Momentum Practice Problems

Size: px
Start display at page:

Download "Momentum Practice Problems"

Transcription

1 Momentum Practice Problems PSI AP Physics C Name Multiple Choice 1. A steel ball and a piece of clay have equal mass. They are dropped from the same height on a horizontal steel platform. The ball bounces back with nearly the same speed with which it hit. The clay sticks to the platform. Which object experiences the greater momentum change? (A) the ball (B) the clay (C) Both experience the same momentum change (D) there is no momentum change for either (E) more information is required 2. A car of mass m is moving with a momentum p. How would you represent its kinetic energy in terms of these two quantities? (A) p2/(2m) (B) 1/2 mp2 (C) mp (D) mp/2 (E) zero 3. A bowling ball moving with speed v collides head-on with a stationary tennis ball. The collision is elastic, and there is no friction. The bowling ball barely slows down. What is the speed of the tennis ball after the collision? (A) nearly v (B) nearly 2v (C) nearly 3v (D) nearly infinite (E) Zero 4. An object with a mass of 2 kg is accelerated from rest. The graph shows the magnitude of the net force as a function of time. At t = 4 s, the object s velocity would have been closest to which of the following? (A) 2 m/s (B) 4 m/s (C) 10 m/s (D) 13 m/s (E) cannot be determined 5. A 3 kg ball is dropped onto a concrete floor. What is the magnitude of the ball s change in momentum if its speed just before striking the floor is 7 m/s and its rebound speed is 3 m/s? (A) 10 kg m/s (B) 15 kg m/s (C) 30 kg m/s (D) 50 kg m/s (E) 70 kg m/s

2 Questions Two blocks are on a frictionless surface and have the same mass m. Block 2 is initially at rest. Block 1 moves to the left with speed 4v. Block 1 collides inelastically with block 2. Which of the following choices is closest to the final speed of the system of two blocks? (A) v (B) 2v (C) 3v (D) 4v (E) 5v 7. Two blocks are on a frictionless surface and have the same mass m. Block 2 is initially at rest. Block 1 moves to the left with speed 4v. Block 1 collides elastically with block 2. What is the final speed of block 1? (A) zero (B) v (C) 2v (D) 3v (E) 4v 8. Two blocks are on a frictionless surface and have the same mass m. Block 2 is initially at rest. Block 1 moves to the left with speed 4v. Block 1 collides elastically with block 2. What is the final speed of block 2? (A) v (B) 2v (C) 3v (D) 4v (E) 6v Questions A hockey stick hitting a 0.5 kg puck is in contact with the puck for a time of 0.05 s. The puck travels in a straight line as it approaches and then leaves the hockey stick. If the puck arrives at the stick with a velocity of 6.4 m/s and leaves with a velocity of -3.6 m/s, what is the magnitude of the change in momentum of the puck? (A) 2 kg m/s (B) 3 kg m/s (C) 5 kg m/s (D) 6 kg m/s (E) 10 kg m/s 10. A hockey stick hitting a 0.5 kg puck is in contact with the puck for a time of 0.05 seconds. The puck travels in a straight line as it approaches and then leaves the hockey stick. If the puck arrives at the stick with a velocity of 6.4 m/s and leaves with a velocity of -3.6 m/s, what is the magnitude of the average force acting on the puck? (A) 100 N (B) 150 N (C) 200 N (D) 300 N (E) 500N

3 Questions An object of mass 3 kg starts from rest and moves along the x-axis. A net horizontal force is applied to the object in the +x direction. Refer to the Force time graph on the right. What is the net impulse delivered by this force? (A) 6 N s (B) 8 N s (C) 24 N s (D) 30 N s (E) 36 N s 12. An object of mass 3 kg starts from rest and moves along the x-axis. A net horizontal force is applied to the object in the +x direction. Refer to the Force time graph above. What is the net work done on the object? (A) 30 J (B) 50 J (C) 90 J (D) 150 J (E) 120 J 13. A tennis ball of mass m rebounds from a vertical wall with the same speed v as it had initially. What is the change in momentum of the ball? (A) mv (B) 2mv (C) 2mvcosθ (D) 2mvsinθ (E) zero

4 14. A steel ball moving at a constant speed v on a horizontal frictionless surface collides obliquely with an identical ball initially at rest. The velocity of the first ball before and after the collision is presented on the above diagram. What is the approximate direction of the velocity of the second ball after the collision? (A) (B) (C) (D) (E) Questions A stationary cannon ball explodes in three pieces of masses m, m, and 2m. The two momenta of the equal masses is presented by the diagram below. What is the direction of the momentum of the 2m mass? (A) (B) (C) (D) (E) 16. What is the magnitude of the velocity of the 2m cannon ball piece? (A) v (B) v (C) v (D) 1 v (E) 3 v

5 17. An object with an initial momentum shown on the diagram collides with another object at rest. Which of the following combinations of two vectors may represent the momenta of the two objects after the collision? (A) (B) (C) (D) (E) Questions A 6 kg block moves with a constant speed of 5 m/s on a horizontal frictionless surface and collides elastically with an identical block initially at rest. The second block then collides and sticks to the last 6 kg block initially at rest. 18. What is the speed of the second 6 kg block after the first collision? (A) zero (B) 2 m/s (C) 2.5 m/s (D) 3 m/s (E) 5 m/s 19. What is the speed of the third 6 kg block after the second collision? (A) zero (B) 2 m/s (C) 2.5 m/s (D) 3 m/s (C) 5 m/s

