# SPH3U1 Lesson 01 Electricity

Size: px
Start display at page:

Transcription

1 ELECTRIC CURRENT AND POTENTIAL DIFFERENCE LEARNING GOALS Students will: Define what is meant by electric current. Solve problems involving current, charge and time. Know the difference between electron flow and conventional current. Know the definition of electric potential difference. Solve problems relating potential difference to energy and charge. ELECTRIC CURRENT Electric Current is the movement of electric charges from one place to another. As objects develop a charge, these charges can move from one object to another and be distributed over a conductor. In metals, the moving charges are electrons. Considering a cylindrical wire with a known cross-sectional area, the total charge, Q, flowing through that area, A, in a time,, constitutes the electric current. Q is the electric charge in coulombs (C) t is the time in seconds (s) I is the electric current measured in amperes (A), 1 A = 1 C/s, which represents 1 C of charge moving past a point in a conductor in 1 second. The charge (Q=Ne) is the magnitude of the net charge passing through the cross-sectional area. N is the number of electrons e is the charge on a single electron or on a single proton and is equal to 1.6 x C. Q1. Calculate the current in an electric toaster if it takes 900 C of charge to toast two slices of bread in 1.5 minutes. THE DIRECTION OF ELECTRIC CURRENT By the definition of electric current, it is assumed that the charge moves from an area of excess (positive charge) to an area where there is a deficit (negative charge). Therefore, the direction of the current is defined as moving from the positive side to the negative side of an electric potential. This assumption about the direction of the electric current is called conventional current or electric current. It was after this definition was proposed that the electron was discovered. The electrons were found to flow from the negative side of a potential source to the positive side. This is referred to as electron flow. Conventional or electric current is the most widely accepted view and it is the one we will use in this course. However, the reality is that it is the electrons that flow not the positive charges. Batteries supply direct current (DC) and wall sockets supply alternating current (AC). 1

2 ELECTRIC POTENTIAL DIFFERENCE In the illustration to the right, the source (the battery) does work on the positive charge by separating it from the negative. The energy used by the source is transferred to the charges. This energy is called the electric potential energy. Consider the analogy of a skier (the + charge) at the bottom of a hill. When the skier takes the ski lift to the top of the hill, the lift transforms mechanical energy from the lift into gravitational potential energy stored in the skier. Different skiers will gain different amounts of gravitational potential energy, but all will gain the same amount per kilogram (E p /m). Gravitational Potential Energy depends only on the height of the hill and the acceleration due to gravity. Similarly, a skier on an "electric hill" is analogous to positive charges in a battery. The chemical reactions inside the voltaic cell take the positive charges from the cathode (the bottom of the electric hill) to the anode (the top of the electric hill) giving them electric potential energy. The charge will flow through a conductor (the wire). When it passes through the light bulb (or load), it will experience an opposition to flow resulting in a loss of potential energy as light and heat. Since the charges lose energy they also lose electric potential, resulting in an electric potential difference. Electric Potential Difference is the change in electric potential energy per Coulomb caused by the load. E is the change in energy in joules (J) Q is the charge in coulombs (C) V is the potential difference in volts (V) 2

3 PRACTICE PROBLEMS 1. A battery uses 45J in order to place 15 C of electrons at the negative terminal. What is the potential difference across the battery? 2. If 10 C of charge passes through a light bulb and a total of 500 J of electric potential energy was used up, what is the potential difference across the light bulb? 3. If 5.0 x 10 2 C of charge passes through a buzzer that operates at 6.0 V, how much electrical energy is converted into sound energy? 4. In the circuit below the potential difference between the two terminals of the battery is 6V. The light bulb uses 1/3 of the electrical energy from the charges and the buzzer uses the remaining 2/3. A B E D C What is the electric potential difference between each of the following pairs of points? a) A and B b) B and C c) A and C d) C and D e) D and E f) C and E g) A and D h) B and E i) A and E j) B and D CLASS WORK Read 11.3, 11.5 Do P513 Q1-5, P518 Q1-5 3

