Chapter 5. Answers to Even Numbered Problems m kj. 6. (a) 900 J (b) (a) 31.9 J (b) 0 (c) 0 (d) 31.9 J. 10.


 Marion Johnson
 5 years ago
 Views:
Transcription
1 Answers to Even Numbered Problems Chapter m 4..6 J 6. (a) 9 J (b) (a) 3.9 J (b) (c) (d) 3.9 J. 6 m s. (a) 68 J (b) 84 J (c) 5 J (d) 48 J (e) 5.64 m s J 6. (a). J (b) 5. m s (c) 6.3 J 8.. m..5 m. (a).768 m (b) 5.68 J m s m 8. (a) 9.9 m s (b) 7.67 m s 3. (a) v 5.94 m s, v 7.67 m s (b) 47 J B m s m 36. (a) 9.9 m s (b).8 J 38. (a) No, µ ( m sn θ) (b) cos θ, µ ( sn θ) C x m x (c) normal orce, ravtatonal orce, and vertcal component o appled orce (d) 4.3 N, 47.9 J, 6.9 J 43
2 44 CHAPTER m s 4. (a).9 m s (b) 5.6 J h ( 4sn θ + ) m (meased alon the nclne) 48. (a) J (b).9 hp 5..9 m s m 54. (a) 7.9 hp (b) 4.9 hp 56. (a) 7.5 J (b) 5. J (c) 7.5 J (d) 3. J m s 6..6 m 6..4 m s J 66. (a) 58 trps (b) 9.5 (. hp) J 7. (a) 3. J (b).5 J (c) (d).5 J 7. (a) 3.8 J or javeln, (b).9 N on javeln, (c) Yes J (b).6 m s 7.3 J or dscus, 3.6 N on dscus, 8. J or shot 4. N on shot 8. (a) J (b).6 8. (a) 5.8 m (b).77 or 7. m s
3 Enery (a) Choose the sprn constant so the weht o a tray stretches all o sprns a dstance equal to the thcness o a tray. (b) 36 N m, The lenth and wdth o a tray are not needed. 86. (a). m s (b) 6. m s 88. (a) 4. m s (b) 7.9 J (c) 8 N (d) 77 N m m s 49. N and s drected 5.5 (a) The orce o ravty s ven by downwards. The anle between the orce o ravty and the drecton o moton s θ , and so the wor done by ravty s ven as ( θ) cos s 49. N cos6..5 m 6.3 J (b) The normal orce exerted on the bloc by the nclne s rcton orce s n mcos3., so the µ n N cos N Ths orce s drected opposte to the dsplacement (that s θ 8 ), and the wor t does s ( θ) cos s 8.5 N cos8.5 m 46.3 J (c) Snce the normal orce s perpendcular to the dsplacement; θ 9, cos θ, and the wor done by the normal orce s zero.
4 46 CHAPTER (a) Σ snθ + n m y n m sn θ Σ cos θ µ n x cos θ n µ cos θ m sn θ µ s. m n m n 8. q. m (.5 )( 8. )( 9.8 m s ) µ m 79.4 N µ snθ+ cosθ.5 sn. + cos. cos θ s 79.4 N cos.. m.49 J.49 J (b) 3 (c) cos θ 74.6 N 3 ( ) cos θ s 74.6 N cos8. m.49 J.49 J 5.5 (a) The nal netc enery o the bullet s KE (b) e now that. 3 mv 3 m s 9 J KE, and also ( cos θ av ) s. Thus, av KE 9 J scos θ.5 m cos.8 N net road cos s+ resst cos s N cos s+ 95 N cos8 s 5.7 ( θ ) ( θ ) net 3 N 95 N m. J Also, KE KE mv net, so 3 ( ). J v net m. m s
5 Enery hle the motorcycle s n the ar, only the conservatve ravtatonal orce acts on cycle and rder. Thus, mv + my mv + my, whch ves ( 35. m s) ( 33. m s) v v y y y 9.8 m s 6.94 m 5.4 Let m be the mass o the ball, R the radus o the crcle, and the 3. N orce. th KE+ PE KE+ PE yelds y at the bottom o the crcle, nc ( cos ) πr mv + mv + m( R) or Thus, ( πr) v + v + 4R m v π 3. N.6 m ( 5. m s) 4( 9.8 m s )(.6 m ) vn v 6.5 m s 5.7 Snce no nonconservatve orces do wor, we use conservaton o mechancal enery, wth the zero o potental enery selected at the level o the base o the hll. Then, mv+ my mv + my wth y yelds v v 3. m s y 9.8 m s.459 m Note that ths result s ndependent o the mass o the chld and sled.