6 Questions Object A with mass 8 kg travels to the east at 10 m/s and object B with mass 3 kg travels south at 20 m/s. The two objects collide and stick together. 20. What is the magnitude of the velocity they have after the collision? (A) 1.8 m/s (B) 9.1 m/s (C) 12.7 m/s (D) 20 m/s (E) 25.5 m/s 21. What is the direction of the velocity they have after the collision? (A) 30º south of east (B) 37º south of east (C) 45º south of east (D) 53º south of east (E) 60º south of east 22. Two balls of equal mass m move with equal speeds v along paths inclined at 30 from the horizontal as shown. After the collision they stick together. What is the magnitude of their velocity after the collision? (A) 2 v (B) v 2 (C) 2v 2 (D) 3v 2 (E) v 23. Block m 1 is moving with speed v o towards a stationary block m 2, then collides and sticks to it. After the collision, the speed of the center of mass of the system is: (A) m 1 m 2 v o (B) m 2+m 1 m 2 v o (C) m 2+m 1 m 1 v o (D) (1 + m 1 )v o (E) m 1 m 1 +m 2 v o 24. A cannonball of mass 2m is moving towards the right with initial velocity v o, and explodes into two equal pieces each with mass m. What is the speed of the center of mass after the explosion? (A) v o (B) 0.5 v o (C) 2 v o (D) 4 v o (E) 0

7 25. A bullet of mass M 1 is fired from a gun that is initially at rest. The combined mass of the gun and bullet is M 2. If after the bullet is fired its kinetic energy is KE, what is the kinetic energy of the gun when it recoils? (A) KE (B) M 2 KE (C) M 2 1 M 1 M2 KE 2 M 1 (D) KE (E) M 1 M 2 M 1 M 2 M 1 KE 26. A ball of mass m is moving to the right with speed 3v on a frictionless tabletop when it collides with a second ball of mass 3m that is moving to the right with speed v. If the two balls stick together upon impact the speed of the balls immediately after the collision is: (A) v/3 (B) v/2 (C) 2v/3 (D) 3v/2 (E) 2v 27. Person A and Person B are standing on a sheet of frictionless ice. Person A pushes Person B so that Person B who is 60 kg, moves to the right at 3 m/s, while Person A, who is 90 kg, moves to the left at 2 m/s. What is the velocity of their center of mass? (A) Zero (B) 0.5 m/s to the left (C) 1 m/s to the right (D) 2.4 m/s to the left (E) 2.5 m/s to the right 28. What is the rebound speed of a 4 kg ball falling straight down that hits a platform at 4 m/s, if the average normal force exerted by the platform on the ball is 40 N for 0.5 s? (A) 2 m/s (B) 7 m/s (C) 6 m/s (D) 9 m/s (E) 1 m/s 29. A 2 kg mass moving at 12 m/s collides with an identical mass moving at -8 m/s and the masses stick together. What is the final velocity of the two masses? (A) 4/3 m/s (B) 2 m/s (C) 6 m/s (D) 10 m/s (E) 12 m/s 30. A compressed spring is placed between two masses M and m resting on a smooth horizontal surface. When the spring is released, the two fly apart with M moving at velocity v. The velocity of m is (A) M m v (B) M m v (C) m M v (D) m M v (E) m m+m v

8 31. Consider these two cases: First, a car moving at 40 mph hits another car of equal mass moving at 40 mph in the opposite direction. Second, a car moving at 40 mph hits a stationary steel wall. The collision time is the same for the two cases and the collisions are both inelastic. In which of these cases would result in the greatest impact force? (A) Hitting the wall (B) Hitting the other car (C) The force would be the same in both cases (D) More information is needed (E)None of the above are true. Questions A mass M moving with speed v collides with an uncompressed stationary spring of mass M with a spring constant K. The surface is frictionless. 32. What will be the maximum compression of the spring? (A) v M/K (B) v M/4K (C) v M/K (D) v 2M/K (E) v M/2K What is the speed of the spring after the collision? Questions (A) v (B) v 2 (C) v 4 (D) 2v (E) v 3 A 6 kg mass moving at 12 m/s in the +x direction is acted upon by a force with magnitude given as a function of time by the below graph. 34. Find the magnitude of the change in momentum from time t = 0 to time t = 8 s. (A) 12 kg m/s (B) 24 kg m/s (C) 36 kg m/s (D) 40 kg m/s (E) 52 kg m/s 35. What is the velocity of the mass after the force has stopped acting? (A) 6 m/s (B) 10 m/s (C) 18 m/s (D) 24 m/s (E) 40 m/s

9 36. A wire is bent into the shape as shown above. Which of the following best represents the coordinates of the center of mass? (A) (13/14, 6/7) (B) (8/7, 6/7) (C) (13/14, 8/7) (D) (1,1) (E) (1,6/7) 37. A block of mass m is moving with speed v o to the right on a frictionless surface when it explodes into two pieces of unequal mass. One piece of the mass, 3m/4 moves with a speed v o/2 to the left while the other piece of the object moves with velocity: (A) v o/2 (B) 2v o/3 (C) 11v o/2 (D) 7v o/5 (E) 2v o 38. Two blocks with masses m and 2m are placed on a horizontal frictionless surface. There is a compressed spring between the block and after the spring is released, the 2m block moves to the right with a speed of v. What is the total work done by the spring on the system of two blocks? (A) Zero (B) mv 2 (C) 2mv 2 (D) 3mv 2 (E) mv 39. A railway artillery gun of mass 1400 tons is initially at rest on a horizontal surface. It fires a 7 ton shell with a velocity of 800 m/s at an angle of 60. What is the speed of the gun immediately after the shell is fired? (A) Zero (B) 2 m/s (C) 4 m/s (D) 5 m/s (E) 7 m/s