4 Current electricity: Electrical circuit: Open circuit: Closed circuit: Control: Source: Load: Electrical conductor: Short circuit: Electric Current: Ampere (amp): Direct current (DC): Standard Electrical Circuits Definitions and Symbols the flow of electric charges an electrical energy source is connected by conductors to other components such as a load an electrical circuit that contains a gap; no current can flow an electrical circuit that does not contain any gaps; the current can flow a switch that opens or closes a circuit a device that provides energy that can be transformed into electrical energy; e.g., a battery is a source - it transforms chemical potential energy into electrical energy a device that transforms electrical energy into another form of energy; e.g., a light bulb is a load - it transforms electrical energy into light energy and thermal energy a substance through which electrons can move easily; e.g., copper wires are good electrical conductors a circuit in which the load is bypassed, resulting in dangerous overheating; in a short circuit, the current is allowed to travel directly across the source or another component the 'flow rate' of electrons; measured as the total number of electrons that pass a point in the circuit each second the unit used for electric current; the symbol for ampere is A, e.g., current = 2.5 ampere or 2.5 amp or 2.5 A an electric current in which the electrons move in the same forward direction; batteries produce direct current Alternating current (AC): an electric current in which the electrons move in a back and forth pattern in an overall forward direction; electrical generating stations produce alternating current Ammeter: Electric Potential: an instrument used to measure current; since it counts the electron flow rate, it must be connected in the flow rate - in series (aka Voltage) the difference in electrical potential energy per unit charge before and after a source or a load Electric Potential Energy: The total potential energy possessed by electric charges due to their interaction with each other. Electric potential rise: the amount of energy that an electron gains after passing through a source Electric potential drop: the amount of energy that an electron loses after passing through a load Volt: the unit used for electrical potential difference; the symbol for volt is V, e.g.., electrical potential difference = 1.5 volt or 1.5 V Voltmeter: Series Circuit: Parallel Circuit: an instrument used to measure electrical potential difference; since it compares the electron energy before and after a device, it must be connected at the two ends of the device, in parallel A circuit where the current flows in one continuous path from the sources to the load (or loads) A circuit where current can take two or more different paths moving from the source to the load (or loads)

5 Standard Electrical Symbols

### Electron Theory of Charge. Electricity. 1. Matter is made of atoms. Refers to the generation of or the possession of electric charge.

Electricity Refers to the generation of or the possession of electric charge. There are two kinds of electricity: 1. Static Electricity the electric charges are "still" or static 2. Current Electricity

### ELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current?

ELECTRICITY What do you already know about it? Voltage? Resistance? Current? Do Smarty Demo 1 Electric Circuit A path over which electrons travel, out through the negative terminal, through the conductor,

### Chapter 33 - Electric Fields and Potential. Chapter 34 - Electric Current

Chapter 33 - Electric Fields and Potential Chapter 34 - Electric Current Electric Force acts through a field An electric field surrounds every electric charge. It exerts a force that causes electric charges

### Continuous flow of electric charges. Current Electricity

Continuous flow of electric charges Current Electricity Did You Know? The voltage across a muscle cell in your body is about 70 millivolts. A millivolt (mv) is one thousandth of a volt. AC and DC DC Direct

### 16.1 Electrical Current

16.1 Electrical Current Electric Current Electric Current When the ends of an electric conductor are at different electric potentials, charge flows from one end to the other Flow of Charge Charge flows

### CHAPTER 1 ELECTRICITY

CHAPTER 1 ELECTRICITY Electric Current: The amount of charge flowing through a particular area in unit time. In other words, it is the rate of flow of electric charges. Electric Circuit: Electric circuit

### Dynamic Electricity. All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison

Dynamic Electricity All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison Review Everything is made of atoms which contain POSITIVE particles called PROTONS and NEGATIVE

### (b) State the relation between work, charge and potential difference for an electric circuit.

Question Bank on Ch-Electricity 1. (a) Define the S.I unit of potential difference. (b) State the relation between work, charge and potential difference for an electric circuit. Calculate the potential

