slope at a uniform speed. Draw the free-body diagram for the sledge at the position shown on the snow slope. 3b. [3 marks] 1

More information

Tactics Box 2.1 Interpreting Position-versus-Time Graphs

Tactics Box 2.1 Interpreting Position-versus-Time Graphs 1D kineatic Retake Assignent Due: 4:32p on Friday, October 31, 2014 You will receive no credit for ites you coplete after the assignent is due. Grading Policy Tactics Box 2.1 Interpreting Position-versus-Tie

More information

Physics 204A FINAL EXAM Chapters 1-14 Spring 2006

Physics 204A FINAL EXAM Chapters 1-14 Spring 2006 Nae: Solve the following probles in the space provided Use the back of the page if needed Each proble is worth 0 points You ust show your work in a logical fashion starting with the correctly applied physical

More information

= 1.49 m/s m. 2 kg. 2 kg

= 1.49 m/s m. 2 kg. 2 kg 5.6. Visualize: Please refer to Figure Ex5.6. Solve: For the diagra on the left, three of the vectors lie along the axes of the tilted coordinate sste. Notice that the angle between the 3 N force and the

More information

Chapter 9. Momentum. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc.

Chapter 9. Momentum. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc. Chapter 9 Momentum PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 9 Momentum Slide 9-2 Slide 9-3 Slide 9-4 Reading Quiz 1. Impulse is A. a force that is applied at a random

More information

5.1 m is therefore the maximum height of the ball above the window. This is 25.1 m above the ground. (b)

5.1 m is therefore the maximum height of the ball above the window. This is 25.1 m above the ground. (b) .6. Model: This is a case of free fall, so the su of the kinetic and gravitational potential energy does not change as the ball rises and falls. The figure shows a ball s before-and-after pictorial representation

More information

Chapter 5, Conceptual Questions

Chapter 5, Conceptual Questions Chapter 5, Conceptual Questions 5.1. Two forces are present, tension T in the cable and gravitational force 5.. F G as seen in the figure. Four forces act on the block: the push of the spring F, sp gravitational

More information

UNIT 2 REVIEW. (Pages ) mv = 2 2 mv = p =

UNIT 2 REVIEW. (Pages ) mv = 2 2 mv = p = UNI REVIEW (Pages 07 Understanding Concepts. One situation is a person carrying a book at a constant height across a level floor. A satellite in circular orbit or pushing on a brick wall are two other

More information

One Dimensional Collisions

One Dimensional Collisions One Diensional Collisions These notes will discuss a few different cases of collisions in one diension, arying the relatie ass of the objects and considering particular cases of who s oing. Along the way,

More information

PHYS 107 Practice Final Test Fall 2018

PHYS 107 Practice Final Test Fall 2018 The actual test contains 10 ultiple choice questions and 2 probles. However, for extra exercise, this practice test includes 20 questions and 5 probles. Questions: N.B. Make sure that you justify your

More information

Review: Relativistic mechanics. Announcements. Relativistic kinetic energy. Kinetic energy. E tot = γmc 2 = K + mc 2. K = γmc 2 - mc 2 = (γ-1)mc 2

Review: Relativistic mechanics. Announcements. Relativistic kinetic energy. Kinetic energy. E tot = γmc 2 = K + mc 2. K = γmc 2 - mc 2 = (γ-1)mc 2 Announceents Reading for Monday: Chapters 3.7-3.12 Review session for the idter: in class on Wed. HW 4 due Wed. Exa 1 in 6 days. It covers Chapters 1 & 2. Roo: G1B30 (next to this classroo). Review: Relativistic

More information

Physics 11 HW #7 Solutions

Physics 11 HW #7 Solutions hysics HW #7 Solutions Chapter 7: Focus On Concepts: 2, 6, 0, 3 robles: 8, 7, 2, 22, 32, 53, 56, 57 Focus On Concepts 7-2 (d) Moentu is a ector quantity that has a agnitude and a direction. The agnitudes

More information

Common Exam 2 Physics 111 Fall 2006 Name A

Common Exam 2 Physics 111 Fall 2006 Name A Coon Ea Physics Fall 006 Nae A Total Nuber of Points is 5 (Multiple Choice and Worout Probles). Multiple Choice Probles are Point per Question..) A toy car oving at constant speed copletes one lap around

More information

(k = force constant of the spring)

(k = force constant of the spring) Lecture 10: Potential Energy, Momentum and Collisions 1 Chapter 7: Conservation of Mechanical Energy in Spring Problems The principle of conservation of Mechanical Energy can also be applied to systems

More information

Chapter 9. 9 Momentum. Momentum. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc.