10 40. Two equal forces are exerted for the same length of time on two blocks with different masses m 1 and m 2 (m 2 >m 1). Which of the following will describe the change is kinetic energy of the blocks? (A) The blocks have the same change in kinetic energy. (B) The change in kinetic energy of each block is zero. (C) Block m 2 has a greater change in kinetic energy. (D) Block m 1 has a greater change in kinetic energy. (E) None of the above are correct. 41. A boy launches a 20 g dart horizontally by a spring gun from a balcony 45 m above the ground. The dart lands 15 m away from the balcony. If the length of the gun s barrel is 10 cm, what is the average horizontal force applied by the spring? (A) 1.0N (B) 2.0 N (C) 2.5 N (D) 5. N (E) 7.5 N 42. A mall of mass m is dropped from a height of ho. The ball hits the floor and bounces to a height of h. What is the magnitude of impulse exerted on the ball by the floor? (A) mgh (B) 2mgh (C) 2mgh (D) m( 2gh + 2gh 0 ) (E) m( 2gh 2gh 0 ) 43. A 5 kg object starts from rest on a flat horizontal surface and moves in a straight line. The velocity as a function of time is given by v = 3t + 2t 2. What is the magnitude of the instantaneous force that acts on the object at 2 s? (A) 105 N (B) 75 N (C) 55 N (D) 45 N (E) 35 N 44. A net force F = t 2 is applied to a 30 kg cart that can move on a flat horizontal surface. If the cart starts from rest, what is its speed at 5 s? (A) 10 m/s (B) 8 m/s (C) 5 m/s (D) 3 m/s (E) 1 m/s

11 45. A block of mass m moves to the right at a constant velocity v and collides elastically with another block of mass 3m, which is initially at rest. Which of the following is the velocity of each block after the collision? Block m (A) Zero Block 3m v (B) v/2 v/2 (C) v/2 v/2 (D) 3v/2 v/2 (E) v/2 3v/2 46. A 40 kg skateboarder runs at a constant velocity of 12 m/s and jumps on a stationary skateboard with a mass of 8 kg. What is the velocity of the skateboarder skateboard system after the jump? (A) 12 m/s (B) 90 m/s (C) 60 m/s (D) 20 m/s (E) 10 m/s 47. An 80 kg diver jumps off a moving boat. The boat has a mass of 400 kg and moves at a constant velocity of 2 m/s. What is the velocity of the boat after the jump if the diver jumps with a velocity of 3 m/s in opposite direction to the initial velocity of the boat? (A) 2 m/s (B) 3 m/s (C) 4 m/s (D) 5 m/s (E) 6 m/s

12 48. A tennis ball approaches a racket with a momentum of 5 kg m/s and bounces back with a momentum of 6 kg m/s after the collision with the racket. What is the change in momentum of the tennis ball? (A) 1 kg m/s (B) 5 kg m/s (C) 6 kg m/s (D) 11 kg m/s 0 kg m/s 49. A light beach ball moving with a velocity 2 m/s to the right collides elastically with a stationary bowling ball. After the collision the bowling ball remains stationary. What is the velocity of the beach ball after the collision? (A) 0 m/s (B) 2 m/s to the left (C) 4 m/s to the left (D) 3 m/s to the left (E) 1 m/s to the left 50. A ball of mass m moving at a constant speed v to the right collides elastically with another ball of mass 3m moving to the left at a constant speed v. What is the velocity of ball m after the collision? (A) v (B) 3 v (C) 1 v (D) -2v (E) 3v 2 3

13 Answer Key 1.A 6.B 11.D 16.A 21.B 26.D 31.B 36.A 41.C 46.E 2.A 7.A 12.D 17.E 22.D 27.A 32.E 37.C 42.D 47.B 3.B 8.D 13.C 18.E 23.E 28.E 33.B 38.D 43.C 48.D 4.A 9.C 14.C 19.C 24.A 29.B 34.C 39.B 44.A 49.B 5.C 10.A 15.B 20.B 25.D 30.B 35.C 40.D 45.C 50.D

PSI AP Physics I Momentum

PSI AP Physics I Momentum PSI AP Physics I Momentum Multiple-Choice questions 1. A truck moves along a frictionless level road at a constant speed. The truck is open on top. A large load of gravel is suddenly dumped into the truck.

More information

1 A freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car?

1 A freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car? Slide 1 / 26 1 freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car? 30,000 kg m/s 3,000 kg m/s 300,000 kg m/s

More information

Slide 1 / 40. Multiple Choice AP Physics 1 Momentum

Slide 1 / 40. Multiple Choice AP Physics 1 Momentum Slide 1 / 40 Multiple Choice AP Physics 1 Momentum Slide 2 / 40 1 A truck moves along a frictionless level road at a constant speed. The truck is open on top. A large load of gravel is suddenly dumped

More information

3. How long must a 100 N net force act to produce a change in momentum of 200 kg m/s? (A) 0.25 s (B) 0.50 s (C) 1.0 s (D) 2.0 s (E) 4.