### A Review of Circuitry

1 A Review of Circuitry There is an attractive force between a positive and a negative charge. In order to separate these charges, a force at least equal to the attractive force must be applied to one

### Electricity. Part 1: Static Electricity

Electricity Part 1: Static Electricity Introduction: Atoms Atoms are made up of charged particles. Atoms are made of 3 subatomic particles: Electrons protons, electrons and neutrons. Protons () Charge

### Electricity Courseware Instructions

Physics Electricity Courseware Instructions This courseware acts as a supplement to the classroom instruction. The five sections on the following slide link to the topic areas. Following the topic area

### CHARGE AND ELECTRIC CURRENT:

ELECTRICITY: CHARGE AND ELECTRIC CURRENT ELECTRIC CHARGE ELECTRIC CURRENT ELECTRIC CIRCUIT DEFINITION AND COMPONENTS EFFECTS OF ELECTRIC CURRENT TYPES OF CIRCUITS ELECTRIC QUANTITIES VOLTAGE CURRENT RESISTANCE

### Conceptual Physical Science 6 th Edition

Conceptual Physical Science 6 th Edition Chapter 8: STATIC AND CURRENT ELECTRICITY 1 Chapter 8: STATIC AND CURRENT ELECTRICITY Chapter 8: Read: All Homework: Four problems from the following set: 4, 6,

### V R I = UNIT V: Electricity and Magnetism Chapters Chapter 34: Electric Current. volt ohm. voltage. current = I. The Flow of Charge (34.

IMPORTANT TERMS: Alternating current (AC) Ampere Diode Direct current (DC) Electric current Electric power Electric resistance Ohm Ohm s Law Potential difference Voltage source EQUATIONS: UNIT V: Electricity

### Electricity. Prepared by Juan Blázquez, Alissa Gildemann. Electric charge is a property of all objects. It is responsible for electrical phenomena.

Unit 11 Electricity 1. Electric charge Electric charge is a property of all objects. It is responsible for electrical phenomena. Electrical phenomena are caused by the forces of attraction and repulsion.

### Notes on Electricity (Circuits)

A circuit is defined to be a collection of energy-givers (batteries) and energy-takers (resistors, light bulbs, radios, etc.) that form a closed path (or complete path) through which electrical current

### ELECTRICAL FORCE UNIT NOTES

ELECTRICAL FORCE UNIT NOTES Property that causes electrical force is called Charge Opposite charges Attract Like charges Repel Charge comes from the atoms. Electrons are negative, protons are positive.

### Electricity. Power Ratings. Section SPH3U Sec notebook. January 02, 2014

Section 11.1 11.4 Electricity A form of energy resulting from the existence of charged particles (such as electrons or protons), either statically as an accumulation of charge or dynamically as a current

### Lecture 24 Chapter 22 Electrostatics II Electric Field & Potential. Chapter 23 Electric Current. From last time--

Lecture 24 Chapter 22 Electrostatics II Electric Field & Potential Chapter 23 Electric Current 21-Oct-10 From last time-- Electric charge (q), measured in Coulombs (C) Positive and negative charge Electric

### WHAT ARE THE EFFECTS OF MOVING CHARGES?

ELECTRICITY WHAT ARE THE EFFECTS OF MOVING CHARGES? ELECTRICAL CHARGES Most atoms have the same number of protons and electrons. They often lose and gain electrons. When this happens, the atom s charge

### Closed loop of moving charges (electrons move - flow of negative charges; positive ions move - flow of positive charges. Nucleus not moving)

Unit 2: Electricity and Magnetism Lesson 3: Simple Circuits Electric circuits transfer energy. Electrical energy is converted into light, heat, sound, mechanical work, etc. The byproduct of any circuit

### Unit 3 BLM Answers UNIT 3 BLM 3-46

UNIT 3 BLM 3-46 Unit 3 BLM Answers BLM 3-3, Charge Transfer Diagrams 1. Positively charged objects should have more (+) than ( ). Negatively charged objects should have more ( ) than (+). 2. They must

### Objectives 106 CHAPTER 2 WORK

Objectives Explain the relationship between work done in electrical systems, charge moved, and the potential difference. Calculate the amount of electrical charge in coulombs moving past a point in a circuit.