6 48 CHAPTER Realze that all three masses have dentcal speeds at each pont n the moton and that v. Then, conservaton o mechancal enery ves KE PE PE, or m m m v m y y m y y m y y ( + + 3) ( ) + ( ) + 3( 3 3) m m 9.8 m s Thus, v ( ) + + ( + ) yeldn v 5. m s 5.33 (a) Use conservaton o mechancal enery rom when the projectle s at rest wthn the un untl t reaches maxmum heht. Then, ( KE PE PEs) ( KE PE PEs) becomes + mymax x or max 3 ( ) my. 9.8 m s. m x (. m ) 544 N m (b) Ths tme, we use conservaton o mechancal enery rom when the projectle s at rest wthn the un untl t reaches the equlbrum poston o the sprn. Ths ves ( ) KE PE + PE PE + PE m x + x + s s v x x m 544 N m 3. (. m ) ( 9.8 m s )(. m ) yeldn v 9.7 m s
7 Enery e shall tae PE at the lowest level reached by the dver under the water. The dver alls a total o 5 m, but the nonconservatve orce due to water resstance acts only dn the last 5. m o all. The worenery theorem then ves KE+ PE KE+ PE nc av cos8 5. m m s 5 m or ( ) ( + ) + Ths ves the averae resstance orce as 3 av. N. N 5.44 Choose PE at water level and use ( KE PE) ( KE PE) + + or the trp down the cved slde. Ths ves h mv m + + mh, so the 5 speed o the chld as she leaves v 4h 5 the end o the slde s h q h/5 y The vertcal component o ths launch velocty s 4h v y vsnθ snθ 5 At the top o the arc, y vy v y + ay y ves the maxmum heht the chld reaches dn the arborne trp as v. Thus, 4h h θ + ( ) 5 5 sn ymax Ths may be solved or max h 5 y to yeld ymax ( 4sn θ + )
8 5 CHAPTER Choose PE at the level o the base o the hll and let x represent the dstance the ser moves alon the horzontal porton beore comn to rest. The normal orce exerted on the ser by the snow whle on the hll s n mcos.5 and, whle on the horzontal porton, n m. Consder the entre trp, startn rom rest at the top o the hll untl the ser comes to rest on the horzontal porton. The wor done by rcton orces s nc cos8 m cos8 + x ( mcos.5 )( m ) µ µ Applyn nc ( KE PE ) ( KE PE ) m x + + to ths complete trp ves ( m ) ( m) x [ ] m µ cos.5 m µ + + m sn.5 sn.5 µ or x cos.5 ( m ). I µ.75, then x 89 m v v 8. m s 5.53 (a) The acceleraton o the car s.5 m s a. Thus, the t. s constant orward orce due to the enne s ound rom Σ enne ar ma as enne ar + ma N.5.5 m s.65 N The averae velocty o the car dn ths nterval s v averae power nput rom the enne dn ths tme s P av v+ v 3 hp ennevav (.65 N )( 9. m s) 3. hp 746 av 9. m s, so the (b) At t. s, the nstantaneous velocty o the car s v 8. m s and the nstantaneous power nput rom the enne s 3 hp P ennev (.65 N )( 8. m s) 63.9 hp 746
9 Enery The wor done on the partcle by the orce as the partcle moves rom x x to x x s the area under the cve rom x to x. (a) or x to x 8. m, area otranle ABC AC alttude x (N) B 6 4 A C E D x (m) (b) or 8 ( 8. m )( 6. N ) 4. J x 8. m to x. m, 8 area otranle CDE CE alttude (. m )( 3. N ) 3. J (c) J+ 3. J. J 5.6 (a) rom v v a y ( y) +, we nd the speed just beore touchn the round as v m s. m 4.4 m s (b) Choose PE at the level where the eet come to rest. Then KE+ PE KE+ PE becomes nc s + mv + ms ( av cos8 ) ( ) or ( 75 )( 4.4 m s) ( ) mv + m + s 5. m av m s.5 N
10 5 CHAPTER The normal orce the nclne exerts on bloc A s n ( m )cos37, and the rcton orce s µ n µ m cos37. The vertcal dstance bloc A rses s A A m sn37 m, whle the vertcal dsplacement o bloc B s m. y A e nd the common nal speed o the two blocs by use o KE+ PE KE+ PE KE+ PE nc Ths ves ( µ ) m Acos37 s m A + m B v + m A( ya) + m B( yb) or A A y B v ( µ ) m B yb m A ya m A cos37 s m + m A B 9.8 m s m 5 m.5 5 m cos37 5 whch yelds v 57 m s The chane n the netc enery o bloc A s then 3 KEA m Av ( 5 )( 57 m s ) 3.9 J 3.9 J 5.7 rst, determne the mantude o the appled orce by consdern a reebody daram o the bloc. Snce the bloc moves wth constant velocty, Σ Σ rom Σ x, we see that n cos3 x y 3 n 5 m Thus, µ n µ cos3 and Σ y becomes sn 3 m+ µ cos3, or ( 5. )( 9.8 m s ) m sn 3 µ cos3 sn3.3 cos3. N
11 Enery 53 (a) The appled orce maes a 6 anle wth the dsplacement up the wall. Thereore, cos6. N cos6 3. m 3. J s mcos8 s 49 N. 3. m.5 J (b) ncos9 s (c) n PE m y 49 N 3. m.5 J (d) 5.73 The potental enery assocated wth the wnd s PEw x, where x s meased horzontally rom drectly below the pvot o the swn and postve when movn nto the wnd, neatve when movn wth the wnd. e choose PE at the level o the pvot as shown n the e. Also, note that D Lsnφ + Lsn θ so D φ sn sn θ L, or L cos wnd drecton q L x L sn L snq v L cosq 5. m φ sn sn m D (a) Use conservaton o mechancal enery, ncludn the potental enery assocated wth the wnd. The nal netc enery s zero Jane barely maes t to the other sde, and ( KE PE PEw ) ( KE PE PEw ) becomes + m Lcos + + Lsn mv + m Lcos + Lsn ( φ) ( φ) ( θ) ( θ) L m or v L( cosθ cosφ) + ( snθ+ sn φ) where m s the mass o Jane alone. Ths yelds v 6.5 m s