3. How long must a 100 N net force act to produce a change in momentum of 200 kg m/s? (A) 0.25 s (B) 0.50 s (C) 1.0 s (D) 2.0 s (E) 4. AP Physics Multiple Choice Practice Momentum and Impulse 1. A car of mass m, traveling at speed v, stops in time t when maximum braking force is applied. Assuming the braking force is independent of mass,

More information

Momentum Conceptual Questions. 1. Which variable has more impact on an object s motion? Its mass or its velocity?

Momentum Conceptual Questions. 1. Which variable has more impact on an object s motion? Its mass or its velocity? AP Physics I Momentum Conceptual Questions 1. Which variable has more impact on an object s motion? Its mass or its velocity? 2. Is momentum a vector or a scalar? Explain. 3. How does changing the duration

More information

Impulse simply refers to a change in momentum, and is usually caused by a change in velocity, as described by p = m v.

Impulse simply refers to a change in momentum, and is usually caused by a change in velocity, as described by p = m v. 1 Impulse and Momentum Recall from Newton s 1 st Law: inertia is the tendency of an object to keep on doing what its already doing, that is: either remaining stationary, or: travelling at a constant velocity.

More information

AP Physics 1 Momentum and Impulse Practice Test Name

AP Physics 1 Momentum and Impulse Practice Test Name AP Physics 1 Momentum and Impulse Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A rubber ball and a lump of clay have equal

More information

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ Physics 1 Lesson 8 Forces and Momentum Homework Outcomes 1. Define linear momentum. 2. Determine the total linear momentum of a system. 3. Apply the Law of Conservation of Momentum to solve problems. 4.

More information

1 kg. 10,000 kg. 1 Page. Momentum is a vector so it has a magnitude and a velocity. Its magnitude is the product of its mass and velocity, p = mv.

1 kg. 10,000 kg. 1 Page. Momentum is a vector so it has a magnitude and a velocity. Its magnitude is the product of its mass and velocity, p = mv. Momentum The momentum of a single object is simply equal to the product of its mass and its velocity. The symbol for momentum is p. Since mass is a scalar and velocity is a vector, momentum is also a vector.

More information

Conservation of Momentum. The total momentum of a closed, isolated system does not change.

Conservation of Momentum. The total momentum of a closed, isolated system does not change. Conservation of Momentum In the 17 th century, Newton and others had measured the momentum of colliding objects before and after collision, and had discovered a strange phenomenon: the total momentum of

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum 1) Linear momentum p = mv (units: kg m / s) 2) Impulse (produces a finite change in momentum) (a) Constant force: J = FΔt From the 2nd law, F = Δ(m v) Δt = Δ p Δt, so J =

More information

23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the

23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the 23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the axis. The force varies in magnitude, and the impulse has

More information

Physics! Review Problems Unit A force acting on a 7.0 kg body increases its speed uniformly from 1.0 m/s to 9.0 m/s in 3 s.

Physics! Review Problems Unit A force acting on a 7.0 kg body increases its speed uniformly from 1.0 m/s to 9.0 m/s in 3 s. Name Physics! Review Problems Unit 8 1. A force acting on a 7.0 kg body increases its speed uniformly from 1.0 m/s to 9.0 m/s in 3 s. a) What is the initial momentum of the body? b) What is the final momentum

More information

HONORS PHYSICS Linear Momentum

HONORS PHYSICS Linear Momentum HONORS PHYSICS Linear Momentum LESSON OBJECTIVES Students will be able to... understand that forces can act over time (impulse) resulting in changes in momentum identify characteristics of motion with

More information

Name Period Date. (m 1 + m 2. m 1. v 2i. v 1i

Name Period Date. (m 1 + m 2. m 1. v 2i. v 1i Example Problems 8.2 Conservation of Momentum Brake Apart: p i p f ( )v 1,2i v 1f v 2 f Stick Together: p i p f v 1i v 2i ( )v 1,2 f Bouncing/Pass Through: p i p f v 1i v 2i v 1f v 2 f Example 1: - A monkey

More information

Momentum in 1-Dimension

Momentum in 1-Dimension Momentum in 1-Dimension Level : Physics I Date : Warm-up Questions If you were in a car that was out of control and had to choose between hitting a concrete wall or a haystack to stop, which would you

More information

Center of Mass & Linear Momentum

Center of Mass & Linear Momentum PHYS 101 Previous Exam Problems CHAPTER 9 Center of Mass & Linear Momentum Center of mass Momentum of a particle Momentum of a system Impulse Conservation of momentum Elastic collisions Inelastic collisions

More information

AP Physics Momentum Practice Test. Answers: A,E,E,A,E,B,D,C,B,A,B,E,D,C 16.(a)5450,5650 (b)2.25e7 (c)3 (d)1.5e7 17.(a)9 (b)2 (c)1.5 (d) (e).