### PHYSICS FORM 5 ELECTRICAL QUANTITES

QUANTITY SYMBOL UNIT SYMBOL Current I Amperes A Voltage (P.D.) V Volts V Resistance R Ohm Ω Charge (electric) Q Coulomb C Power P Watt W Energy E Joule J Time T seconds s Quantity of a Charge, Q Q = It

### CLASS X- ELECTRICITY

Conductor- Insulator: Materia Materials through which electric current cannot pass are called insulators. Electric Circuit: A continuous a CLASS X- ELECTRICITY als through which electric current can pass

### Section 1 Electric Charge and Force

CHAPTER OUTLINE Section 1 Electric Charge and Force Key Idea questions > What are the different kinds of electric charge? > How do materials become charged when rubbed together? > What force is responsible

### Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When more devices are added to a series circuit, the total circuit resistance: a.

### FXA 2008 ELECTRIC CHARGE (Q) 1. Candidates should be able to : Electric charge is a property possessed by protons and electrons.

ELECTRIC CHARGE (Q) 1 Candidates should be able to : Explain that electric current is a net flow of charged particles. Explain that electric current in a metal is due to the movement of electrons, whereas

### Electric Potential, Current, Resistance

Electric Potential, Current, Resistance by Nada Saab-Ismail, PhD, MAT, MEd, IB nhsaab.weebly.com nhsaab2014@gmail.com P4.10D Discriminate between voltage, resistance, and current as they apply to an electric

### Danger High Voltage! Your friend starts to climb on this... You shout Get away! That s High Voltage!!! After you save his life, your friend asks:

Danger High Voltage! Your friend starts to climb on this... You shout Get away! That s High Voltage!!! After you save his life, your friend asks: What is Voltage anyway? Voltage... Is the energy (U, in

### What is electricity? Charges that could be either positive or negative and that they could be transferred from one object to another.

Electricity What is electricity? Charges that could be either positive or negative and that they could be transferred from one object to another. What is electrical charge Protons carry positive charges

### Direct Current (DC) Circuits

Direct Current (DC) Circuits NOTE: There are short answer analysis questions in the Participation section the informal lab report. emember to include these answers in your lab notebook as they will be

### What are the two types of current? The two types of current are direct current and alternating current.

Electric Current What are the two types of current? The two types of current are direct current and alternating current. Electric Current The continuous flow of electric charge is an electric current.

### 2015 EdExcel A-Level Physics Topic 3. Charge and current

2015 EdExcel A-Level Physics Topic 3 Charge and current 9/17/2018 Electric Charge Atoms consists of Negatively-charged electrons and Positively charged protons. Atoms have the same number of protons and

### 9. Which of the following is the correct relationship among power, current, and voltage?. a. P = I/V c. P = I x V b. V = P x I d.

Name: Electricity and Magnetism Test Multiple Choice Identify the choice that best completes the statement. 1. Resistance is measured in a unit called the. a. ohm c. ampere b. coulomb d. volt 2. The statement

### Relating Voltage, Current and Resistance

Relating Voltage, Current and Resistance Using Ohm s Law in a simple circuit. A Simple Circuit Consists of:! A voltage source often a battery! A load such as a bulb! Conductors arranged to complete a circuit

Forces Read Chapter 7; pages: 191-221 Objectives: - Describe how electrical charges exert forces on each other; Compare the strengths of electric and gravitational forces; Distinguish between conductors

### In this unit, we will examine the movement of electrons, which we call CURRENT ELECTRICITY.

Recall: Chemistry and the Atom! What are the 3 subatomic Where are they found in the particles? atom? What electric charges do they have? How was a positive ion created? How was a negative ion created?

