Capacitance and Dielectrics

Size: px
Start display at page:

Download "Capacitance and Dielectrics"

Transcription

1 Slide 1 / 39 Capacitance and Dielectrics 2011 by Bryan Pflueger Capacitors Slide 2 / 39 A capacitor is any two conductors seperated by an insulator, such as air or another material. Each conductor has equal magnitude, but opposite charge so the net charge across the two conductors is zero. In a circuit a capacitor is represented by: Capacitors Slide 3 / 39 To charge a capacitor you can simply connect each conductor to the opposite end of each battery. Once the plates have achieved a magnitude of Q the battery can be disconnected. There will be a fixed potential across the conductors equal to the potential difference of the battery. In previous sections we discussed that both the electric field and the potential difference are both directly proportional to the charge Q. By doubling the charge we double both the electric field and potential difference. Capacitance is the ratio of charge to potential difference, therefore it is independent of the charge and potential.

2 Calculating Capacitance Slide 4 / 39 The simplest version of a capacitor is the parallel plate capacitor, which has two conducting plates of area A. Using Gauss's law we can find that the electric field between a parallel plate capacitor is: Since the electric field is uniform and the plates are separated by a distance d, the electric potential is equal to: Calculating Capacitance Slide 5 / 39 Capacitance is the ratio of charge to potential difference across the plates, which can be written as: By plugging in what we just solved for v, we will see that the capacitance is only dependent on the area of the plate and their separation. (Capacitance of a parallel plate capacitor in a vacuum) Unit of Capacitance Slide 6 / 39 Capacitance is the ratio of charge to the potential difference. So the unit for capacitance is coulomb/volt better known as a Farad, which was named in honor of the English physicist Michael Faraday. A Farad is denoted by a capital F. 1 F = 1 Farad = 1 C/V = 1 coulomb/volt

3 1 The plates of a parallel plate capacitor are 3x10 3 m apart and they are each 2cm squares. What is the capacitance of the capacitor? Slide 7 / 39 A B C D E 5.9x10 11 F 4x10 15 F 1.2pF 3.6µF 2.4pF 2 A parallel plate capacitor has a charge of 6µF. The electric field present between the plates is 3x10 7 N/C and the plate's separation is 4cm. What is the capacitance of the capacitor? Slide 8 / 39 A 5nF B 12pF C 5µF D 5MF E 5pF Q Q Spherical Capacitor so, Electric Field for point charge If the electric field is the same for a point charge then so is the potential difference. Slide 9 / 39

4 Cylindrical Capacitor Slide 10 / 39 Before we found the electric potential for a cylinder to be equal to: ra L The equation for capacitance is: rb The charge on the cylinder is represented as: The capacitance per unit of length is: Capacitors in Series and Parallel Slide 11 / 39 x z y C 1 C 2 The potential difference across the battery results in both of the two capacitors to begin charging. The first plate of C 1 will acquire a positive charge equal to Q which will displace the charge on the second plate making it negative and the first plate of C 2 positive, which in turn will make the second plate of C 2 to become negatively charged. This is not an immediate change in the charge, it slowly builds up, but in the end the charge is equal for each capacitor. Slide 12 / 39

5 Capacitors in Series and Parallel Slide 13 / 39 When we discussed Circuits the last two years you could always replace any combination of resistors with one that has the equivalent resistance. For resistance in series we would just add their values to find the net resistance and just draw a new circuit only using the one resistor. We can do the same for Capacitors, but instead of just adding their values like the resistors, when they are in a series circuit we have to take their reciprocals. 3 Three capacitors are connected in series, C 1, C 2, and C 3. Their capacitance's are 4µF, 3µF, and 6µF respectively. Slide 14 / 39 A 13µF B 1.33µF C 1µF D 7µF E 2.78µF C 1 C 2 C 3 4 Three capacitors are connected in series, C 1, C 2, and C 3. Their capacitance's are 2µF, 7µF, and 13µF respectively. Slide 15 / 39 A 22µF B 7µF C 20µF D 1.39µF E 2.6µF C 1 C 2 C 3

