Welcome back to PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz

Size: px
Start display at page:

Download "Welcome back to PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz"

Transcription

1 Welcome back to PHY101: Major Concepts in Physics I Photo: J. M. Schwarz

2 Announcements Course Website: HW 7 on Chapters 9 and 16 is due on Friday at 5PM in your TA s mailbox. No lab this week, but there is lab next week. After Chapter 16, we head to Chapter 17. Again, the Physics Clinic in PB112 is open from 9-9 Monday-Thursday and 9-5 Friday. It is staffed by at least one physics graduate student to answer any of your PHY101 questions if you cannot come to my office hours or your TA's office hours.

3 Seventh set of Three Big Questions What is electric charge? How do electric charges interact? What is an electric field? 3

4 16.4 THE ELECTRIC FIELD If a point charge q is in the vicinity of other charges, it experiences an electric force. The electric field (symbol ) at any point is defined to be the electric force per unit charge at that point. See falstad.com for examples of electric fields in 3D Slide 4

5 16.5 MOTION OF A POINT CHARGE IN A UNIFORM ELECTRIC FIELD The simplest example of how a charged object responds to an electric field is when the electric field (due to other charges) is uniform that is, has the same magnitude and direction at every point. Slide 5

6 16.9 Slide 6

7 It s Demo Time!

8 Physics Problem Solving 1 DAP Draw a picture 2 KNU Knowns and unknowns 3 EQN Equation(s) 4SSF Solve symbolically first 5 CYA Check your answer 6PIK Plug in knowns

9 16.9 A cathode ray tube (CRT) is used to accelerate electrons in some televisions, computer monitors, oscilloscopes, and x-ray tubes. Electrons from a heated filament pass through a hole in the cathode; they are then accelerated by an electric field between the cathode and the anode (next slide). Suppose an electron passes through the hole in the cathode at a velocity of m/s toward the anode. The electric field is uniform between the anode and cathode and has a magnitude of N/C. (a) What is the acceleration of the electron? (b) If the anode and cathode are separated by 2.0 cm, what is the final velocity of the electron? Slide 9

10 Strategy 16.9 Slide 10

11 Solution (a) 16.9 Slide 11

12 Solution (b) 16.9 Slide 12

13 Physics Problem Solving 1 DAP Draw a picture 2 KNU Knowns and unknowns 3 EQN Equation(s) 4SSF Solve symbolically first 5 CYA Check your answer 6PIK Plug in knowns

14 16.6 Two point charges are located on the x -axis. Charge q 1 = μc is located at x = 0; charge q 2 = 0.50 μc is located at x = 0.40 m. Point P is located at x = 1.20 m. What is the magnitude and direction of the electric field at point P due to the two charges? Slide 14

15 16.6 Strategy We can determine the field at P due to q 1 and the field at P due to q 2 separately using Coulomb s law and the definition of the electric field. In each case, the electric field points in the direction of the electric force on a positive test charge at point P. The sum of these two fields is the electric field at P. Slide 15

16 Solution 16.6 Slide 16

17 Solution 16.6 Slide 17

18 Solution 16.6 Slide 18

19 An electric field due to a positive charge is represented by the diagram. Between which of the following two points does the electric field do zero work on a moving charge? A. A and B B. B and C C. C and D D. D and E

20 An electric field due to a positive charge is represented by the diagram. Between which of the following two points does the electric field do zero work on a moving charge? A. A and B B. B and C C. C and D D. D and E

21 It s Demo Time! (including a clicker question)

22 We have talked about potential energy before..

23 We have talked about potential energy before.. Gravitational potential energy

24 We have talked about potential energy before.. Gravitational potential energy Elastic potential energy

25 We have talked about potential energy before.. Gravitational potential energy Elastic potential energy These energies are related to forces, so what about electric potential energy related to electric forces?

26 Eighth set of Two Big Questions What is electric potential energy and electric potential? How does one store/harness the electric potential energy? 26

27 Electric potential energy is the energy stored in an electric field. Slide 27

28 For both gravitational and electric potential energy, the change in potential energy when objects move around is equal in magnitude but opposite in sign to the work done by the field: Slide 28

29 CONNECTION The electric force and the electric potential energy for a pair of point particles are proportional to the product of the charges of the particles: Slide 29

30 CONNECTION The electric force and the electric potential energy for a pair of point particles are proportional to the product of the charges of the particles: vs. Slide 30

31 CONNECTION Some of the many similarities between gravitational and electric potential energy include: In both cases, the potential energy depends on only the positions of various objects, not on the path they took to get to those positions. Only changes in potential energy are physically significant, so we are free to assign the potential energy to be zero at any one convenient point. For two point particles, we usually choose U = 0 when the particles are infinitely far apart. Slide 31

32 CONNECTION Both the gravitational and electrical forces exerted by one point particle on another are inversely proportional to the square of the distance between them (F 1/r 2 ). As a result, the gravitational and electric potential energies have the same distance dependence (U 1/r, with U = 0 at r = ). The gravitational force and the gravitational potential energy for a pair of point particles are proportional to the product of the masses of the particles: Slide 32