Chapter 9. 9 Momentum. Momentum. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc. Chapter 9 Momentum PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 9 Momentum Slide 9-2 Slide 9-3 1 Slide 9-4 Reading Quiz 1. Impulse is A. a force that is applied at a random

More information

Chapter 10 Atmospheric Forces & Winds

Chapter 10 Atmospheric Forces & Winds Chapter 10 Atospheric Forces & Winds Chapter overview: Atospheric Pressure o Horizontal pressure variations o Station vs sea level pressure Winds and weather aps Newton s 2 nd Law Horizontal Forces o Pressure

More information

15 Newton s Laws #2: Kinds of Forces, Creating Free Body Diagrams

15 Newton s Laws #2: Kinds of Forces, Creating Free Body Diagrams Chapter 15 ewton s Laws #2: inds of s, Creating ree Body Diagras 15 ewton s Laws #2: inds of s, Creating ree Body Diagras re is no force of otion acting on an object. Once you have the force or forces

More information

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40%

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40% NAME NUMER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002 PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2.5 Q1 ( ) 2 Q2 Q3 Total 40% Use the followings: Magnitude of acceleration due to gravity

More information

Kinetics of Rigid (Planar) Bodies

Kinetics of Rigid (Planar) Bodies Kinetics of Rigi (Planar) Boies Types of otion Rectilinear translation Curvilinear translation Rotation about a fixe point eneral planar otion Kinetics of a Syste of Particles The center of ass for a syste

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Applications

More information

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016 NB1140: Physics 1A - Classical echanics and Therodynaics Proble set 2 - Forces and energy Week 2: 21-25 Noveber 2016 Proble 1. Why force is transitted uniforly through a assless string, a assless spring,

More information

2015 AQA A Level Physics. Momentum and collisions

2015 AQA A Level Physics. Momentum and collisions 2015 AQA A Level Physics Momentum and collisions 9/22/2018 Momentum An object having mass and velocity has MOMENTUM. Momentum (symbol p ) is simply given by the formula: Momentum = Mass x Velocity (in

More information

Per 9 10 Momentum_Presentation.notebook. January 20, Momentum.

Per 9 10 Momentum_Presentation.notebook. January 20, Momentum. Momentum www.njctl.org 1 Momentum Click on the topic to go to that section Momentum Impulse Momentum of a System of Objects Conservation of Momentum Inelastic Collisions and Explosions Elastic Collisions

More information

Lecture 13. Impulse and Linear Momentum. Center of Mass for a system of particles. Momentum Conservation And Collisions. Physics 105 Summer 2006

Lecture 13. Impulse and Linear Momentum. Center of Mass for a system of particles. Momentum Conservation And Collisions. Physics 105 Summer 2006 Lecture 13 Center of Mass for a system of particles 2 bodies, 1 dimension Momentum Conservation And Collisions (HR&W, Chapters 9) http://web.njit.edu/~sirenko/ 0 COM Physics 105 Summer 2006 Lecture 13

More information

Energy and Momentum: The Ballistic Pendulum

Energy and Momentum: The Ballistic Pendulum Physics Departent Handout -10 Energy and Moentu: The Ballistic Pendulu The ballistic pendulu, first described in the id-eighteenth century, applies principles of echanics to the proble of easuring the

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Applications

More information

Physics Circular Motion: Energy and Momentum Conservation. Science and Mathematics Education Research Group

Physics Circular Motion: Energy and Momentum Conservation. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Departent of Curriculu and Pedagogy Physics Circular Motion: Energy and Moentu Conservation Science and Matheatics Education Research Group Supported

More information

October 24. Linear Momentum: - It is a vector which may require breaking it into components

October 24. Linear Momentum: - It is a vector which may require breaking it into components October 24 Linear Momentum: - It is a vector which may require breaking it into components Newton s First Law: A body continues with Constant Linear Momentum unless it is acted upon by a Net External Force.

More information

EN40: Dynamics and Vibrations. Final Examination Monday May : 2pm-5pm

EN40: Dynamics and Vibrations. Final Examination Monday May : 2pm-5pm EN40: Dynaics and Vibrations Final Exaination Monday May 13 013: p-5p School of Engineering Brown University NAME: General Instructions No collaboration of any kind is peritted on this exaination. You

More information

Work, Energy and Momentum

Work, Energy and Momentum Work, Energy and Moentu Work: When a body oves a distance d along straight line, while acted on by a constant force of agnitude F in the sae direction as the otion, the work done by the force is tered

More information

Per 3 4 Momentum_Presentation.notebook. January 23, Momentum.