### Electricity 1.notebook. May 04, 2016 ELECTRICITY. objects.

ELECTRICITY is objects. 1 2 3 4 5 6 Insulators and Conductors You should now know that electricity. 1. Electrical Insulator - Any substance in which Examples: 7 If atoms in an become charged with, these

### Notes on Electricity (Circuits)

A circuit is defined to be a collection of energy-givers (active elements) and energy-takers (passive elements) that form a closed path (or complete path) through which electrical current can flow. The

### Lesson Plan: Electric Circuits (~130 minutes) Concepts

Lesson Plan: Electric Circuits (~130 minutes) Concepts 1. Electricity is the flow of electric charge (electrons). 2. Electric Charge is a property of subatomic particles. 3. Current is the movement of

### Circuits. Electric Current & DC Circuits Circuits. Unit 6. April Electric Current. Electric Current. Electric Current. ΔQ Δt

Electric Current & DC Circuits Electric Current & DC Circuits Circuits Conductors esistivity and esistance Click on the topic to go to that section Circuit Diagrams Measurement Electric Current Circuits

### 670 Intro Physics Notes: Electric Current and Circuits

Name: Electric Current Date: / / 670 Intro Physics Notes: Electric Current and Circuits 1. Previously, we learned about static electricity. Static electricity deals with charges that are at rest. 2. Now

### Chapter 21 Electric Current and Circuits

Chapter 21 Electric Current and Circuits 1 As an introduction to this chapter you should view the following movie. If you cannot click on the link, then copy it and paste it into your web browser. http://www.ionaphysics.org/movies/vir.mp4

### National 5 Physics. Electricity and Energy. Notes

National 5 Physics Electricity and Energy Notes Name. 1 P a g e Key Area Notes, Examples and Questions Page 3 Conservation of energy Page 10 Electrical charge carriers and electric fields and potential

### Revision checklist SP10. SP10 Electricity and Circuits. SP10a Electric circuits. SP10b Current and potential difference

Electricity and Circuits a Electric circuits Describe the basic structure of an atom (positions, relative masses and relative charges of protons, neutrons and electrons). Recognise the circuit symbols

### Insulators Non-metals are very good insulators; their electrons are very tightly bonded and cannot move.

SESSION 11: ELECTRIC CIRCUITS Key Concepts Resistance and Ohm s laws Ohmic and non-ohmic conductors Series and parallel connection Energy in an electric circuit X-planation 1. CONDUCTORS AND INSULATORS

### STUDY GUIDE CHAPTER 5 ELECTRICITY AND MAGNETISM 1) ASSOCIATE ELEMENTARY PARTICLES WITH THEIR ELECTRICAL CHARGE

Name Date STUDY GUIDE CHAPTER 5 ELECTRICITY AND MAGNETISM 1) ASSOCIATE ELEMENTARY PARTICLES WITH THEIR ELECTRICAL CHARGE Scientists now know that an atom is composed of even smaller particles of matter:

### Electric Current. Chapter 17. Electric Current, cont QUICK QUIZ Current and Resistance. Sections: 1, 3, 4, 6, 7, 9

Electric Current Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge

### Name: Class: Date: 1. Friction can result in the transfer of protons from one object to another as the objects rub against each other.

Class: Date: Physics Test Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. Friction can result in

### Which of these particles has an electrical charge?

Which of these particles has an electrical charge? A. Proton. B. Electron. C. Ion. D. All of the above. Which is the predominant carrier of charge in copper wire? A. Proton. B. Electron. C. Ion. D. All

### EE301 RESISTANCE AND OHM S LAW

Learning Objectives a. Describe the concept of resistance b. Use Ohm s law to calculate current, voltage, and resistance values in a circuit c. Discuss the difference between an open circuit and a short

### EXPERIMENT 12 OHM S LAW

EXPERIMENT 12 OHM S LAW INTRODUCTION: We will study electricity as a flow of electric charge, sometimes making analogies to the flow of water through a pipe. In order for electric charge to flow a complete

### Protons = Charge Electrons = Charge Neutrons = Charge. When Protons = Electrons, atoms are said to be ELECTRICALLY NEUTRAL (no net charge)