12 54 CHAPTER 5 (b) Aan, usn conservaton o mechancal enery wth KE ( KE PE PEw ) ( KE PE PEw ) ves + M Lcos + Lsn Mv + M Lcos + + Lsn where M 3 s the combned mass o Tarzan and Jane. Thus, ( θ) ( θ) ( φ) ( φ) L v L( cosφ cosθ) ( snθ+ sn φ) whch ves v 9.87 m s M 5.76 hen the bloc moves dstance x down the nclne, the wor done by the rcton orce s cos8 x µ nx µ mcos θ x. rom the worenery theorem, KE+ PE + PE KE+ PE + PE, we nd nc s s ( cos ) nc µ m θ x KE+ PE + PEs. Snce the bloc s at rest at both the start and the end, ths ves µ ( 9.6 N cos37. )(. m ) + ( 9.6 N )(. m sn37. ) + ( N m )(. m ) or µ Careul examnaton o e P5.83 reveals that, dn some tme nterval, bloc B moves upward. cm, bloc A wll move downward. cm and the dstance separatn the two blocs ncreases by 3. cm. Generalzn, we conclude that when the vertcal separaton between the blocs ncreases by h, bloc B moves upward dstance h 3 and bloc A moves downward dstance h 3. Also, at any nstant dn the moton bloc A has speed v, the speed o bloc B wll be v. Choosn y at the level where both blocs start rom rest and man use o the above observatons, conservaton o mechancal enery ves ( A) + ( B) + ( A) + ( B) ( A) + ( B) + ( A) + ( B) m v m v m y m y m v m v m y m y or mv m( v ) m( h ) m( h ) Ths reduces to 5 h 8 3 v, or h 8 8h v 3 5 5
Chapter Seven  Potential Energy and Conservation of Energy
Chapter Seven  Potental Energy and Conservaton o Energy 7 1 Potental Energy Potental energy. e wll nd that the potental energy o a system can only be assocated wth specc types o orces actng between members
More informationChapter 8 Potential Energy and Conservation of Energy Important Terms (For chapters 7 and 8)
Pro. Dr. I. Nasser Chapter8_I November 3, 07 Chapter 8 Potental Energy and Conservaton o Energy Important Terms (For chapters 7 and 8) conservatve orce: a orce whch does wor on an object whch s ndependent
More informationConservation of Energy
Chapter 8 Conseraton o Ener 8.3 U + K = U + K mh + = m ( ) + m ( 3.5 ) = ( ) + F= m = 3. n+ m= m 3. n = m = m =.m 3 n =. 5. 9.8 m s =.98 N downward FIG. 8.3 (5. 3.) Δ A B 8.4 (a) K = W = W = m Δ h = m
More informationwhere v means the change in velocity, and t is the
1 PHYS:100 LECTURE 4 MECHANICS (3) Ths lecture covers the eneral case of moton wth constant acceleraton and free fall (whch s one of the more mportant examples of moton wth constant acceleraton) n a more
More informationChapter 07: Kinetic Energy and Work
Chapter 07: Knetc Energy and Work Conservaton o Energy s one o Nature s undamental laws that s not volated. Energy can take on derent orms n a gven system. Ths chapter we wll dscuss work and knetc energy.
More informationTIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 2211, Exam 2 Section 1 Version 1 October 18, 2013 Total Weight: 100 points
TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS, Exam Secton Verson October 8, 03 Total Weght: 00 ponts. Check your examnaton or completeness pror to startng. There are a total o nne
More informationChapter 8: Potential Energy and The Conservation of Total Energy
Chapter 8: Potental Energy and The Conservaton o Total Energy Work and knetc energy are energes o moton. K K K mv r v v F dr Potental energy s an energy that depends on locaton. Dmenson F x d U( x) dx
More informationChapter 3. r r. Position, Velocity, and Acceleration Revisited
Chapter 3 Poston, Velocty, and Acceleraton Revsted The poston vector of a partcle s a vector drawn from the orgn to the locaton of the partcle. In two dmensons: r = x ˆ+ yj ˆ (1) The dsplacement vector
More informationEMU Physics Department
Physcs 0 Lecture 8 Potental Energy and Conservaton Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aovgun.com Denton o Work W q The work, W, done by a constant orce on an object s dened as the product
More informationPHYS 1441 Section 002 Lecture #16
PHYS 1441 Secton 00 Lecture #16 Monday, Mar. 4, 008 Potental Energy Conservatve and Nonconservatve Forces Conservaton o Mechancal Energy Power Today s homework s homework #8, due 9pm, Monday, Mar. 31!!