33 Slide 33

34 Electric Potential Energy due to Several Point Charges To find the potential energy due to more than two point charges, we add the potential energies of each pair of charges. For three point charges, there are three pairs, so the potential energy is The potential energy is the negative of the work done by the electric field as the three charges are put into their positions, starting from infinite separation. Slide 34

35 ELECTRIC POTENTIAL Just as the electric field is defined as the electric force per unit charge, the electric potential V is defined as the electric potential energy per unit charge. Electric potential is often shortened to potential. It is also informally called voltage. Slide 35

36 Potentials do not have direction in space; they are added just as any other number (scalar). Potentials can be either positive or negative and so must be added with their algebraic signs. If the potential at a point due to a collection of fixed charges is V, then when a charge q is placed at that point, the electric potential energy is Slide 36

37 Potential Difference When a point charge q moves from point A to point B, it moves through a potential difference The potential difference is the change in electric potential energy per unit charge: Slide 37

38 THE RELATIONSHIP BETWEEN ELECTRIC FIELD AND POTENTIAL Slide 38

39 The SI unit for electric potential energy is equivalent to A. N m. B. V C. C. N/m. D. C m 2.

40 The SI unit for electric potential energy is equivalent to A. N m. B. V C. C. N/m. D. C m 2.

41 To prep for Lab 6..

42 Definition of electric current: The SI unit of current, equal to one coulomb per second, is the ampere (A). Slide 42

43 Conventional Current According to convention, the direction of an electric current is defined as the direction in which positive charge is transported or would be transported to produce an equivalent movement of net charge. Slide 43

44 EMF AND CIRCUITS Electromotive force (battery) in an Electric Circuit Slide 44

45 Circuit Symbols for a Battery Of the two vertical lines, the long line represents the terminal at higher potential and the short line represents the terminal at lower potential. Slide 45

46 Lab 6: How does a zinc-copperacetic acid battery work? Here is an image depicting the electrochemistry of a zinccopper-sulfric acid battery.

Welcome back to PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz

Welcome back to PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz Welcome back to PHY101: Major Concepts in Physics I Photo: J. M. Schwarz Announcements Course Website: http://jmschwarztheorygroup.org/phy101/ HW 7 on Chapters 9 and 16 is due on Friday at 5PM in your

More information

PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz

PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz Welcome back to PHY101: Major Concepts in Physics I Photo: J. M. Schwarz Announcements In class today we will finish Chapter 17 on electric potential energy and electric potential and perhaps begin Chapter

More information

Welcome back to PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz

Welcome back to PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz Welcome back to PHY101: Major Concepts in Physics I Photo: J. M. Schwarz Announcements In class today we will finish Chapter 18 on circuits and begin Chapter 19 (sections 1 and 8) on magnetic fields. There

More information

PHY101: Major Concepts in Physics I

PHY101: Major Concepts in Physics I Welcome back to PHY101: Major Concepts in Physics I Photo: J. M. Schwarz Announcements In class today we will finish Chapter 20 (sections 3, 4, and 7). and then move to Chapter 13 (the first six sections).

More information

Welcome back to PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz

Welcome back to PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz Welcome back to PHY101: Major Concepts in Phsics I Photo: J. M. Schwarz Announcements Course Website: jmschwarztheorgroup.org/ph101/ HW on Chapter is due at the beginning of lecture on Wednesda. HW 3 on

More information

PHY101: Major Concepts in Physics I

PHY101: Major Concepts in Physics I Welcome back to PHY101: Major Concepts in Physics I Photo: J. M. Schwarz Announcements In class today we will finish Chapter 20 (sections 3, 4, and 7). and then move to Chapter 13 (the first six sections).

More information

Physics The Motion of Charged Particles in Electric Fields Figure 1 use considerations of energy to analyze its motion Figure 2

Physics The Motion of Charged Particles in Electric Fields Figure 1 use considerations of energy to analyze its motion Figure 2 Physics 12 The Motion of Charged Particles in Electric Fields In Figure 1, the charge q 1 experiences a Coulomb force, to the right in this case, whose magnitude is given by It simply means that if q 1,

More information

Section 1: Electric Fields

Section 1: Electric Fields PHY 132 Outline of Lecture Notes i Section 1: Electric Fields A property called charge is part of the basic nature of protons and electrons. Large scale objects become charged by gaining or losing electrons.

More information

Homework 2: Forces on Charged Particles

Homework 2: Forces on Charged Particles Homework 2: Forces on Charged Particles 1. In the arrangement shown below, 2 C of positive charge is moved from plate S, which is at a potential of 250 V, to plate T, which is at a potential of 750 V.