QUICK WRITE: For 2 minutes, write the three parts of an atom and what their charges are. Explain what creates an electric charge (positive or negative) on something. Rules - You MUST write for the entire

### Electricity Review completed.notebook. June 13, 2013

Which particle in an atom has no electric charge associated with it? a. proton c. neutron b. electron d. nucleus Jun 12 9:28 PM The electrons in a metal sphere can be made to move by touching it with a

### p I = Q (charge) t (time)

ClXB-B-ElfT I M C T R I C I T Y 3-08 *Demonstrate and explain how static and current electricity are alike and different Vocabulary: discharge, circuit, circuit diagram, switch, dry cell, battery, load,

### Physics Module Form 5 Chapter 2- Electricity GCKL 2011 CHARGE AND ELECTRIC CURRENT

2.1 CHARGE AND ELECTRIC CURRENT Van de Graaf 1. What is a Van de Graaff generator? Fill in each of the boxes the name of the part shown. A device that produces and store electric charges at high voltage

### Electricity. dronstudy.com

Electricity Electricity is a basic part of our nature and it is one of our most widely used forms of energy. We use electricity virtually every minute of every day for example in lighting, heating, refrigeration,

### Electric charges. Basics of Electricity

Electric charges Basics of Electricity Electron has a negative charge Neutron has a no charge Proton has a positive charge But what is a charge? Electric charge, like mass, is a fundamental property of

### ELECTRICITY UNIT REVIEW

ELECTRICITY UNIT REVIEW S1-3-04: How does the Atomic Model help to explain static electricity? 1. Which best describes static electricity? a) charges that can be collected and held in one place b) charges

### Physics Module Form 5 Chapter 2- Electricity GCKL 2011 CHARGE AND ELECTRIC CURRENT

2.1 CHARGE AND ELECTRIC CURRENT Van de Graaf 1. What is a Van de Graaff generator? Fill in each of the boxes the name of the part shown. A device that... and... at high voltage on its dome. dome 2. You

### Section 1: Electric Charge and Force

Electricity Section 1 Section 1: Electric Charge and Force Preview Key Ideas Bellringer Electric Charge Transfer of Electric Charge Induced Charges Charging by Contact Electric Force Electric Field Lines

### ELECTRICITY. Prepared by: M. S. KumarSwamy, TGT(Maths) Page

ELECTRICITY 1. Name a device that helps to maintain a potential difference across a conductor. Cell or battery 2. Define 1 volt. Express it in terms of SI unit of work and charge calculate the amount of

### Chapter 16 Electrical Energy Capacitance. HW: 1, 2, 3, 5, 7, 12, 13, 17, 21, 25, 27 33, 35, 37a, 43, 45, 49, 51

Chapter 16 Electrical Energy Capacitance HW: 1, 2, 3, 5, 7, 12, 13, 17, 21, 25, 27 33, 35, 37a, 43, 45, 49, 51 Electrical Potential Reminder from physics 1: Work done by a conservative force, depends only

### Q-2 How many coulombs of charge leave the power supply during each second?

Part I - Circuit Elements in Series In Figure 1 at the right circuit elements #1, #2, #3 (in this case light bulbs) are said to be connected "IN SERIES". That is, they are connected in a series one right

### Electric Force and Charge. Electric Force and Charge. Electric Force and Charge. Electric Force and Charge. Electric Force and Charge

Hewitt/Lyons/Suchocki/Yeh Conceptual Integrated Science Chapter 7 ELECTRICITY AND MAGNETISM Electric forces can attract some objects and repel others Electric charge: the fundamental quantity that underlies

### Coulomb s constant k = 9x10 9 N m 2 /C 2

1 Part 2: Electric Potential 2.1: Potential (Voltage) & Potential Energy q 2 Potential Energy of Point Charges Symbol U mks units [Joules = J] q 1 r Two point charges share an electric potential energy