More informationPhysics 2A Chapter 3 HW Solutions
Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C
More informationConservation of Energy
Lecture 3 Chapter 8 Physcs I 0.3.03 Conservaton o Energy Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcsall.html 95.4, Fall 03,
More informationChapter 3 and Chapter 4
Chapter 3 and Chapter 4 Chapter 3 Energy 3. Introducton:Work Work W s energy transerred to or rom an object by means o a orce actng on the object. Energy transerred to the object s postve work, and energy
More informationProblem While being compressed, A) What is the work done on it by gravity? B) What is the work done on it by the spring force?
Problem 0750 A 0.25 kg block s dropped on a relaed sprng that has a sprng constant o k 250.0 N/m (2.5 N/cm). The block becomes attached to the sprng and compresses t 0.12 m beore momentarl stoppng. Whle
More informationPHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014
PHYS 1443 Secton 004 Lecture #1 Thursday, Oct., 014 WorkKnetc Energy Theorem Work under rcton Potental Energy and the Conservatve Force Gravtatonal Potental Energy Elastc Potental Energy Conservaton o
More informationSpring Force and Power
Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi IN THIS CHAPTER, you wll learn how to solve problems
More informationYou will analyze the motion of the block at different moments using the law of conservation of energy.
Physcs 00A Homework 7 Chapter 8 Where s the Energy? In ths problem, we wll consder the ollowng stuaton as depcted n the dagram: A block o mass m sldes at a speed v along a horzontal smooth table. It next
More informationDynamics 4600:203 Homework 08 Due: March 28, Solution: We identify the displacements of the blocks A and B with the coordinates x and y,
Dynamcs 46:23 Homework 8 Due: March 28, 28 Name: Please denote your answers clearly,.e., box n, star, etc., and wrte neatly. There are no ponts for small, messy, unreadable work... please use lots of paper.
More informationCHAPTER 8 Potential Energy and Conservation of Energy
CHAPTER 8 Potental Energy and Conservaton o Energy One orm o energy can be converted nto another orm o energy. Conservatve and nonconservatve orces Physcs 1 Knetc energy: Potental energy: Energy assocated
More informationChapter 7: Conservation of Energy
Lecture 7: Conservaton o nergy Chapter 7: Conservaton o nergy Introucton I the quantty o a subject oes not change wth tme, t means that the quantty s conserve. The quantty o that subject remans constant
More informationPhysics for Scientists and Engineers. Chapter 9 Impulse and Momentum
Physcs or Scentsts and Engneers Chapter 9 Impulse and Momentum Sprng, 008 Ho Jung Pak Lnear Momentum Lnear momentum o an object o mass m movng wth a velocty v s dened to be p mv Momentum and lnear momentum
More informationName: PHYS 110 Dr. McGovern Spring 2018 Exam 1. Multiple Choice: Circle the answer that best evaluates the statement or completes the statement.
Name: PHYS 110 Dr. McGoern Sprng 018 Exam 1 Multple Choce: Crcle the answer that best ealuates the statement or completes the statement. #1  I the acceleraton o an object s negate, the object must be
More informationWork is the change in energy of a system (neglecting heat transfer). To examine what could
Work Work s the change n energy o a system (neglectng heat transer). To eamne what could cause work, let s look at the dmensons o energy: L ML E M L F L so T T dmensonally energy s equal to a orce tmes
More informationWeek3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity
Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1s tme nterval. The velocty of the partcle
More informationLecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics
Lecture 16 Chapter 11 Physcs I Energy Dsspaton Lnear Momentum Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Department o Physcs and Appled Physcs IN IN THIS CHAPTER, you wll learn
More informationChapter 7. Potential Energy and Conservation of Energy
Chapter 7 Potental Energy and Conservaton o Energy 1 Forms o Energy There are many orms o energy, but they can all be put nto two categores Knetc Knetc energy s energy o moton Potental Potental energy
More informationPhysics 207 Lecture 13. Lecture 13
Physcs 07 Lecture 3 Goals: Lecture 3 Chapter 0 Understand the relatonshp between moton and energy Defne Potental Energy n a Hooke s Law sprng Develop and explot conservaton of energy prncple n problem
More informationStudy Guide For Exam Two
Study Gude For Exam Two Physcs 2210 Albretsen Updated: 08/02/2018 All Other Prevous Study Gudes Modules 0106 Module 07 Work Work done by a constant force F over a dstance s : Work done by varyng force
More informationPHYS 1441 Section 002 Lecture #15
PHYS 1441 Secton 00 Lecture #15 Monday, March 18, 013 Work wth rcton Potental Energy Gravtatonal Potental Energy Elastc Potental Energy Mechancal Energy Conservaton Announcements Mdterm comprehensve exam
More informationPhysics 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn in the following problems from Chapter 4 Knight
Physcs 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn n the ollowng problems rom Chapter 4 Knght Conceptual Questons: 8, 0, ; 4.8. Anta s approachng ball and movng away rom where ball was
More informationAP Physics Enosburg Falls High School Mr. Bushey. Week 6: Work, Energy, Power
AP Physcs Enosburg Falls Hgh School Mr. Bushey ee 6: or, Energy, Power Homewor! Read Gancol Chapter 6.1 6.10 AND/OR Read Saxon Lessons 1, 16, 9, 48! Read Topc Summary Handout! Answer Gancol p.174 Problems
More informationLesson 4: Relative motion, Forces, Newton s laws (sections )
Lesson 4: Relate moton, Forces, Newton s laws (sectons 3.64.4) We start wth a projectle problem. A olf ball s ht from the round at 35 m/s at an anle of 55º. The round s leel.. How lon s the ball n the
More informationFor the three forces. find: (a) the resultant force R~ (a) (b) the magnitude of the resultant force. Three coplanar forces, A
WorkSHEE 8. Vector applcatons ame: or the three forces, and, fnd: the resultant force R R the mantude of the resultant force. R hree coplanar forces,, B and C have mantudes of 8, 6 and 9 respectvely. nd
More informationPeriod & Frequency. Work and Energy. Methods of Energy Transfer: Energy. WorkKE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy?