6 Capacitors in Series and Parallel Slide 16 / 39 x C 1 C 2 y The voltage across each capacitor is equal to the potential difference of the battery because in a parallel circuit the voltage is the same, but in this case the charge is the sum of those on the capacitors. The charges on each of the capacitors are: therefore: Capacitors in Series and Parallel Slide 17 / 39 When we discussed Circuits the last two years you could always replace any combination of resistors with one that has the equivalent resistance. For resistance in parallel we would add their reciprocals to find the net resistance and just draw a new circuit only using the one resistor. We can do the same for Capacitors, but instead of adding their reciprocals like the resistors, when they are in a parallel circuit we just have to add their values. 5 Three capacitors are connected in parallel, C1, C2, C3. Their capacitance's are 3μF, 4μF, and 2μF Slide 18 / 39 A 2µF B 1.1µF C 9µF D 3µF E 2.5µF C 1 C 2 C 3

7 6 Three capacitors are connected in parallel, C1, C2, C3. Their capacitance's are 12μF, 5μF, and 7μF Slide 19 / 39 A 23.8µF B 24µF C 12µF D 8µF E 32.4µF C 1 C 2 C 3 7 Five capacitors are placed into a circuit as shown below. The five capacitors are C 1, C 2, C 3, C 4, and C 5. Their capacitance's are 2µF, 1µF, 3µF, 2µF, and 1µF respectively. What is the net capacitance of the circuit? Slide 20 / 39 A 2µF B 23/4 µf C 3µF C 1 C 2 C 3 C 4 C 5 D 6µF E 1µF Energy Storage in a Capacitor and ElectricField Energy For a capacitor to be used in a practical manner we need to know how much electric potential energy it can store. This can be achieved by determining how much work is required to charge each of the plates. The small charges we will add up to equal the net charge will be denoted as dq and the potential difference can be given as Q/C. Slide 21 / 39 The work done to charge the capacitor is also the same as the amount of work required to discharge it. The uncharged capacitor has a potential energy of zero so the work to charge the capacitor is equal to the stored potential energy.

8 Energy Storage in a Capacitor and ElectricField Energy Slide 22 / 39 Since the work done to charge the capacitor is equal to the potential energy stored on the capacitor and since we know C=Q/V the potential energy can be represented as: Energy Storage in a Capacitor and ElectricField Energy Slide 23 / 39 Another way of looking at the amount of energy stored in a capacitor is to look at the electric field it produces because of the charged plates. We can say that the electric potential energy is spaced throughout the electric field therefore it has an energy density, which is denoted by a small u. The energy density is the ratio of electric potential energy to the volume between the plates. Equation for Capacitance: Potential Difference across the plates: Energy Storage in a Capacitor and ElectricField Energy Slide 24 / 39 The equation for the energy density is: The equation is derived from the simple case of a parallel plate capacitor, however it works for every type of capacitor in a vacuum and for every electric field also in a vacuum.

9 Dielectrics Slide 25 / 39 Dielectrics are materials which are placed between the parallel plates or any other configuration for a different number of reasons. It helps to maintain the shape of the capacitor, preventing the walls from coming in contact with one another. It allows the capacitor to reach a higher potential difference then it could normally before dielectric breakdown, which is the ionization of the air around the capacitor which would result in charge leaving the capacitor. It also enables the capacitor to increase its capacitance. Dielectrics Slide 26 / 39 When a dielectric is placed between the plates of a parallel plate capacitor the voltage drops to a smaller value then its original, but the charge on the capacitor remains the same. Original Capacitance Capacitance with Dielectric and Q is the same,therefore C > C o Dielectric Constant Slide 27 / 39 The Dielectric Constant is denoted by a capital Kappa and it is the ratio of the final capacitance to the original capacitance. The new equation for Capacitance is now represented as: By adding a dielectric between the plates of a capacitor with a constant charge decreases the potential difference, but also the electric field.

10 Slide 28 / 39 9 A capacitor is completely charged and afterwards the battery is disconnected. What will cause the potential difference across the capacitor to decrease? Slide 29 / 39 A Increase the Plate's surface area B Add a dielectric with a greater # C Decrease the distance D All of the above E Both A and C 10 A Cylindrical capacitor is filled half way with a dieclectric of #. What is the net capacitance of this configuration? Slide 30 / 39 A B C r R D L E

11 11 A spherical capacitor is filled halfway with a dielectric of #. What is the net capacitance? Slide 31 / 39 A B R C r D E Dielectric's effect on Electric Energy Density Slide 32 / 39 By adding a dielectric you alter the way the capacitor normally behaves. You allow it to carry a greater potential difference and also have a greater electric field passing through it without dielectric breakdown occuring. The normal electric field between the plates is which can be determined through Coulomb's law for the infinite charged disk. However when the dielectric is added the net charge density along the surface of the capacitor plate is the difference of that on the plate and the one induced on the dielectric because of the effects of polarization. The net electric field is now represented as: Slide 33 / 39