More information

Chapter 16 Electrical Energy Capacitance. HW: 1, 2, 3, 5, 7, 12, 13, 17, 21, 25, 27 33, 35, 37a, 43, 45, 49, 51

Chapter 16 Electrical Energy Capacitance. HW: 1, 2, 3, 5, 7, 12, 13, 17, 21, 25, 27 33, 35, 37a, 43, 45, 49, 51 Chapter 16 Electrical Energy Capacitance HW: 1, 2, 3, 5, 7, 12, 13, 17, 21, 25, 27 33, 35, 37a, 43, 45, 49, 51 Electrical Potential Reminder from physics 1: Work done by a conservative force, depends only

More information

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc.

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc. Chapter 23 Electric Potential Units of Chapter 23 Electric Potential Energy and Potential Difference Relation between Electric Potential and Electric Field Electric Potential Due to Point Charges Potential

More information

Physics 115. Energy in E fields Electric Current Batteries Resistance. General Physics II. Session 21

Physics 115. Energy in E fields Electric Current Batteries Resistance. General Physics II. Session 21 Physics 115 General Physics II Session 21 Energy in E fields Electric Current Batteries Resistance R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 5/6/14

More information

PHY101: Major Concepts in Physics I

PHY101: Major Concepts in Physics I Welcome back to PHY101: Major Concepts in Physics I Photo: S. T. Cummins Photo: S. T. Cummins Announcements Today is our final class! We will first discuss more on Chapters 14-15 and then conduct a short

More information

Objects can be charged by rubbing

Objects can be charged by rubbing Electrostatics Objects can be charged by rubbing Charge comes in two types, positive and negative; like charges repel and opposite charges attract Electric charge is conserved the arithmetic sum of the

More information

SPH3U1 Lesson 01 Electricity

SPH3U1 Lesson 01 Electricity ELECTRIC CURRENT AND POTENTIAL DIFFERENCE LEARNING GOALS Students will: Define what is meant by electric current. Solve problems involving current, charge and time. Know the difference between electron

More information

Electric Potential Energy

Electric Potential Energy Electric Potential Energy the electric potential energy of two charges depends on the distance between the charges when two like charges are an infinite distance apart, the potential energy is zero An

More information

Lecture 24 Chapter 22 Electrostatics II Electric Field & Potential. Chapter 23 Electric Current. From last time--

Lecture 24 Chapter 22 Electrostatics II Electric Field & Potential. Chapter 23 Electric Current. From last time-- Lecture 24 Chapter 22 Electrostatics II Electric Field & Potential Chapter 23 Electric Current 21-Oct-10 From last time-- Electric charge (q), measured in Coulombs (C) Positive and negative charge Electric

More information

Circuit Analysis I (ENGR 2405) Chapter 1 Review: Charge, Current, Voltage, Power

Circuit Analysis I (ENGR 2405) Chapter 1 Review: Charge, Current, Voltage, Power Circuit Analysis I (ENGR 2405) Chapter 1 Review: Charge, Current, Voltage, Power What is a circuit? An electric circuit is an interconnection of electrical elements. It may consist of only two elements

More information

In the following information, you will study these three physical quantities as they relate to simple electrical circuits.

In the following information, you will study these three physical quantities as they relate to simple electrical circuits. Module 7 Ohm's Law INTRODUCTION In this experiment, you will study Ohm's Law, the most fundamental relation used in the analysis of electrical circuits. Ohm's Law relates the quantities of voltage, electric

More information

Science Olympiad Circuit Lab

Science Olympiad Circuit Lab Science Olympiad Circuit Lab Key Concepts Circuit Lab Overview Circuit Elements & Tools Basic Relationships (I, V, R, P) Resistor Network Configurations (Series & Parallel) Kirchhoff s Laws Examples Glossary

More information

P Q 2 = -3.0 x 10-6 C

P Q 2 = -3.0 x 10-6 C 1. Which one of the following represents correct units for electric field strength? A. T B. N/C C. J / C D. N m 2 /C 2 2. The diagram below shows two positive charges of magnitude Q and 2Q. P Q 2Q Which

More information

Electric Potential Energy Conservative Force

Electric Potential Energy Conservative Force Electric Potential Energy Conservative Force Conservative force or field is a force field in which the total mechanical energy of an isolated system is conserved. Examples, Gravitation, Electrostatic,

More information

PHYSICS 12 NAME: Electrostatics Review

PHYSICS 12 NAME: Electrostatics Review NAME: Electrostatics Review 1. An electron orbits a nucleus which carries a charge of +9.6 x10-19 C. If the electron s orbital radius is 2.0 x10-10 m, what is its electric potential energy? A. -6.9 x10-18

More information

Test Review Electricity

Test Review Electricity Name: Date: 1. An operating television set draws 0.71 ampere of current when connected to a 120-volt outlet. Calculate the time it takes the television to consume 3.0 10 5 joules of electric energy. [Show

More information

Coulomb s Law. Phys102 Lecture 2. Key Points. Coulomb s Law The electric field (E is a vector!) References

Coulomb s Law. Phys102 Lecture 2. Key Points. Coulomb s Law The electric field (E is a vector!) References Phys102 Lecture 2 Phys102 Lecture 2-1 Coulomb s Law Key Points Coulomb s Law The electric field (E is a vector!) References SFU Ed: 21-5,6,7,8,9,10. 6 th Ed: 16-6,7,8,9,+. Phys102 Lecture 2 Phys102 Lecture

More information

CH 223 Friday Sept. 08, 2017 L14B

CH 223 Friday Sept. 08, 2017 L14B CH 223 Friday Sept. 08, 2017 L14B Previously: Relationships between E cell, K, and ΔG Concentration and cell potential Nernst equation for non-standard conditions: E cell = E 0 cell - 0.0592 n log Q at

More information

PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz

PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz PHY101: Major Concepts in Physics I Photo: J. M. Schwarz Announcements We will be talking about the laws of thermodynamics today, which will help get you ready for next week s lab on the Stirling engine.