AP Physics Momentum Practice Test. Answers: A,E,E,A,E,B,D,C,B,A,B,E,D,C 16.(a)5450,5650 (b)2.25e7 (c)3 (d)1.5e7 17.(a)9 (b)2 (c)1.5 (d) (e). AP Physics Momentum Practice Test Answers: A,E,E,A,E,B,D,C,B,A,B,E,D,C 16.(a)5450,5650 (b).5e7 (c)3 (d)1.5e7 17.(a)9 (b) (c)1.5 (d)-4.75 (e).65 For multiple choice ( points) write the CAPITAL letter of

More information

AP Physics Chapter 9 QUIZ

AP Physics Chapter 9 QUIZ AP Physics Chapter 9 QUIZ Name:. The graph at the right shows the force on an object of mass M as a function of time. For the time interal 0 to 4 seconds, the total change in the momentum of the object

More information

Chapter 6 - Linear Momemtum and Collisions

Chapter 6 - Linear Momemtum and Collisions Name Date Chapter 6 - Linear Momemtum and Collisions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) What is the SI unit of momentum? A) N/s B)

More information

Part I Review Unit Review Name Momentum and Impulse

Part I Review Unit Review Name Momentum and Impulse Part I Review Unit Review Name Momentum and Impulse 1. A 5.00-kilogram block slides along a horizontal, frictionless surface at 10.0 meters per second for 4.00 seconds. The magnitude of the block's momentum

More information

AP Physics C. Momentum. Free Response Problems

AP Physics C. Momentum. Free Response Problems AP Physics C Momentum Free Response Problems 1. A bullet of mass m moves at a velocity v 0 and collides with a stationary block of mass M and length L. The bullet emerges from the block with a velocity

More information

Momentum and Impulse Practice Multiple Choice

Momentum and Impulse Practice Multiple Choice Choose the alternative that best answers the question and record your answer on the Scantron sheet provided 1. A ball of putty is thrown at a wall and sticks to its surface. Which of the following quantities

More information

Momentum and Collisions

Momentum and Collisions Momentum and Collisions Objectives: You Should Be Able To: Define and give examples of impulse and momentum along with appropriate units. Write and apply a relationship between impulse and momentum in

More information

Created by T. Madas COLLISIONS. Created by T. Madas

Created by T. Madas COLLISIONS. Created by T. Madas COLLISIONS Question (**) Two particles A and B of respective masses 2 kg and M kg move on a smooth horizontal surface in the same direction along a straight line. The speeds of A and B are 4 ms and 2 ms,

More information

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o AP Physics Free Response Practice Momentum and Impulse 1976B2. A bullet of mass m and velocity v o is fired toward a block of mass 4m. The block is initially at rest on a v frictionless horizontal surface.

More information

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that.

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. NAME: 4. Units of power include which of the following?

More information

Impulse,Momentum, CM Practice Questions

Impulse,Momentum, CM Practice Questions Name: Date: 1. A 12.0-kilogram cart is moving at a speed of 0.25 meter per second. After the speed of the cart is tripled, the inertia of the cart will be A. unchanged B. one-third as great C. three times

More information

AP PHYSICS C Momentum Name: AP Review

AP PHYSICS C Momentum Name: AP Review AP PHYSICS C Momentum Name: AP Review Momentum How hard it is to stop a moving object. Related to both mass and velocity. For one particle p = mv For a system of multiple particles P = p i = m ivi Units:

More information

1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v.

1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v. 1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v. The magnitude of the change in momentum of the ball is A.

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

PRACTICE TEST for Midterm Exam

PRACTICE TEST for Midterm Exam South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

More information

Conservation of Momentum

Conservation of Momentum Conservation of Momentum Law of Conservation of Momentum The sum of the momenta before a collision equal the sum of the momenta after the collision in an isolated system (=no external forces acting).

More information

Impulse. Two factors influence the amount by which an object s momentum changes.

Impulse. Two factors influence the amount by which an object s momentum changes. Impulse In order to change the momentum of an object, either its mass, its velocity, or both must change. If the mass remains unchanged, which is most often the case, then the velocity changes and acceleration

More information

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change 1. A car of mass m, traveling at speed v, stops in time t when maximum braking force is applied. Assuming the braking force is independent of mass, what time would be required to stop a car of mass m traveling

More information

Momentum and Collisions. Resource Class/momentum/momtoc.html

Momentum and Collisions. Resource  Class/momentum/momtoc.html Momentum and Collisions Resource http://www.physicsclassroom.com/ Class/momentum/momtoc.html Define Inertia The property of any body to resist changes in its state of motion. The measure of Inertia is:

More information

The total momentum in any closed system will remain constant.

The total momentum in any closed system will remain constant. The total momentum in any closed system will remain constant. When two or more objects collide, the collision does not change the total momentum of the two objects. Whatever momentum is lost by one object

More information

Chapter 9 Impulse and Momentum

Chapter 9 Impulse and Momentum Chapter 9 Impulse and Momentum Chapter Goal: To understand and apply the new concepts of impulse and momentum. Slide 9-2 Chapter 9 Preview Slide 9-3 Chapter 9 Preview Slide 9-4 Chapter 9 Preview Slide

More information

Name ID Section. 1. One mile is equal to 1609 m; 1 hour is equal to 3600 s. The highway speed limit of 65 mph is equivalent to the speed of:

Name ID Section. 1. One mile is equal to 1609 m; 1 hour is equal to 3600 s. The highway speed limit of 65 mph is equivalent to the speed of: The exam is closed book and closed notes. There are 30 multiple choice questions. Make sure you put your name, section, and ID number on the SCANTRON form. The answers for the multiple choice Questions

More information

The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest.