12 Slide 34 / 39 Slide 35 / 39 Slide 36 / 39

13 Slide 37 / The outer shell has a charge of Q and the inner shell has a charge of Q. Half of one side of a cylindrical capacitor of length l is filled with a dielectric of #. What is the magnitude of the electric field at a radius r, if r a < r < r b, for both parts of the capacitor? Dielectric Vacuum Slide 38 / 39 A B C rb ra D E Slide 39 / 39

AP Physics C - E & M. Slide 1 / 39 Slide 2 / 39. Slide 4 / 39. Slide 3 / 39. Slide 6 / 39. Slide 5 / 39. Capacitance and Dielectrics.

AP Physics C - E & M. Slide 1 / 39 Slide 2 / 39. Slide 4 / 39. Slide 3 / 39. Slide 6 / 39. Slide 5 / 39. Capacitance and Dielectrics. Slide 1 / 39 Slide 2 / 39 P Physics & M apacitance and ielectrics 20151205 www.njctl.org Slide 3 / 39 apacitors capacitor is any two conductors seperated by an insulator, such as air or another material.

More information

Chapter 24 Capacitance and Dielectrics

Chapter 24 Capacitance and Dielectrics Chapter 24 Capacitance and Dielectrics 1 Capacitors and Capacitance A capacitor is a device that stores electric potential energy and electric charge. The simplest construction of a capacitor is two parallel

More information

Chapter 24 Capacitance and Dielectrics

Chapter 24 Capacitance and Dielectrics Chapter 24 Capacitance and Dielectrics 1 Capacitors and Capacitance A capacitor is a device that stores electric potential energy and electric charge. The simplest construction of a capacitor is two parallel

More information

Chapter 24: Capacitance and Dielectrics

Chapter 24: Capacitance and Dielectrics Chapter 24: Capacitance and Dielectrics When you compress/stretch a spring, we are storing potential energy This is the mechanical method to store energy It is also possible to store electric energy as

More information

Chapter 24 Capacitance and Dielectrics

Chapter 24 Capacitance and Dielectrics Chapter 24 Capacitance and Dielectrics Lecture by Dr. Hebin Li Goals for Chapter 24 To understand capacitors and calculate capacitance To analyze networks of capacitors To calculate the energy stored in

More information

Chapter 24: Capacitance and Dielectrics

Chapter 24: Capacitance and Dielectrics Chapter 24: Capacitance and Dielectrics When you compress/stretch a spring, we are storing potential energy This is the mechanical method to store energy It is also possible to store electric energy as

More information

Phys222 W16 Exam 2: Chapters Key. Name:

Phys222 W16 Exam 2: Chapters Key. Name: Name: Please mark your answer here and in the scantron. A positively charged particle is moving in the +y-direction when it enters a region with a uniform electric field pointing in the +y-direction. Which

More information

Capacitance and capacitors. Dr. Loai Afana

Capacitance and capacitors. Dr. Loai Afana apacitance and capacitors apacitors apacitors are devices that store energy in an electric field. apacitors are used in many every-day applications Heart defibrillators amera flash units apacitors are

More information

Capacitor: any two conductors, one with charge +Q, other with charge -Q Potential DIFFERENCE between conductors = V

Capacitor: any two conductors, one with charge +Q, other with charge -Q Potential DIFFERENCE between conductors = V Physics 2102 Gabriela González Capacitor: any two conductors, one with charge +Q, other with charge -Q Potential DIFFERENCE between conductors = V Units of capacitance: Farad (F) = Coulomb/Volt -Q +Q Uses:

More information

[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1

[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1 1 (a) Define capacitance..... [1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. S 1 S 2 6.3 V 4.5 μf Fig. 1.1 Switch S 1 is closed and switch S 2 is left

More information

W05D1 Conductors and Insulators Capacitance & Capacitors Energy Stored in Capacitors

W05D1 Conductors and Insulators Capacitance & Capacitors Energy Stored in Capacitors W05D1 Conductors and Insulators Capacitance & Capacitors Energy Stored in Capacitors W05D1 Reading Assignment Course Notes: Sections 3.3, 4.5, 5.1-5.4 1 Outline Conductors and Insulators Conductors as