More information

Chapter 25 Current, Resistance, and Electromotive Force

Chapter 25 Current, Resistance, and Electromotive Force Chapter 25 Current, Resistance, and Electromotive Force Lecture by Dr. Hebin Li Goals for Chapter 25 To understand current and how charges move in a conductor To understand resistivity and conductivity

More information

Chapter 3: Electric Current And Direct-Current Circuits

Chapter 3: Electric Current And Direct-Current Circuits Chapter 3: Electric Current And Direct-Current Circuits 3.1 Electric Conduction 3.1.1 Describe the microscopic model of current Mechanism of Electric Conduction in Metals Before applying electric field

More information

16.1 Electrical Current

16.1 Electrical Current 16.1 Electrical Current Electric Current Electric Current When the ends of an electric conductor are at different electric potentials, charge flows from one end to the other Flow of Charge Charge flows

More information

Chapter 33 - Electric Fields and Potential. Chapter 34 - Electric Current

Chapter 33 - Electric Fields and Potential. Chapter 34 - Electric Current Chapter 33 - Electric Fields and Potential Chapter 34 - Electric Current Electric Force acts through a field An electric field surrounds every electric charge. It exerts a force that causes electric charges

More information

Physics 2020: Sample Problems for Exam 1

Physics 2020: Sample Problems for Exam 1 Physics 00: Sample Problems for Eam 1 1. Two particles are held fied on the -ais. The first particle has a charge of Q 1 = 6.88 10 5 C and is located at 1 = 4.56 m on the -ais. The second particle has

More information

Electrostatics and Charge. Creating Electric Fields

Electrostatics and Charge. Creating Electric Fields Electrostatics and Charge Creating Electric Fields Electric Charges Recall that all matter is made of atoms. Neutral atoms can acquire a charge in several different ways, all of which require movement

More information

Figure 1. In the following information, you will study these three physical quantities as they relate to simple electrical circuits.

Figure 1. In the following information, you will study these three physical quantities as they relate to simple electrical circuits. Module 7 Ohm s Law INTRODUCTION In this experiment, you will study Ohm s Law, the most fundamental relation used in the analysis of electrical circuits. Ohm s Law relates the quantities of voltage, electric

More information

Chemistry 132 NT. Electrochemistry. Oxidation-Reduction Reactions

Chemistry 132 NT. Electrochemistry. Oxidation-Reduction Reactions Chemistry 132 NT If you ever catch on fire, try to avoid seeing yourself in the mirror, because I bet that s what really throws you into a panic. Jack Handey 1 Chem 132 NT Electrochemistry Module 1 HalfReactions

More information

Section 1 Measuring Electric Fields: Practice Problems

Section 1 Measuring Electric Fields: Practice Problems Section 1 Measuring Electric Fields: Practice Problems 1. A positive test charge of 5.0 10 6 C is in an electric field that exerts a force of 2.0 10 4 N on it. What is the magnitude of the electric field

More information

q C e C k (Equation 18.1) for the distance r, we obtain k (Equation 18.1), where Homework#1 3. REASONING

q C e C k (Equation 18.1) for the distance r, we obtain k (Equation 18.1), where Homework#1 3. REASONING Homework# 3. REASONING a. Since the objects are metallic and identical, the charges on each combine and produce a net charge that is shared equally by each object. Thus, each object ends up with one-fourth

More information

Electric Field of a uniformly Charged Thin Spherical Shell

Electric Field of a uniformly Charged Thin Spherical Shell Electric Field of a uniformly Charged Thin Spherical Shell The calculation of the field outside the shell is identical to that of a point charge. The electric field inside the shell is zero. What are the

More information

Physics 7B-1 (A/B) Professor Cebra. Winter 2010 Lecture 2. Simple Circuits. Slide 1 of 20

Physics 7B-1 (A/B) Professor Cebra. Winter 2010 Lecture 2. Simple Circuits. Slide 1 of 20 Physics 7B-1 (A/B) Professor Cebra Winter 2010 Lecture 2 Simple Circuits Slide 1 of 20 Conservation of Energy Density In the First lecture, we started with energy conservation. We divided by volume (making

More information

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery Capacitance The ratio C = Q/V is a conductor s self capacitance Units of capacitance: Coulomb/Volt = Farad A capacitor is made of two conductors with equal but opposite charge Capacitance depends on shape

More information

PHYS 1444 Section 004 Lecture #10

PHYS 1444 Section 004 Lecture #10 PHYS 1444 Section 004 Lecture #10 Dr. Electric Current and Resistance The Battery Ohm s Law: Resisters Resistivity Electric Power Alternating Current Power Delivered by AC Today s homework is #6, due 10pm,

More information

Which of the following is the SI unit of gravitational field strength?