Perod & Frequency Perod (T): Tme to complete one ull rotaton Frequency (): Number o rotatons completed per second. = 1/T, T = 1/ v = πr/t Work and Energy Work: W = F!d (pcks out parallel components) F
More informationAngular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004
Angular Momentum and Fxed Axs Rotaton 8.01t Nov 10, 2004 Dynamcs: Translatonal and Rotatonal Moton Translatonal Dynamcs Total Force Torque Angular Momentum about Dynamcs of Rotaton F ext Momentum of a
More informationPhysics 207, Lecture 13, Oct. 15. Energy
Physcs 07 Lecture 3 Physcs 07, Lecture 3, Oct. 5 Goals: Chapter 0 Understand the relatonshp between moton and energy Dene Potental Energy n a Hooke s Law sprng Deelop and explot conseraton o energy prncple
More informationEnergy and Energy Transfer
Energy and Energy Transer Chapter 7 Scalar Product (Dot) Work Done by a Constant Force F s constant over the dsplacement r 1 Denton o the scalar (dot) product o vectors Scalar product o unt vectors = 1
More informationPHYSICS 203NYA05 MECHANICS
PHYSICS 03NYA05 MECHANICS PROF. S.D. MANOLI PHYSICS & CHEMISTRY CHAMPLAIN  ST. LAWRENCE 790 NÉRÉETREMBLAY QUÉBEC, QC GV 4K TELEPHONE: 48.656.69 EXT. 449 EMAIL: smanol@slc.qc.ca WEBPAGE: http:/web.slc.qc.ca/smanol/
More informationA Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph
A Tale o Frcton Basc Rollercoaster Physcs Fahrenhet Rollercoaster, Hershey, PA max heght = 11 t max speed = 58 mph PLAY PLAY PLAY PLAY Rotatonal Movement Knematcs Smlar to how lnear velocty s dened, angular
More information= 1.23 m/s 2 [W] Required: t. Solution:!t = = 17 m/s [W]! m/s [W] (two extra digits carried) = 2.1 m/s [W]
Secton 1.3: Acceleraton Tutoral 1 Practce, page 24 1. Gven: 0 m/s; 15.0 m/s [S]; t 12.5 s Requred: Analyss: a av v t v f v t a v av f v t 15.0 m/s [S] 0 m/s 12.5 s 15.0 m/s [S] 12.5 s 1.20 m/s 2 [S] Statement:
More informationPHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76
PHYS 1101 Practce problem set 1, Chapter 3: 1,, 4, 57, 61, 83 Chapter 33: 7, 1, 3, 38, 44, 49, 76 3.1. Vsualze: Please reer to Fgure Ex3.1. Solve: Because B s n the same drecton as the ntegraton path s
More informationPage 1. Clicker Question 9: Physics 131: Lecture 15. Today s Agenda. Clicker Question 9: Energy. Energy is Conserved.
Physcs 3: Lecture 5 Today s Agenda Intro to Conseraton o Energy Intro to some derent knds o energy Knetc Potental Denton o Mechancal Energy Conseraton o Mechancal Energy Conserate orces Examples Pendulum
More informationWeek 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product
The Vector Product Week 11: Chapter 11 Angular Momentum There are nstances where the product of two vectors s another vector Earler we saw where the product of two vectors was a scalar Ths was called the
More informationPhysics 207: Lecture 20. Today s Agenda Homework for Monday
Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems
More informationSlide. King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 5: MOTION IN 1D (PART 2) LECTURE NO.