More information

Capacitors (Chapter 26)

Capacitors (Chapter 26) Capacitance, C Simple capacitive circuits Parallel circuits Series circuits Combinations Electric energy Dielectrics Capacitors (Chapter 26) Capacitors What are they? A capacitor is an electric device

More information

Chapter 24: Capacitance and Dielectrics. Capacitor: two conductors (separated by an insulator) usually oppositely charged. (defines capacitance)

Chapter 24: Capacitance and Dielectrics. Capacitor: two conductors (separated by an insulator) usually oppositely charged. (defines capacitance) hapter 4: apacitance and Dielectrics apacitor: two conductors (separated by an insulator) usually oppositely charged a b - ab proportional to charge / ab (defines capacitance) units: F / pc4: The parallel

More information

AP Physics C. Electric Circuits III.C

AP Physics C. Electric Circuits III.C AP Physics C Electric Circuits III.C III.C.1 Current, Resistance and Power The direction of conventional current Suppose the cross-sectional area of the conductor changes. If a conductor has no current,

More information

Chapter 24: Capacitance and Dielectrics

Chapter 24: Capacitance and Dielectrics hapter 4: apacitance and Dielectrics apacitor: two conductors (separated by an insulator) usually oppositely charged a + b - ab proportional to charge = / ab (defines capacitance) units: F = / pc4: The

More information

Capacitance. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge.

Capacitance. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. Capacitance A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. a) Parallel-plate capacitor connected to battery. (b) is a circuit

More information

Chapter 25. Capacitance

Chapter 25. Capacitance Chapter 25 Capacitance 1 1. Capacitors A capacitor is a twoterminal device that stores electric energy. 2 2. Capacitance The figure shows the basic elements of any capacitor two isolated conductors of

More information

Capacitance and Dielectrics

Capacitance and Dielectrics Chapter 24 Capacitance and Dielectrics PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 24 To understand capacitors

More information

AP Physics C Electricity & Magnetism Mid Term Review

AP Physics C Electricity & Magnetism Mid Term Review AP Physics C Electricity & Magnetism Mid Term Review 1984 37. When lighted, a 100-watt light bulb operating on a 110-volt household circuit has a resistance closest to (A) 10-2 Ω (B) 10-1 Ω (C) 1 Ω (D)

More information

PHYS 241 EXAM #1 October 5, 2006

PHYS 241 EXAM #1 October 5, 2006 1. ( 5 points) Two point particles, one with charge 8 10 9 C and the other with charge 2 10 9 C, are separated by 4 m. The magnitude of the electric field (in N/C) midway between them is: A. 9 10 9 B.

More information

PHYSICS - CLUTCH CH 24: CAPACITORS & DIELECTRICS.

PHYSICS - CLUTCH CH 24: CAPACITORS & DIELECTRICS. !! www.clutchprep.com CONCEPT: CAPACITORS AND CAPACITANCE A CAPACITOR is formed by two surfaces of equal/opposite charge brought close together - Separation of charge potential energy stored Connecting

More information

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery Capacitance The ratio C = Q/V is a conductor s self capacitance Units of capacitance: Coulomb/Volt = Farad A capacitor is made of two conductors with equal but opposite charge Capacitance depends on shape

More information

Capacitors And Dielectrics

Capacitors And Dielectrics 1 In this small e-book we ll learn about capacitors and dielectrics in short and then we ll have some questions discussed along with their solutions. I ll also give you a practices test series which you

More information

A) I B) II C) III D) IV E) V

A) I B) II C) III D) IV E) V 1. A square loop of wire moves with a constant speed v from a field-free region into a region of uniform B field, as shown. Which of the five graphs correctly shows the induced current i in the loop as

More information

Energy stored in a capacitor W = \ q V. i q1. Energy density in electric field i. Equivalent capacitance of capacitors in series

Energy stored in a capacitor W = \ q V. i q1. Energy density in electric field i. Equivalent capacitance of capacitors in series The Language of Physics Cwcihor Two conductors of any size or shape carrying equal and opposite charges are called a capacitor. The charge on the capacitor is directly proportional to the potential difference

More information

Chapter 25. Capacitance

Chapter 25. Capacitance Chapter 25 Capacitance 25.2: Capacitance: 25.2: Capacitance: When a capacitor is charged, its plates have charges of equal magnitudes but opposite signs: q+ and q-. However, we refer to the charge of a