### LESSON 5: ELECTRICITY II

LESSON 5: ELECTRICITY II The first two points are a review of the previous lesson 1.1.ELECTRIC CHARGE - Electric charge is a property of all objects and is responsible for electrical phenomena. -All matter

### Electricity Test Review

Electricity Test Review Definitions; Series Circuit, Parallel Circuit, Equivalent Resistance, Fuse, Circuit Breaker, kilowatt hour, load, short circuit, dry cell, wet cell, fuel cells, solar cells, fossil

### Electric Current & DC Circuits

Electric Current & DC Circuits Circuits Click on the topic to go to that section Conductors Resistivity and Resistance Circuit Diagrams Measurement EMF & Terminal Voltage Kirchhoff's Rules Capacitors*

### Greek Letter Omega Ω = Ohm (Volts per Ampere)

) What is electric current? Flow of Electric Charge 2) What is the unit we use for electric current? Amperes (Coulombs per Second) 3) What is electrical resistance? Resistance to Electric Current 4) What

### Differentiate between AC and DC. Identify the most common source of DC voltage. Describe how to connect DC voltage sources so that voltages will add.

Objectives Explain the similarities and differences between Newton s law of universal gravitation and Coulomb s law. Explain how the force between two like charges and the force between two unlike charges

### Electric current is a flow of electrons in a conductor. The SI unit of electric current is ampere.

C h a p t e r at G l a n c e 4. Electric Current : Electric current is a flow of electrons in a conductor. The SI unit of electric current is ampere. Current = Charge time i.e, I = Q t The SI unit of charge

### Note on Posted Slides. Flow of Charge. Electricity/Water Analogy: Continuing the Analogy. Electric Current

Note on Posted Slides These are the slides that I intended to show in class on Tue. Mar. 18, 2014. They contain important ideas and questions from your reading. Due to time constraints, I was probably

### Test Review Electricity

Name: Date: 1. An operating television set draws 0.71 ampere of current when connected to a 120-volt outlet. Calculate the time it takes the television to consume 3.0 10 5 joules of electric energy. [Show

### Chapter 25 Current, Resistance, and Electromotive Force

Chapter 25 Current, Resistance, and Electromotive Force Lecture by Dr. Hebin Li Goals for Chapter 25 To understand current and how charges move in a conductor To understand resistivity and conductivity

### Algebra Based Physics

Page 1 of 105 Algebra Based Physics Electric Current & DC Circuits 2015-10-06 www.njctl.org Page 2 of 105 Electric Current & DC Circuits Circuits Conductors Resistivity and Resistance Circuit Diagrams

### Chapter 02. Voltage and Current. Atomic Theory Review. Atomic Theory Review. Atomic Theory Review. Electrical Charge.

Chapter 02 Voltage and Current Atom Atomic Theory Review Contains a nucleus of protons and neutrons Nucleus is surrounded by a group of orbiting electrons Electrons are negative, protons are positive Electrically

### Basic Electricity. ME 120 Lecture Notes. Portland State University Mechanical and Materials Engineering

Basic Electricity ME 120 Lecture Notes Portland State University Mechanical and Materials Engineering Learning Objectives Successful completion of this module will enable students to Link the basic model

### E40M Charge, Current, Voltage and Electrical Circuits. M. Horowitz, J. Plummer, R. Howe 1

E40M Charge, Current, Voltage and Electrical Circuits M. Horowitz, J. Plummer, R. Howe 1 Understanding the Solar Charger Lab Project #1 We need to understand how: 1. Current, voltage and power behave in

### Ohms Law. V = IR V = voltage in volts (aka potential difference) I = Current in amps R = resistance in ohms (Ω)

Ohms Law V = IR V = voltage in volts (aka potential difference) I = Current in amps R = resistance in ohms (Ω) Current How would you define it? Current the movement of electric charge through a medium

### Electricity

Electricity Electric Charge There are two fundamental charges in the universe. Positive (proton) has a charge of +1.60 x 10-19 C Negative (electron) has a charge of 1.60 x 10-19 C There is one general