Slde Kng Saud Unersty College of Scence Physcs & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 5: MOTION IN 1D (PART ) LECTURE NO. 6 THIS PRESENTATION HAS BEEN PREPARED BY: DR. NASSR S. ALZAYED Lecture
More informationChapter 8. Potential Energy and Conservation of Energy
Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and nonconservatve forces Mechancal Energy Conservaton of Mechancal
More informationPhysics 101 Lecture 9 Linear Momentum and Collisions
Physcs 0 Lecture 9 Lnear Momentum and Collsons Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum and Collsons q q q q q q q Conseraton o Energy Momentum Impulse Conseraton o Momentum D Collsons
More informationEN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st
EN40: Dynamcs and bratons Homework 4: Work, Energy and Lnear Momentum Due Frday March 1 st School of Engneerng Brown Unversty 1. The fgure (from ths publcaton) shows the energy per unt area requred to
More informationPhysics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1
Physcs 141. Lecture 14. Frank L. H. Wolfs Department of Physcs and Astronomy, Unversty of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Course Informaton: Lab report # 3. Exam # 2. MultPartcle
More informationˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m)
7.. = = 3 = 4 = 5. The electrc feld s constant everywhere between the plates. Ths s ndcated by the electrc feld vectors, whch are all the same length and n the same drecton. 7.5. Model: The dstances to
More informationPhysics 2A Chapters 6  Work & Energy Fall 2017
Physcs A Chapters 6  Work & Energy Fall 017 These notes are eght pages. A quck summary: The workenergy theorem s a combnaton o Chap and Chap 4 equatons. Work s dened as the product o the orce actng on
More informationPHYS 705: Classical Mechanics. Newtonian Mechanics
1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]
More informationK = 100 J. [kg (m/s) ] K = mv = (0.15)(36.5) !!! Lethal energies. m [kg ] J s (Joule) Kinetic Energy (energy of motion) E or KE.
Knetc Energy (energy of moton) E or KE K = m v = m(v + v y + v z ) eample baseball m=0.5 kg ptche at v = 69 mph = 36.5 m/s K = mv = (0.5)(36.5) [kg (m/s) ] Unts m [kg ] J s (Joule) v = 69 mph K = 00 J
More informationMechanics Cycle 3 Chapter 9++ Chapter 9++
Chapter 9++ More on Knetc Energy and Potental Energy BACK TO THE FUTURE I++ More Predctons wth Energy Conservaton Revst: Knetc energy for rotaton Potental energy M total g y CM for a body n constant gravty
More informationSupplemental Instruction sessions next week
Homework #4 Wrtten homework due now Onlne homework due on Tue Mar 3 by 8 am Exam 1 Answer keys and scores wll be posted by end of the week Supplemental Instructon sessons next week Wednesday 8:45 10:00
More informationChapter 11 Angular Momentum
Chapter 11 Angular Momentum Analyss Model: Nonsolated System (Angular Momentum) Angular Momentum of a Rotatng Rgd Object Analyss Model: Isolated System (Angular Momentum) Angular Momentum of a Partcle
More information10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 913, 1516
0/4/03 PHY 3 C General Physcs I AM :5 PM T Oln 0 Plan or Lecture 7: evew o Chapters 93, 56. Comment on exam and advce or preparaton. evew 3. Example problems 0/4/03 PHY 3 C Fall 03  Lecture 7 0/4/03
More informationGAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME PHYSICAL SCIENCES GRADE 12 SESSION 1 (LEARNER NOTES)
PHYSICAL SCIENCES GRADE 1 SESSION 1 (LEARNER NOTES) TOPIC 1: MECHANICS PROJECTILE MOTION Learner Note: Always draw a dagram of the stuaton and enter all the numercal alues onto your dagram. Remember to
More information11. Dynamics in Rotating Frames of Reference
Unversty of Rhode Island DgtalCommons@URI Classcal Dynamcs Physcs Course Materals 2015 11. Dynamcs n Rotatng Frames of Reference Gerhard Müller Unversty of Rhode Island, gmuller@ur.edu Creatve Commons
More informationEMU Physics Department.
Physcs 0 Lecture 9 Lnear Momentum and Collsons Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum q Conseraton o Energy q Momentum q Impulse q Conseraton o Momentum q D Collsons
More informationAngular momentum. Instructor: Dr. Hoi Lam TAM ( 譚海嵐 )
Angular momentum Instructor: Dr. Ho Lam TAM ( 譚海嵐 ) Physcs Enhancement Programme or Gted Students The Hong Kong Academy or Gted Educaton and Department o Physcs, HKBU Department o Physcs Hong Kong Baptst
More informationProf. Dr. I. Nasser T /16/2017
Pro. Dr. I. Nasser T171 10/16/017 Chapter Part 1 Moton n one dmenson Sectons ,, 3, 4, 5  Moton n 1 dmenson We le n a 3dmensonal world, so why bother analyzng 1dmensonal stuatons? Bascally, because
More informationRecitation: Energy, Phys Energies. 1.2 Three stones. 1. Energy. 1. An acorn falling from an oak tree onto the sidewalk.