More information

Physics Electricity & Op-cs Lecture 8 Chapter 24 sec Fall 2017 Semester Professor

Physics Electricity & Op-cs Lecture 8 Chapter 24 sec Fall 2017 Semester Professor Physics 24100 Electricity & Op-cs Lecture 8 Chapter 24 sec. 1-2 Fall 2017 Semester Professor Kol@ck How Much Energy? V 1 V 2 Consider two conductors with electric potentials V 1 and V 2 We can always pick

More information

University Physics (PHY 2326)

University Physics (PHY 2326) Chapter 23 University Physics (PHY 2326) Lecture 5 Electrostatics Electrical energy potential difference and electric potential potential energy of charged conductors Capacitance and capacitors 3/26/2015

More information

Physics 212. Lecture 7. Conductors and Capacitance. Physics 212 Lecture 7, Slide 1

Physics 212. Lecture 7. Conductors and Capacitance. Physics 212 Lecture 7, Slide 1 Physics 212 Lecture 7 Conductors and Capacitance Physics 212 Lecture 7, Slide 1 Conductors The Main Points Charges free to move E = 0 in a conductor Surface = Equipotential In fact, the entire conductor

More information

Electronics Capacitors

Electronics Capacitors Electronics Capacitors Wilfrid Laurier University October 9, 2015 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists

More information

Reading: Electrostatics 3. Key concepts: Capacitance, energy storage, dielectrics, energy in the E-field.

Reading: Electrostatics 3. Key concepts: Capacitance, energy storage, dielectrics, energy in the E-field. Reading: Electrostatics 3. Key concepts: Capacitance, energy storage, dielectrics, energy in the E-field. 1.! Questions about charging and discharging capacitors. When an uncharged capacitor is connected

More information

CAPACITANCE Parallel-plates capacitor E + V 1 + V 2 - V 1 = + - E = A: Area of the plates. = E d V 1 - V 2. V = E d = Q =

CAPACITANCE Parallel-plates capacitor E + V 1 + V 2 - V 1 = + - E = A: Area of the plates. = E d V 1 - V 2. V = E d = Q = Andres La Rosa Portland State University Lecture Notes PH212 CAPACITANCE Parallelplates capacitor 1 2 Q Q E V 1 V 2 V 2 V 1 = 2 E E is assumed to be uniform between the plates Q Q V (Battery) V 2 V 1 =

More information

Capacitance, Resistance, DC Circuits

Capacitance, Resistance, DC Circuits This test covers capacitance, electrical current, resistance, emf, electrical power, Ohm s Law, Kirchhoff s Rules, and RC Circuits, with some problems requiring a knowledge of basic calculus. Part I. Multiple

More information

Today s agenda: Capacitors and Capacitance. You must be able to apply the equation C=Q/V.

Today s agenda: Capacitors and Capacitance. You must be able to apply the equation C=Q/V. Today s agenda: Capacitors and Capacitance. You must be able to apply the equation C=Q/V. Capacitors: parallel plate, cylindrical, spherical. You must be able to calculate the capacitance of capacitors

More information

13 - ELECTROSTATICS Page 1 ( Answers at the end of all questions )

13 - ELECTROSTATICS Page 1 ( Answers at the end of all questions ) 3 - ELECTROSTATICS Page ) Two point charges 8 and - are located at x = 0 and x = L respectively. The location of a point on the x axis at which the net electric field due to these two point charges is

More information

CIRCUIT ELEMENT: CAPACITOR

CIRCUIT ELEMENT: CAPACITOR CIRCUIT ELEMENT: CAPACITOR PROF. SIRIPONG POTISUK ELEC 308 Types of Circuit Elements Two broad types of circuit elements Ati Active elements -capable of generating electric energy from nonelectric energy

More information

Friday July 11. Reminder Put Microphone On

Friday July 11. Reminder Put Microphone On Friday July 11 8:30 AM 9:0 AM Catch up Lecture 3 Slide 5 Electron projected in electric field problem Chapter 23 Problem 29 Cylindrical shell problem surrounding wire Show Faraday Ice Pail no chrage inside

More information

Potential from a distribution of charges = 1

Potential from a distribution of charges = 1 Lecture 7 Potential from a distribution of charges V = 1 4 0 X Smooth distribution i q i r i V = 1 4 0 X i q i r i = 1 4 0 Z r dv Calculating the electric potential from a group of point charges is usually