Which of the following is the SI unit of gravitational field strength? T5-2 [122 marks] 1. A cell is connected in series with a 2.0Ω resistor and a switch. The voltmeter is connected across the cell and reads 12V when the switch is open and 8.0V when the switch is closed.

More information

The Electric Field + + q 1 q 2. Coulomb s Law of Electro-static Force: How does q 1 know of the presence of q 2?

The Electric Field + + q 1 q 2. Coulomb s Law of Electro-static Force: How does q 1 know of the presence of q 2? The Electric ield 1 Coulomb s Law of Electro-static orce: k How does 1 know of the presence of? 1 r rˆ sets up an electric field in the space surrounding it. At any point the field has both a magnitude

More information

PHYS 2135 Engineering Physics II Fall Course Information: Canvas and Course Website Begin with Course Handbook and Syllabus

PHYS 2135 Engineering Physics II Fall Course Information: Canvas and Course Website Begin with Course Handbook and Syllabus Instructor: Dr. Jim Musser musserj@mst.edu Physics 122 PHYS 2135 Engineering Physics II Fall 2018 Course Information: Canvas and Course Website Begin with Course Handbook and Syllabus PHYS 2135 Engineering

More information

Chapter 17 Electric Current and Resistance Pearson Education, Inc.c

Chapter 17 Electric Current and Resistance Pearson Education, Inc.c Chapter 17 Electric Current and Resistance 2010 Pearson Education, Inc.c 1 Units of Chapter 17 Batteries and Direct Current Current and Drift Velocity Resistance and Ohm s Law Electric Power 2010 Pearson

More information

Matthew W. Milligan. Electric Fields. a figment reality of our imagination

Matthew W. Milligan. Electric Fields. a figment reality of our imagination Matthew W. Milligan Electric Fields a figment reality of our imagination Electrostatics I. Charge and Force - concepts and definition - Coulomb s Law II. Field and Potential - electric field strength &

More information

Electric potential energy The concept of electric potential and potential difference Motion of charges in electric field

Electric potential energy The concept of electric potential and potential difference Motion of charges in electric field In this chapter, you will learn: Electric potential energy The concept of electric potential and potential difference Motion of charges in electric field 2.1 Electric potential energy When a charged particle

More information

Welcome Back to Physics Electric Potential. Robert Millikan Physics 1308: General Physics II - Professor Jodi Cooley

Welcome Back to Physics Electric Potential. Robert Millikan Physics 1308: General Physics II - Professor Jodi Cooley Welcome Back to Physics 1308 Electric Potential Robert Millikan 1868-1953 Announcements Assignments for Tuesday, September 18th: - Reading: Chapter 25.1-25.2 - Watch Video:https://youtu.be/wLYOsHDGGVM

More information

You should be able to demonstrate and show your understanding of:

You should be able to demonstrate and show your understanding of: OCR B Physics H557 Module 6: Field and Particle Physics You should be able to demonstrate and show your understanding of: 6.1: Fields (Charge and Field) Field: A potential gradient Field Strength: Indicates

More information

Electrochemistry objectives

Electrochemistry objectives Electrochemistry objectives 1) Understand how a voltaic and electrolytic cell work 2) Be able to tell which substance is being oxidized and reduced and where it is occuring the anode or cathode 3) Students

More information

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc.

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc. Chapter 23 Electric Potential 23-1 Electrostatic Potential Energy and Potential Difference The electrostatic force is conservative potential energy can be defined. Change in electric potential energy

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are primarily conceptual questions designed to see whether you understand the main concepts of the chapter. 1. (a) If the electric field at a particular point is

More information

Voltage, Current, and Power

Voltage, Current, and Power Voltage, Current, and Power The courses Principles of Electrical Engineering I and II are concerned with Circuit Analysis. A circuit contains several components called circuit elements or branches. Each

More information

Lecture 4.1 : Electric Potential

Lecture 4.1 : Electric Potential Lecture 4.1 : Electric Potential Lecture Outline: Electric Potential Energy Potential Energy of Point Charges Electric Potential Textbook Reading: Ch. 28.1-28.4 Feb. 4, 2014 1 Announcements Exam #1 in

More information

Midterms and finals from previous 4 years are now posted on the website (under Exams link). Check the main course website for practice problems

Midterms and finals from previous 4 years are now posted on the website (under Exams link). Check the main course website for practice problems Third WileyPlus homework set is posted Ch. 20: 90 and Ch. 21: 14,38 (Due today at 11:45 pm) Midterms and finals from previous 4 years are now posted on the website (under Exams link). Next week s lab:

More information

Review. Spring Semester /21/14. Physics for Scientists & Engineers 2 1

Review. Spring Semester /21/14. Physics for Scientists & Engineers 2 1 Review Spring Semester 2014 Physics for Scientists & Engineers 2 1 Notes! Homework set 13 extended to Tuesday, 4/22! Remember to fill out SIRS form: https://sirsonline.msu.edu Physics for Scientists &

More information

Announcements Self-inductance. Self-inductance. RL Circuit. RL Circuit, cont 3/11/2011. Chapter (not.9-.10) τ = R. Electromagnetic Waves

Announcements Self-inductance. Self-inductance. RL Circuit. RL Circuit, cont 3/11/2011. Chapter (not.9-.10) τ = R. Electromagnetic Waves Chapter 21.8-13(not.9-.10) Electromagnetic Announcements Clicker quizzes NO LONGER GRADED! WebAssign HW Set 8 due this Friday Problems cover material from Chapters 21-22 Office hours: My office hours today

More information

Several Things to Talk about

Several Things to Talk about A slide from a previous class note Several Things to Talk about Homework Previous student comments: I prefer HW assignments to be mandatory. That way I'm forced to do it and learn. I was good about doing

More information

Chapter 17 Electric Potential

Chapter 17 Electric Potential Chapter 17 Electric Potential Units of Chapter 17 Electric Potential Energy and Potential Difference Relation between Electric Potential and Electric Field Equipotential Lines The Electron Volt, a Unit

More information

Algebra Based Physics Electric Field, Potential Energy and Voltage

Algebra Based Physics Electric Field, Potential Energy and Voltage 1 Algebra Based Physics Electric Field, Potential Energy and Voltage 2016 04 19 www.njctl.org 2 Electric Field, Potential Energy and Voltage Click on the topic to go to that section Electric Field *Electric

More information

ELEC 103. Objectives

ELEC 103. Objectives ELEC 103 Voltage, Current, and Resistance Objectives Define voltage and discuss its characteristics Define current and discuss its characteristics Define resistance and discuss its characteristics Identify

More information

Electrostatics Notes 1 Charges and Coulomb s Law

Electrostatics Notes 1 Charges and Coulomb s Law Electrostatics Notes 1 Charges and Coulomb s Law Matter is made of particles which are or charged. The unit of charge is the ( ) Charges are, meaning that they cannot be It is thought that the total charge

More information

6. In a dry cell electrical energy is obtained due to the conversion of:

6. In a dry cell electrical energy is obtained due to the conversion of: 1. If a wire of uniform area of cross section is cut into two halves (equal in size), the resistivity of each part will be: a) Halved. b) Doubled. c) Becomes four times its initial value. d) Remains the

More information

A 12-V battery does 1200 J of work transferring charge. How much charge is transferred? A source of 1.0 µc is meters is from a positive test

A 12-V battery does 1200 J of work transferring charge. How much charge is transferred? A source of 1.0 µc is meters is from a positive test 1 A source of 1.0 µc is 0.030 meters is from a positive test charge of 2.0 µc. (a) What is the force on the test charge? (b) What is the potential energy of the test charge? (c) What is the strength of

More information

5. ELECTRIC CURRENTS

5. ELECTRIC CURRENTS 5. ELECTRIC CURRENTS TOPIC OUTLINE Section Recommended Time Giancoli Section 5.1 Potential Difference, Current, Resistance 5.2 Electric Circuits 3h 19.1, 19.2 6.2 Electric Field and Force 6.3 Magnetic

More information

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When more devices are added to a series circuit, the total circuit resistance: a.

More information

Your name: Your TA: Your section Day/Time: PHY 101 Practice in-class exam III Wednesday, November 28, 3:15-3:35PM

Your name: Your TA: Your section Day/Time: PHY 101 Practice in-class exam III Wednesday, November 28, 3:15-3:35PM 1 Your name: Your TA: Your section Day/Time: PHY 101 Practice in-class exam III Wednesday, November 28, 3:15-3:35PM Please be sure to show your work where it is requested. If no work is shown where it

More information

Electrolysis Active Learning During Class Activity Tom Greenbowe Department of Chemistry & Biochemistry University of Oregon Eugene, Oregon

Electrolysis Active Learning During Class Activity Tom Greenbowe Department of Chemistry & Biochemistry University of Oregon Eugene, Oregon Electrolysis Active Learning During Class Activity Tom Greenbowe Department of Chemistry & Biochemistry University of Oregon Eugene, Oregon Electrolytic cells the use of electrical energy to drive thermodynamically

More information

Test Review FQ3eso_U5_4_Electric field_test_review

Test Review FQ3eso_U5_4_Electric field_test_review Test Review FQ3eso_U5_4_Electric field_test_review Identify the letter of the choice that best completes the statement or answers the question. 1.- In which diagram do the field lines best represent the

More information

SIMPLE D.C. CIRCUITS AND MEASUREMENTS Background

SIMPLE D.C. CIRCUITS AND MEASUREMENTS Background SIMPLE D.C. CICUITS AND MEASUEMENTSBackground This unit will discuss simple D.C. (direct current current in only one direction) circuits: The elements in them, the simple arrangements of these elements,

More information

Electric Potential Energy Chapter 16

Electric Potential Energy Chapter 16 Electric Potential Energy Chapter 16 Electric Energy and Capacitance Sections: 1, 2, 4, 6, 7, 8, 9 The electrostatic force is a conservative force It is possible to define an electrical potential energy

More information

Electrolysis. Electrolysis is the process of using electrical energy to break a compound apart or to reduced an metal ion to an element.