Rectaton: Energy, Phys 207. Energy. Energes. An acorn fallng from an oak tree onto the sdewalk. The acorn ntal has gravtatonal potental energy. As t falls, t converts ths energy to knetc. When t hts the
More informationConservation of Energy
Conservaton o nergy The total energy o a system can change only by amounts o energy that are transerred nto or out o the system W mec th nt Ths s one o the great conservaton laws n nature! Other conservaton
More informationONEDIMENSIONAL COLLISIONS
Purpose Theory ONEDIMENSIONAL COLLISIONS a. To very the law o conservaton o lnear momentum n onedmensonal collsons. b. To study conservaton o energy and lnear momentum n both elastc and nelastc onedmensonal
More informationWeek 6, Chapter 7 Sect 15
Week 6, Chapter 7 Sect 15 Work and Knetc Energy Lecture Quz The frctonal force of the floor on a large sutcase s least when the sutcase s A.pushed by a force parallel to the floor. B.dragged by a force
More information1 cos. where v v sin. Range Equations: for an object that lands at the same height at which it starts. v sin 2 i. t g. and. sin g
SPH3UW Unt.5 Projectle Moton Pae 1 of 10 Note Phc Inventor Parabolc Moton curved oton n the hape of a parabola. In the drecton, the equaton of oton ha a t ter Projectle Moton the parabolc oton of an object,
More informationPhysics 207 Lecture 6
Physcs 207 Lecture 6 Agenda: Physcs 207, Lecture 6, Sept. 25 Chapter 4 Frames of reference Chapter 5 ewton s Law Mass Inerta s (contact and noncontact) Frcton (a external force that opposes moton) Free
More informationRotational and Translational Comparison. Conservation of Angular Momentum. Angular Momentum for a System of Particles
Conservaton o Angular Momentum 8.0 WD Rotatonal and Translatonal Comparson Quantty Momentum Ang Momentum Force Torque Knetc Energy Work Power Rotaton L cm = I cm ω = dl / cm cm K = (/ ) rot P rot θ W =
More informationin state i at t i, Initial State E = E i
Physcs 01, Lecture 1 Today s Topcs n More Energy and Work (chapters 7 & 8) n Conservatve Work and Potental Energy n Sprng Force and Sprng (Elastc) Potental Energy n Conservaton of Mechanc Energy n Exercse
More informationPhysics 106 Lecture 6 Conservation of Angular Momentum SJ 7 th Ed.: Chap 11.4
Physcs 6 ecture 6 Conservaton o Angular Momentum SJ 7 th Ed.: Chap.4 Comparson: dentons o sngle partcle torque and angular momentum Angular momentum o a system o partcles o a rgd body rotatng about a xed
More informationLinear Momentum and Collisions
Lnear Momentum and Collsons Chater 9 Lnear Momentum [kg m/s] x y mv x mv y Newton s nd Law n terms o momentum: Imulse I  [kg m/s] I t t Fdt I = area under curve bounded by t axs ImulseMomentum Theorem
More informationChapter 2. Pythagorean Theorem. Right Hand Rule. Position. Distance Formula
Chapter Moton n One Dmenson Cartesan Coordnate System The most common coordnate system or representng postons n space s one based on three perpendcular spatal axes generally desgnated x, y, and z. Any
More informationPhysics 105: Mechanics Lecture 13
Physcs 05: Mechancs Lecture 3 Wenda Cao NJIT Physcs Department Momentum and Momentum Conseraton Momentum Impulse Conseraton o Momentum Collsons Lnear Momentum A new undamental quantty, lke orce, energy
More informationPhysics 114 Exam 2 Spring Name:
Physcs 114 Exam Sprng 013 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red wth the amount beng
More informationModule 11 Design of Joints for Special Loading. Version 2 ME, IIT Kharagpur
Module 11 Desgn o Jonts or Specal Loadng Verson ME, IIT Kharagpur Lesson 1 Desgn o Eccentrcally Loaded Bolted/Rveted Jonts Verson ME, IIT Kharagpur Instructonal Objectves: At the end o ths lesson, the
More informationPhysics 131: Lecture 16. Today s Agenda
Physcs 131: Lecture 16 Today s Agenda Intro to Conseraton o Energy Intro to some derent knds o energy Knetc Potental Denton t o Mechancal Energy Conseraton o Mechancal Energy Conserate orces Examples Pendulum
More informationPart C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis
Part C Dynamcs and Statcs of Rgd Body Chapter 5 Rotaton of a Rgd Body About a Fxed Axs 5.. Rotatonal Varables 5.. Rotaton wth Constant Angular Acceleraton 5.3. Knetc Energy of Rotaton, Rotatonal Inerta
More informationPHYSICS 231 Review problems for midterm 2
PHYSICS 31 Revew problems for mdterm Topc 5: Energy and Work and Power Topc 6: Momentum and Collsons Topc 7: Oscllatons (sprng and pendulum) Topc 8: Rotatonal Moton The nd exam wll be Wednesday October
More informationENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15
NGN 40 ynamcs and Vbratons Homework # 7 ue: Frday, Aprl 15 1. Consder a concal hostng drum used n the mnng ndustry to host a mass up/down. A cable of dameter d has the mass connected at one end and s wound/unwound
More informationPhysics 111: Mechanics Lecture 11
Physcs 111: Mechancs Lecture 11 Bn Chen NJIT Physcs Department Textbook Chapter 10: Dynamcs of Rotatonal Moton q 10.1 Torque q 10. Torque and Angular Acceleraton for a Rgd Body q 10.3 RgdBody Rotaton
More informationPage 1. SPH4U: Lecture 7. New Topic: Friction. Today s Agenda. Surface Friction... Surface Friction...