The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest. T2-2 [195 marks] 1. The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest. What is the speed of the object after 0.60 s? A. 7.0 ms

More information

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a)

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a) Chapter Work, Energy and Power Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Q2. A bullet of mass 10g leaves a rifle at an initial velocity of

More information

Energy and Momentum Review Problems

Energy and Momentum Review Problems Energy and Momentum Review Problems NAME 1. In which one of the following situations is zero net work done? A) A ball rolls down an inclined plane. B) A physics student stretches a spring. C) A projectile

More information

Momentum: Exercises. 1. An Olympic diver dives off the high-diving platform. The magnitude of his momentum will be a maximum at point

Momentum: Exercises. 1. An Olympic diver dives off the high-diving platform. The magnitude of his momentum will be a maximum at point Momentum: Exercises. An Olympic diver dives off the high-diving platform. The magnitude of his momentum will be a maximum at point (a) A. (b) B. (c) C. (d) D. (e) none of the above. 2. An object with mass

More information

Circle correct course: PHYS 1P21 or PHYS 1P91 BROCK UNIVERSITY

Circle correct course: PHYS 1P21 or PHYS 1P91 BROCK UNIVERSITY Tutorial #: Circle correct course: PHYS 1P21 or PHYS 1P91 Name: Student #: BROCK UNIVERSITY Test 7: November 2015 Number of pages: 5 Course: PHYS 1P21/1P91 Number of students: 218 Examination date: 17

More information

This Week. 9/5/2018 Physics 214 Fall

This Week. 9/5/2018 Physics 214 Fall This Week Momentum Is momentum in basketball physics? Rockets and guns How do spaceships work? Collisions of objects They get impulses! Practical Propulsion 9/5/2018 Physics 214 Fall 2018 1 Momentum What

More information

Physics Momentum. CQ8. A train and a bird are both moving with the same velocity of 50 m/s. Compare their momenta.

Physics Momentum. CQ8. A train and a bird are both moving with the same velocity of 50 m/s. Compare their momenta. Homework Procedure: Read pages specified in Honors Physics Essentials by Dan Fullerton. Questions labeled TQ will be questions about the text you read. These TQ s can be answered in one word, one phrase,

More information

This Week. 7/29/2010 Physics 214 Fall

This Week. 7/29/2010 Physics 214 Fall This Week Momentum Is momentum in basketball physics? Rockets and guns How do spaceships work? Collisions of objects They get impulses! Practical Propulsion 7/29/2010 Physics 214 Fall 2010 1 Momentum What

More information

AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum)

AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum) AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum) 1980M2. A block of mass m slides at velocity v o across a horizontal frictionless surface toward a large curved movable ramp

More information

Notes Momentum. Momentum and Impulse. - The product (multiplication) of an objects mass and velocity is called momentum.

Notes Momentum. Momentum and Impulse. - The product (multiplication) of an objects mass and velocity is called momentum. Notes Momentum Momentum and Impulse - The product (multiplication) of an objects mass and velocity is called momentum. Momentum is the energy of motion of an object. Momentum is represented by the letter.

More information

6.1 Momentum and Impulse A. What is momentum? Newton defined momentum as the quantity of motion

6.1 Momentum and Impulse A. What is momentum? Newton defined momentum as the quantity of motion AP Physics Mechanics Chapter 6 Momentum and Collisions Text chapter 6 - Reading pp. 141-161 - textbook HW -- #1,3,4,6,9,15,16,20,21,23,26,27,25,34,63,70,71 1 6.1 Momentum and Impulse A. What is momentum?

More information

PHYSICS 30 MOMENTUM AND IMPULSE ASSIGNMENT 4 VERSION:0 55 MARKS

PHYSICS 30 MOMENTUM AND IMPULSE ASSIGNMENT 4 VERSION:0 55 MARKS Clearly communicate your understanding of the physics principles that you are going to solve a question and how those principles apply to the problem at hand. You may communicate this understanding through

More information

Impulse/Momentum And Its Conservation

Impulse/Momentum And Its Conservation Impulse/Momentum And Its Conservation Which is easier to stop? Truck, car, bowling ball, or baseball all moving at 30 mph. Baseball -it is the least massive. Baseball at 30 mph or a baseball at 90 mph.

More information

Science 20 Physics Review

Science 20 Physics Review Science 20 Physics Review Name 1. Which velocity-time graph below best represents the motion of an object sliding down a frictionless slope? a. b. c. d. Numerical response 1 The roadrunner is moving at

More information

Momentum. Slide 2 / 69. Slide 1 / 69. Slide 4 / 69. Slide 3 / 69. Slide 5 / 69. Slide 6 / 69. Conservation of Momentum. Conservation of Momentum

Momentum. Slide 2 / 69. Slide 1 / 69. Slide 4 / 69. Slide 3 / 69. Slide 5 / 69. Slide 6 / 69. Conservation of Momentum. Conservation of Momentum Slide 1 / 69 Momentum 2009 by Goodman & Zavorotniy Slide 2 / 69 onservation of Momentum The most powerful concepts in science are called "conservation principles". Without worrying about the details of

More information

2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN

2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN 2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN Topics: Forces Motion Momentum Gravity Electrostatics DATE: TIME: ROOM: PROCTOR: YOU ARE REQUIRED TO BRING: 1. CALCULATOR (YOUR OWN NO SHARING) 2. PENCIL

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

Unit 2- Energy and Momentum Test

Unit 2- Energy and Momentum Test Name: Class: Date: ID: A Unit 2- Energy and Momentum Test Multiple Choice Identify the choice that best completes the statement or answers the question.. Which of the following is not a unit of energy?