Electrolysis. Electrolysis is the process of using electrical energy to break a compound apart or to reduced an metal ion to an element. Electrolysis Electrolysis is the process of using electrical energy to break a compound apart or to reduced an metal ion to an element. Electrolysis is done in an electrolytic cell. Electrolytic cells

More information

TSOKOS LSN 5-1 TO 5-5 TEST REVIEW

TSOKOS LSN 5-1 TO 5-5 TEST REVIEW IB HYSICS Name: DEIL HYSICS eriod: Date: # Marks: BADDEST CLASS ON CAMUS TSOKOS LSN 5-1 TO 5-5 TEST REIEW 4. This question is about forces on charged particles. (a) (b) A charged particle is situated in

More information

AP Physics Study Guide Chapter 17 Electric Potential and Energy Name. Circle the vector quantities below and underline the scalar quantities below

AP Physics Study Guide Chapter 17 Electric Potential and Energy Name. Circle the vector quantities below and underline the scalar quantities below AP Physics Study Guide Chapter 17 Electric Potential and Energy Name Circle the vector quantities below and underline the scalar quantities below electric potential electric field electric potential energy

More information

Announcements Monday, September 18

Announcements Monday, September 18 Announcements Monday, September 18 WeBWorK 1.4, 1.5 are due on Wednesday at 11:59pm. The first midterm is on this Friday, September 22. Midterms happen during recitation. The exam covers through 1.5. About

More information

Application of Physics II for. Final Exam

Application of Physics II for. Final Exam Application of Physics II for Final Exam Question 1 Four resistors are connected as shown in Figure. (A)Find the equivalent resistance between points a and c. (B)What is the current in each resistor if

More information

Announcements Wednesday, September 05

Announcements Wednesday, September 05 Announcements Wednesday, September 05 WeBWorK 2.2, 2.3 due today at 11:59pm. The quiz on Friday coers through 2.3 (last week s material). My office is Skiles 244 and Rabinoffice hours are: Mondays, 12

More information

Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II

Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II In today s lecture, we will discuss generators and motors. Slide 30-1 Announcement Quiz 4 will be next week. The Final

More information

EXPERIMENT C4: ELECTROCHEMISTRY. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

EXPERIMENT C4: ELECTROCHEMISTRY. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to: 1 Learning Outcomes EXPERIMENT C4: ELECTROCHEMISTRY Upon completion of this lab, the student will be able to: 1) Construct an electrochemical cell. 2) Measure the cell potential for an electrochemical

More information

February 20, Week 6. Homework #4, Due tonight. Mastering Physics: 9 problems from chapters 1 and 3 Written Question: 3.56

February 20, Week 6. Homework #4, Due tonight. Mastering Physics: 9 problems from chapters 1 and 3 Written Question: 3.56 February 20, Week 6 Today: Chapter 5, Applying Newton s Laws Homework #4, Due tonight. Mastering Physics: 9 problems from chapters 1 and 3 Written Question: 3.56 Exam #2, Next Friday, February 24 Review

More information

E40M Charge, Current, Voltage and Electrical Circuits. M. Horowitz, J. Plummer, R. Howe 1

E40M Charge, Current, Voltage and Electrical Circuits. M. Horowitz, J. Plummer, R. Howe 1 E40M Charge, Current, Voltage and Electrical Circuits M. Horowitz, J. Plummer, R. Howe 1 Understanding the Solar Charger Lab Project #1 We need to understand how: 1. Current, voltage and power behave in

More information

Please turn cell phones off

Please turn cell phones off Welcome to Physics 102! Electricity Magnetism (at the heart of most processes around us: in atoms & molecules; living cells) Optics Atomic Physics Nuclear Physics Relativity http://www.communicationcurrents.com

More information

E40M Charge, Current, Voltage and Electrical Circuits KCL, KVL, Power & Energy Flow. M. Horowitz, J. Plummer, R. Howe 1

E40M Charge, Current, Voltage and Electrical Circuits KCL, KVL, Power & Energy Flow. M. Horowitz, J. Plummer, R. Howe 1 E40M Charge, Current, Voltage and Electrical Circuits KCL, KVL, Power & Energy Flow M. Horowitz, J. Plummer, R. Howe 1 Reading For Topics In These Slides Chapter 1 in the course reader OR A&L 1.6-1.7 -

More information

2014 F 2014 AI. 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason.

2014 F 2014 AI. 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason. 2014 F 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason. 2. Figure shows the field lines on a positive charge. Is the work done

More information

AP Physics C - E & M

AP Physics C - E & M Slide 1 / 27 Slide 2 / 27 AP Physics C - E & M Current, Resistance & Electromotive Force 2015-12-05 www.njctl.org Slide 3 / 27 Electric Current Electric Current is defined as the movement of charge from

More information

Physics Week 5(Sem. 2) Name. Magnetism. Chapter Summary. Magnetic Fields

Physics Week 5(Sem. 2) Name. Magnetism. Chapter Summary. Magnetic Fields Physics Week 5(Sem. 2) Name Chapter Summary Magnetism Magnetic Fields Permanent magnets have long been used in navigational compasses. The needle in a compass is supported to allow it to freely rotate

More information

What does it mean for an object to be charged? What are charges? What is an atom?