Per 3 4 Momentum_Presentation.notebook. January 23, Momentum. Momentum www.njctl.org 1 Momentum Click on the topic to go to that section Momentum Impulse Momentum of a System of Objects Conservation of Momentum Inelastic Collisions and Explosions Elastic Collisions

More information

Algebra Based Physics

Algebra Based Physics 1 Algebra Based Physics Momentum 2016 01 20 www.njctl.org 2 Momentum Click on the topic to go to that section Momentum Impulse Momentum of a System of Objects Conservation of Momentum Inelastic Collisions

More information

ma x = -bv x + F rod.

ma x = -bv x + F rod. Notes on Dynaical Systes Dynaics is the study of change. The priary ingredients of a dynaical syste are its state and its rule of change (also soeties called the dynaic). Dynaical systes can be continuous

More information

LECTURE 15. Prof. Paul

LECTURE 15. Prof. Paul LECTURE 15 Prof. Paul Review Clicker Questions: Review Clicker Questions: (You can talk with others) Mark and David are loading identical cement blocks onto a truck. Mark lifts his block straight up from

More information

Chapter 10. Energy and Work. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc.

Chapter 10. Energy and Work. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc. Chapter 10 Energy and Work PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 10 Energy and Work Slide 10-2 Slide 10-3 Slide 10-4 Slide 10-5 Reading Quiz 1. If a system is isolated,

More information

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J AP Physics-B Energy And Its Conservation Introduction: Energy is a term that most of us take for granted and use quite freely. We assume we know what we are talking about when speaking of energy. In truth,

More information

Physics 11 Honours. x-dir px : m1 v1 = (m1 + m2 ) V cos y-dir py : m2 v2 = (m1 + m2 ) V sin A Collision at an Intersection Example 1:

Physics 11 Honours. x-dir px : m1 v1 = (m1 + m2 ) V cos y-dir py : m2 v2 = (m1 + m2 ) V sin A Collision at an Intersection Example 1: Name: Physics 11 Honours Date: Unit 7 Momentum and Its Conservation 7.4 A perfectly inelastic collision in 2-D Consider a collision in 2-D (cars crashing at a slippery intersection...no friction). Because

More information

23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the

23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the 23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the axis. The force varies in magnitude, and the impulse has

More information

Particle Kinetics Homework

Particle Kinetics Homework Chapter 4: article Kinetics Hoework Chapter 4 article Kinetics Hoework Freefor c 2018 4-1 Chapter 4: article Kinetics Hoework 4-2 Freefor c 2018 Chapter 4: article Kinetics Hoework Hoework H.4. Given:

More information

Name Class Date. two objects depends on the masses of the objects.

Name Class Date. two objects depends on the masses of the objects. CHAPTER 12 2 Gravity SECTION Forces KEY IDEAS As you read this section keep these questions in ind: What is free fall? How are weight and ass related? How does gravity affect the otion of objects? What

More information

Linear Momentum. Center of Mass.

Linear Momentum. Center of Mass. Lecture 16 Chapter 9 Physcs I 11.06.2013 Lnear oentu. Center of ass. Course webste: http://faculty.ul.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.ul.edu/danylov2013/physcs1fall.htl

More information

2009 Academic Challenge

2009 Academic Challenge 009 Acadeic Challenge PHYSICS TEST - REGIONAL This Test Consists of 5 Questions Physics Test Production Tea Len Stor, Eastern Illinois University Author/Tea Leader Doug Brandt, Eastern Illinois University

More information

Momentum and Collisions

Momentum and Collisions Momentum and Collisions Objectives: You Should Be Able To: Define and give examples of impulse and momentum along with appropriate units. Write and apply a relationship between impulse and momentum in

More information

Unit 08 Work and Kinetic Energy. Stuff you asked about:

Unit 08 Work and Kinetic Energy. Stuff you asked about: Unit 08 Work and Kinetic Energy Today s Concepts: Work & Kinetic Energy Work in a non-constant direction Work by springs Mechanics Lecture 7, Slide 1 Stuff you asked about: Can we go over the falling,

More information

Lecture 6. Announcements. Conservation Laws: The Most Powerful Laws of Physics. Conservation Laws Why they are so powerful

Lecture 6. Announcements. Conservation Laws: The Most Powerful Laws of Physics. Conservation Laws Why they are so powerful Conseration Laws: The Most Powerful Laws of Physics Potential Energy gh Moentu p = + +. Energy E = PE + KE +. Kinetic Energy / Announceents Mon., Sept. : Second Law of Therodynaics Gie out Hoework 4 Wed.,

More information

Chapter 1. Momentum. Fun and physics on screen

Chapter 1. Momentum. Fun and physics on screen Chapter 1 Moentu Objectives e-learning Fun and physics on screen If you play coputer gaes (Figure 1.1) you will be failiar with the way in which characters ove about the screen. Cars accelerate and decelerate

More information

On the Mutual Coefficient of Restitution in Two Car Collinear Collisions

On the Mutual Coefficient of Restitution in Two Car Collinear Collisions /4/006 physics/06068 On the Mutual Coefficient of Restitution in Two Car Collinear Collisions Milan Batista University of Ljubljana, Faculty of Maritie Studies and Transportation Pot poorscakov 4, Slovenia,

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity

More information