### Chapter 17. Current and Resistance. Sections: 1, 3, 4, 6, 7, 9

Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Equations: 2 2 1 e r q q F = k 2 e o r Q k q F E = = I R V = A L R ρ = )] ( 1 [ o o T T + = α ρ ρ V I V t Q P = = R V R I P 2 2 ) ( = = C Q

### Joy of Science Discovering the matters and the laws of the universe

Joy of Science Discovering the matters and the laws of the universe Key Words Universe, Energy, Quantum mechanics, Chemical reaction, Structure of matter Unless otherwise noted, copied pictures are taken

### Electric Charges & Current. Chapter 12. Types of electric charge

Electric Charges & Current Chapter 12 Types of electric charge Protons w/ + charge stuck in the nucleus Electrons w/ - charge freely moving around the nucleus in orbits 1 Conductors Allow the easy flow

### Nucleus. Protons(+) and. Neutrons

What is "Matter"? All matter is made of tiny particles called" atoms'. Atoms are made up of even smaller particles called: o Protons (particles with a positive charge found in the centre (nucleus) of the

### Unit 2 Electrical Quantities and Ohm s Law

Electrical Quantities and Ohm s Law Objectives: Define a coulomb. Define an ampere. Define a volt. Define an ohm. Define a watt. Objectives: Compute electrical values using Ohm s law. Discuss basic types

### Electric Currents and Circuits

Electric Currents and Circuits Producing Electric Current Electric Current flow of charged particles Need a potential difference to occur Conventional Current- flow of positive charges flowing from positive

### Electrolysis. Electrolysis is the process of using electrical energy to break a compound apart or to reduced an metal ion to an element.

Electrolysis Electrolysis is the process of using electrical energy to break a compound apart or to reduced an metal ion to an element. Electrolysis is done in an electrolytic cell. Electrolytic cells

### Electromagnetism Checklist

Electromagnetism Checklist Elementary Charge and Conservation of Charge 4.1.1A Convert from elementary charge to charge in coulombs What is the charge in coulombs on an object with an elementary charge

### ELECTRICITY Electric Fence Experiment.

ELECTRICITY Electric Fence Experiment. Can you guess what will happen? What would life be like without electricity? List 4 things that you would miss the most: 1) 2) 3) 4) Positive and Negative Charge

### Chemistry Terms. atomic number The atomic number of an element is the number of protons in the nucleus of each atom.

Chemistry Terms atomic number The atomic number of an element is the number of protons in the nucleus of each atom. chemical reaction A process in which atoms and molecules interact, resulting in the alteration

### Electric Current & DC Circuits How to Use this File Electric Current & DC Circuits Click on the topic to go to that section Circuits

Slide 1 / 127 Slide 2 / 127 Electric Current & DC Circuits www.njctl.org Slide 3 / 127 How to Use this File Slide 4 / 127 Electric Current & DC Circuits Each topic is composed of brief direct instruction

### Circuits. Electric Current & DC Circuits. Slide 1 / 127. Slide 2 / 127. Slide 3 / 127. Slide 4 / 127. Slide 5 / 127. Slide 6 / 127

Slide 1 / 127 Slide 2 / 127 New Jersey Center for Teaching and Learning Electric Current & DC Circuits www.njctl.org Progressive Science Initiative This material is made freely available at www.njctl.org

### What does it mean for an object to be charged? What are charges? What is an atom?

What does it mean for an object to be charged? What are charges? What is an atom? What are the components of an atom? Define the following: Electric Conductor Electric Insulator Define the following: Electric

### 5. ELECTRIC CURRENTS

5. ELECTRIC CURRENTS TOPIC OUTLINE Section Recommended Time Giancoli Section 5.1 Potential Difference, Current, Resistance 5.2 Electric Circuits 3h 19.1, 19.2 6.2 Electric Field and Force 6.3 Magnetic

### 4.2.1 Current, potential difference and resistance

4.2 Electricity Electric charge is a fundamental property of matter everywhere. Understanding the difference in the microstructure of conductors, semiconductors and insulators makes it possible to design