What does it mean for an object to be charged? What are charges? What is an atom? What does it mean for an object to be charged? What are charges? What is an atom? What are the components of an atom? Define the following: Electric Conductor Electric Insulator Define the following: Electric

More information

Ch. 16 and 17 Review Problems

Ch. 16 and 17 Review Problems Ch. 16 and 17 Review Problems NAME 1) Is it possible for two negative charges to attract each other? A) Yes, they always attract. B) Yes, they will attract if they are close enough. C) Yes, they will attract

More information

1 Physics Level I. Concepts Competencies Essential Questions Standards / Eligible Content

1 Physics Level I. Concepts Competencies Essential Questions Standards / Eligible Content Math Review Concepts Competencies Essential Questions Standards / Eligible A. Math Review 1. Accuracy & Precision 2. Quantitative Measurement 3. Scientific Notation 4. Algebraic Distributing & Factoring

More information

Capacitance and Dielectrics

Capacitance and Dielectrics Slide 1 / 39 Capacitance and Dielectrics 2011 by Bryan Pflueger Capacitors Slide 2 / 39 A capacitor is any two conductors seperated by an insulator, such as air or another material. Each conductor has

More information

ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY RESIT EXAMINATIONS. SEMESTER 2 July 2012

ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY RESIT EXAMINATIONS. SEMESTER 2 July 2012 ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY RESIT EXAMINATIONS SEMESTER 2 July 2012 COURSE NAME: PHYSICS 2 CODE: GROUP: ADET 1 DATE: July 4, 2012 TIME: DURATION: 1:00 pm 2 HOUR INSTRUCTIONS: 1. This paper

More information

Charge The most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter

Charge The most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter Basic Concepts of DC Circuits Introduction An electric circuit is an interconnection of electrical elements. Systems of Units 1 Charge The most basic quantity in an electric circuit is the electric charge.

More information

Objects can be charged by rubbing

Objects can be charged by rubbing Electrostatics Objects can be charged by rubbing Charge comes in two types, positive and negative; like charges repel and opposite charges attract Electric charge is conserved the arithmetic sum of the

More information

Oxidation and Reduction. Oxidation and Reduction

Oxidation and Reduction. Oxidation and Reduction Oxidation and Reduction ϒ When an element loses an electron, the process is called oxidation: Na(s) Na + (aq) + e - ϒ The net charge on an atom is called its oxidation state in this case, Na(s) has an

More information

Study Guide #2. L. Colonna-Romano/T. Keil. Electricity and Magnetism

Study Guide #2. L. Colonna-Romano/T. Keil. Electricity and Magnetism PH1120 Electricity and Magnetism L. Colonna-Romano/T. Keil Term B99 Study Guide #2 With this Study Guide, we will discuss work and energy in situations involving an electric field and related concepts.

More information

Experiment 2 Deflection of Electrons

Experiment 2 Deflection of Electrons Name Partner(s): Experiment 2 Deflection of Electrons Objectives Equipment Preparation Pre-Lab To study the effects of electric fields on beams of fast moving electrons. Cathode-ray tube (CRT), voltage

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 2 Electrostatics Electric flux and Gauss s law Electrical energy potential difference and electric potential potential energy of charged conductors http://www.physics.wayne.edu/~alan/

More information

Lecture 2.1 :! Electric Field

Lecture 2.1 :! Electric Field Lecture 2.1 :! Electric Field Lecture Outline:! Electric Field! Electric Field of Point Charges! Electric Field of Continuous Distribution of Charge! Textbook Reading:! Ch. 26.1-26.3 Jan. 20, 2015 1 Announcements

More information

Physics 121. Instructor: Dr. Chris McCarthy. If you are enrolled, please mark the signup sheet

Physics 121. Instructor: Dr. Chris McCarthy. If you are enrolled, please mark the signup sheet Physics 121 Instructor: Dr. Chris McCarthy If you are enrolled, please mark the signup sheet If you wish to add this class, add your name and ID# to the sheet. Pre-requisite: Physics 111. If you are not

More information

2. Basic Components and Electrical Circuits

2. Basic Components and Electrical Circuits 1 2. Basic Components and Electrical Circuits 2.1 Units and Scales The International System of Units (SI) defines 6 principal units from which the units of all other physical quantities can be derived

More information