SPH4U: Lecture 7 Today s Agenda rcton What s t? Systeatc catagores of forces How do we characterze t? Model of frcton Statc & Knetc frcton (knetc = dynac n soe languages) Soe probles nvolvng frcton ew
More informationPhysics 2A Chapter 9 HW Solutions
Phscs A Chapter 9 HW Solutons Chapter 9 Conceptual Queston:, 4, 8, 13 Problems: 3, 8, 1, 15, 3, 40, 51, 6 Q9.. Reason: We can nd the change n momentum o the objects b computng the mpulse on them and usng
More informationPhysics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian1
P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the
More informationLecture 22: Potential Energy
Lecture : Potental Energy We have already studed the workenergy theorem, whch relates the total work done on an object to the change n knetc energy: Wtot = KE For a conservatve orce, the work done by
More information1. The number of significant figures in the number is a. 4 b. 5 c. 6 d. 7
Name: ID: Anwer Key There a heet o ueul ormulae and ome converon actor at the end. Crcle your anwer clearly. All problem are pont ecept a ew marked wth ther own core. Mamum core 100. There are a total
More information10/9/2003 PHY Lecture 11 1
Announcements 1. Physc Colloquum today The Physcs and Analyss of Nonnvasve Optcal Imagng. Today s lecture Bref revew of momentum & collsons Example HW problems Introducton to rotatons Defnton of angular
More informationPhysics 201 Lecture 9
Physcs 20 Lecture 9 l Goals: Lecture 8 ewton s Laws v Solve D & 2D probles ntroducng forces wth/wthout frcton v Utlze ewton s st & 2 nd Laws v Begn to use ewton s 3 rd Law n proble solvng Law : An obect
More information10/23/2003 PHY Lecture 14R 1
Announcements. Remember  Tuesday, Oct. 8 th, 9:30 AM Second exam (coverng Chapters 94 of HRW) Brng the followng: a) equaton sheet b) Calculator c) Pencl d) Clear head e) Note: If you have kept up wth
More informationWeek 9 Chapter 10 Section 15
Week 9 Chapter 10 Secton 15 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,
More informationCh04 Work, Energy and Power What is work in physics?
Eunl Won Dept o Physcs, Korea Unversty 1 Ch04 Work, Energy and Power What s work n physcs? Eunl Won Dept o Physcs, Korea Unversty Eunl Won Dept o Physcs, Korea Unversty 3 Work W F d W Fd cosφ W Fd ο cos
More informationChapter 11: Angular Momentum
Chapter 11: ngular Momentum Statc Equlbrum In Chap. 4 we studed the equlbrum of pontobjects (mass m) wth the applcaton of Newton s aws F 0 F x y, 0 Therefore, no lnear (translatonal) acceleraton, a0 For
More informationMotion in One Dimension
Moton n One Dmenson Speed ds tan ce traeled Aerage Speed tme of trael Mr. Wolf dres hs car on a long trp to a physcs store. Gen the dstance and tme data for hs trp, plot a graph of hs dstance ersus tme.
More informationDegrees of Freedom. Spherical (ball & socket) 3 (3 rotation) TwoAngle (universal) 2 (2 rotation)
ME 6590 Multbody Dynamcs Connectn Jonts Part I o Connectn jonts constran te relatve moton between adjonn bodes n a multbody system. Jonts rane rom allown no relatve moton (a rd jont) to allown all motons
More informationChapter 12 Equilibrium & Elasticity
Chapter 12 Equlbrum & Elastcty If there s a net force, an object wll experence a lnear acceleraton. (perod, end of story!) If there s a net torque, an object wll experence an angular acceleraton. (perod,
More informationForce = F Piston area = A
CHAPTER III Ths chapter s an mportant transton between the propertes o pure substances and the most mportant chapter whch s: the rst law o thermodynamcs In ths chapter, we wll ntroduce the notons o heat,
More informationFirst Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.
Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act
More informationmeasurement and the charge the electric field will be calculated using E =. The direction of the field will be the . But, so
THE ELECTRIC FIELD 6 Conceptual Questons 6.. A tny, postve test charge wll be placed at the pont n space and the force wll be measured. From the force F measurement and the charge the electrc feld wll
More informationPlease initial the statement below to show that you have read it
EN40: Dynamcs and Vbratons Mdterm Examnaton Thursday March 5 009 Dvson of Engneerng rown Unversty NME: Isaac Newton General Instructons No collaboraton of any knd s permtted on ths examnaton. You may brng
More informationSection 8.1 Exercises
Secton 8.1 Nonrght Trangles: Law of Snes and Cosnes 519 Secton 8.1 Exercses Solve for the unknown sdes and angles of the trangles shown. 10 70 50 1.. 18 40 110 45 5 6 3. 10 4. 75 15 5 6 90 70 65 5. 6.
More information