More information

Physics 130: Questions to study for midterm #1 from Chapter 6

Physics 130: Questions to study for midterm #1 from Chapter 6 Physics 130: Questions to study for midterm #1 from Chapter 6 1. Which has the greater momentum, an 18-wheeler parked at the curb or a Volkswagen rolling down a hill? a. 18-wheeler b. Volkswagen c. The

More information

Physics. Impulse & Momentum

Physics. Impulse & Momentum Physics Impulse & Momentum Warm up - Write down everything you know about impulse and momentum. Objectives Students will learn the definitions and equations for impulse, momentum, elastic and inelastic

More information

Practice Test for Midterm Exam

Practice Test for Midterm Exam A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it

More information

Name: Class: Date: p 1 = p 2. Given m = 0.15 kg v i = 5.0 m/s v f = 3.0 m/s Solution

Name: Class: Date: p 1 = p 2. Given m = 0.15 kg v i = 5.0 m/s v f = 3.0 m/s Solution Assessment Chapter Test A Teacher Notes and Answers Momentum and Collisions CHAPTER TEST A (GENERAL) 1. c 2. c 3. b 4. c 5. a p i = 4.0 kg m/s p f = 4.0 kg m/s p = p f p i = ( 4.0 kg m/s) 4.0 kg m/s =

More information

Honor Physics Final Exam Review. What is the difference between series, parallel, and combination circuits?

Honor Physics Final Exam Review. What is the difference between series, parallel, and combination circuits? Name Period Date Honor Physics Final Exam Review Circuits You should be able to: Calculate the total (net) resistance of a circuit. Calculate current in individual resistors and the total circuit current.

More information

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 11 Lecture RANDALL D. KNIGHT Chapter 11 Impulse and Momentum IN THIS CHAPTER, you will learn to use the concepts of impulse and momentum.

More information

1. The diagram below shows the variation with time t of the velocity v of an object.

1. The diagram below shows the variation with time t of the velocity v of an object. 1. The diagram below shows the variation with time t of the velocity v of an object. The area between the line of the graph and the time-axis represents A. the average velocity of the object. B. the displacement

More information

Chapter 9. 9 Momentum. Momentum. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc.

Chapter 9. 9 Momentum. Momentum. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc. Chapter 9 Momentum PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 9 Momentum Slide 9-2 Slide 9-3 1 Slide 9-4 Reading Quiz 1. Impulse is A. a force that is applied at a random

More information

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km Name: Physics I Mid Term Exam Review Multiple Choice Questions Date: Mr. Tiesler 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km

More information

Chapter Assessment Use with Chapter 9.

Chapter Assessment Use with Chapter 9. Date Period 9 Use with Chapter 9. Momentum and Its Conservation Understanding Concepts Part A Write the letter of the choice that best completes the statement or answers the question. 1. The linear momentum

More information

Physics: Impulse / Momentum Problem Set

Physics: Impulse / Momentum Problem Set Physics: Impulse / Momentum Problem Set A> Conceptual Questions 1) Explain two ways a heavy truck and a person on a skateboard can have the same momentum. 2) In stopping an object, how does the time of

More information

UNIT 2G. Momentum & It s Conservation

UNIT 2G. Momentum & It s Conservation Name: Date:_ UNIT 2G Momentum & It s Conservation Momentum & Newton s 2 nd Law of Motion Newton s 2 nd Law states When an unbalanced force acts upon a body, it accelerates that body in the direction of

More information

(k = force constant of the spring)

(k = force constant of the spring) Lecture 10: Potential Energy, Momentum and Collisions 1 Chapter 7: Conservation of Mechanical Energy in Spring Problems The principle of conservation of Mechanical Energy can also be applied to systems

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 7 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

CHAPTER 2 TEST REVIEW

CHAPTER 2 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 69 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 2 TEST REVIEW 1. Samantha walks along a horizontal path in the direction shown. The curved

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

1. A 1,160-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a

1. A 1,160-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a Collisions Worksheet Honors: Name: Date: 1. A 1,160-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a 9,900-kg truck moving in the same direction

More information

Chapter5 SUMMARY. Key Equations

Chapter5 SUMMARY. Key Equations Chapter5 SUMMARY Key Expectations define and describe the concepts and units related to momentum (momentum, impulse, elastic collisions, inelastic collisions) (5.1, 5.2, 5.3) analyze, with the aid of vector

More information

HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT ENERGY & MOMENTUM MULTIPLE CHOICE / 30 OPEN ENDED / 79 TOTAL / 109 NAME:

HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT ENERGY & MOMENTUM MULTIPLE CHOICE / 30 OPEN ENDED / 79 TOTAL / 109 NAME: HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT ENERGY & MOMENTUM MULTIPLE CHOICE / 30 OPEN ENDED / 79 TOTAL / 109 NAME: 1. Which of the following best represents the momentum of a small car

More information

Phys101 Lectures 14, 15, 16 Momentum and Collisions

Phys101 Lectures 14, 15, 16 Momentum and Collisions Phys101 Lectures 14, 15, 16 Momentum and Collisions Key points: Momentum and impulse Condition for conservation of momentum and why How to solve collision problems Centre of mass Ref: 9-1,2,3,4,5,6,7,8,9.

More information

Chapter 9. Momentum. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc.

Chapter 9. Momentum. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc. Chapter 9 Momentum PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 9 Momentum Slide 9-2 Slide 9-3 Slide 9-4 Reading Quiz 1. Impulse is A. a force that is applied at a random

More information

Final Review. If a car has 3,000kg-m/s of momentum, and a mass of 1,000kg. How fast is it moving? A ball that has momentum must also have energy.

Final Review. If a car has 3,000kg-m/s of momentum, and a mass of 1,000kg. How fast is it moving? A ball that has momentum must also have energy. Physics Name: Date: Period: Final Review Write the appropriate formulas with all units below. Impulse Momentum Conservation of Momentum Rank these in order from least to most momentum:.01kg mass moving

More information

Momentum Practice Test

Momentum Practice Test Momentum Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following equations can be used to directly calculate an object s momentum,

More information

S15--Phys Q2 Momentum

S15--Phys Q2 Momentum Name: Class: Date: ID: A S15--Phys Q2 Momentum Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If the momentum of an object changes and its mass remains

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

What is momentum? Inertia in Motion.

What is momentum? Inertia in Motion. What is momentum? Inertia in Motion. p = mv From Newton s 2 nd Law: F = ma = dv d( mv) m = dt dt F = dp dt The time rate of change of the linear momentum of a particle is equal to the net force acting

More information

Quiz Samples for Chapter 9 Center of Mass and Linear Momentum

Quiz Samples for Chapter 9 Center of Mass and Linear Momentum Name: Department: Student ID #: Notice +2 ( 1) points per correct (incorrect) answer No penalty for an unanswered question Fill the blank ( ) with ( ) if the statement is correct (incorrect) : corrections

More information

Slide 1 / 47. Momentum by Goodman & Zavorotniy

Slide 1 / 47. Momentum by Goodman & Zavorotniy Slide 1 / 47 Momentum 2009 by Goodman & Zavorotniy Slide 2 / 47 Conservation of Momentum s we pointed out with energy, the most powerful concepts in science are called "conservation principles". These

More information

Physics 2514 Lecture 26

Physics 2514 Lecture 26 Physics 2514 Lecture 26 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/12 Review We have defined the following using Newton s second law of motion ( F net = d p

More information

Momentum, Work and Energy Review

Momentum, Work and Energy Review Momentum, Work and Energy Review 1.5 Momentum Be able to: o solve simple momentum and impulse problems o determine impulse from the area under a force-time graph o solve problems involving the impulse-momentum

More information

Preliminary Work. [ Answer: 56 Ns; 56 Ns ]

Preliminary Work. [ Answer: 56 Ns; 56 Ns ] Preliminary Work 1. A 2 kg bouncy ball is dropped from a height of 10 m, hits the floor and returns to its original height. What was the change in momentum of the ball upon impact with the floor? What

More information

6 th week Lectures Feb. 12. Feb

6 th week Lectures Feb. 12. Feb Momentum Rockets and guns 6 th week Lectures Feb. 12. Feb. 16. 2018. How do spaceships work? Collisions of objects They get impulses! Practical Propulsion 2/11/2018 Physics 214 Spring 2018 1 Announcements

More information

Impulse and Momentum continued

Impulse and Momentum continued Chapter 7 Impulse and Momentum continued 7.2 The Principle of Conservation of Linear Momentum External forces Forces exerted on the objects by agents external to the system. Net force changes the velocity

More information

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, 2005 Mechanics Test Please answer the following questions on the supplied answer sheet. You may write on this test booklet,

More information

Ch 8 Momentum Test Review!

Ch 8 Momentum Test Review! Ch 8 Test Review! Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The momentum of an object is defined as the object's a. mass times its velocity. b. force

More information

velocity, force and momentum are vectors, therefore direction matters!!!!!!!

velocity, force and momentum are vectors, therefore direction matters!!!!!!! 1 Momentum, p is mass times velocity: p = m v vector! unit: (p) = kg m/s Newton s second law: Force = time rate of change of momentum Net force F will produce change in momentum Δp of the object on which

More information

Name: Class: Date: d. none of the above

Name: Class: Date: d. none of the above Name: Class: Date: H Phys quiz Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is the cause of an acceleration? a. speed b. inertia

More information

Physics 11 (Fall 2012) Chapter 9: Momentum. Problem Solving

Physics 11 (Fall 2012) Chapter 9: Momentum. Problem Solving Physics 11 (Fall 2012) Chapter 9: Momentum The answers you receive depend upon the questions you ask. Thomas Kuhn Life is a mirror and will reflect back to the thinker what he thinks into it. Ernest Holmes

More information

(A) I only (B) III only (C) I and II only (D) II and III only (E) I, II, and III

(A) I only (B) III only (C) I and II only (D) II and III only (E) I, II, and III 1. A solid metal ball and a hollow plastic ball of the same external radius are released from rest in a large vacuum chamber. When each has fallen 1m, they both have the same (A) inertia (B) speed (C)

More information

Momentum. Slide 1 / 47. Slide 2 / 47. Slide 3 / 47. Conservation of Momentum. Conservation of Momentum

Momentum. Slide 1 / 47. Slide 2 / 47. Slide 3 / 47. Conservation of Momentum. Conservation of Momentum Slide 1 / 47 Momentum 2009 by Goodman & Zavorotniy onservation of Momentum Slide 2 / 47 s we pointed out with energy, the most powerful concepts in science are called "conservation principles". These principles

More information

AP Physics 1 Momentum

AP Physics 1 Momentum Slide 1 / 133 Slide 2 / 133 AP Physics 1 Momentum 2015-12-02 www.njctl.org Slide 3 / 133 Table of Contents Click on the topic to go to that section Momentum Impulse-Momentum Equation The Momentum of a

More information

1) To Work or Not to Work

1) To Work or Not to Work 1) To Work or Not to Work Is it possible to do work on an object that remains at rest? 1) yes 2) no 1) To Work or Not to Work Is it possible to do work on an object that remains at rest? 1) yes 2) no Work

More information