More information

PH213 Chapter 24 Solutions

PH213 Chapter 24 Solutions PH213 Chapter 24 Solutions 24.12. IDENTIFY and S ET UP: Use the expression for derived in Example 24.4. Then use Eq. (24.1) to calculate Q. E XECUTE: (a) From Example 24.4, The conductor at higher potential

More information

2014 F 2014 AI. 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason.

2014 F 2014 AI. 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason. 2014 F 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason. 2. Figure shows the field lines on a positive charge. Is the work done

More information

Physics 196 Final Test Point

Physics 196 Final Test Point Physics 196 Final Test - 120 Point Name You need to complete six 5-point problems and six 10-point problems. Cross off one 5-point problem and one 10-point problem. 1. Two small silver spheres, each with

More information

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. University of Rhode Island DigitalCommons@URI PHY 204: Elementary Physics II Physics Course Materials 2015 07. Capacitors I Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License

More information

Chapter 26. Capacitance and Dielectrics

Chapter 26. Capacitance and Dielectrics Chapter 26 Capacitance and Dielectrics Capacitors Capacitors are devices that store electric charge Examples of where capacitors are used include: radio receivers filters in power supplies to eliminate

More information

shown in Fig. 4, is initially uncharged. How much energy is stored in the two capacitors after the switch S is closed for long time?

shown in Fig. 4, is initially uncharged. How much energy is stored in the two capacitors after the switch S is closed for long time? Chapter 25 Term 083 Q13. Each of the two 25-µF capacitors, as shown in Fig. 3, is initially uncharged. How many Coulombs of charge pass through ammeter A after the switch S is closed for long time? A)

More information

Physics 2220 Fall 2010 George Williams SECOND MIDTERM - REVIEW PROBLEMS

Physics 2220 Fall 2010 George Williams SECOND MIDTERM - REVIEW PROBLEMS Physics 0 Fall 010 George Williams SECOND MIDTERM - REVIEW PROBLEMS The last four problems are from last years second midterm. Solutions are available on the class web site.. There are no solutions for,

More information

Chapter 1 The Electric Force

Chapter 1 The Electric Force Chapter 1 The Electric Force 1. Properties of the Electric Charges 1- There are two kinds of the electric charges in the nature, which are positive and negative charges. - The charges of opposite sign

More information

General Physics II. Conducting concentric spheres Two concentric spheres of radii R and r. The potential difference between the spheres is

General Physics II. Conducting concentric spheres Two concentric spheres of radii R and r. The potential difference between the spheres is apacitors and Dielectrics The ideas of energy storage in E-fields can be carried a step further by understanding the concept of "apacitance" onsider a sphere with a total charge, Q, and a radius, R From

More information

which checks. capacitance is determined entirely by the dimensions of the cylinders.

which checks. capacitance is determined entirely by the dimensions of the cylinders. 4.3. IDENTIFY and SET UP: It is a parallel-plate air capacitor, so we can apply the equations of Section 4.. EXEUTE: (a) (b) = ε 0 A d (c) V ab so Q V = so 0 ab V ab 6 Q 0. 48 0 = = = 604 V. 45 0 F 3 d

More information

iclicker A metal ball of radius R has a charge q. Charge is changed q -> - 2q. How does it s capacitance changed?

iclicker A metal ball of radius R has a charge q. Charge is changed q -> - 2q. How does it s capacitance changed? 1 iclicker A metal ball of radius R has a charge q. Charge is changed q -> - 2q. How does it s capacitance changed? q A: C->2 C0 B: C-> C0 C: C-> C0/2 D: C->- C0 E: C->-2 C0 2 iclicker A metal ball of

More information

Chapter 19 Electric Potential and Electric Field

Chapter 19 Electric Potential and Electric Field Chapter 19 Electric Potential and Electric Field The electrostatic force is a conservative force. Therefore, it is possible to define an electrical potential energy function with this force. Work done

More information

Chapter 29. Electric Potential: Charged Conductor

Chapter 29. Electric Potential: Charged Conductor hapter 29 Electric Potential: harged onductor 1 Electric Potential: harged onductor onsider two points (A and B) on the surface of the charged conductor E is always perpendicular to the displacement ds

More information

F = Q big = c) The electric potential in a certain region of space can be described by the equation: 16y2 (1 + z 2 ) V (x, y, z) = 10x

F = Q big = c) The electric potential in a certain region of space can be described by the equation: 16y2 (1 + z 2 ) V (x, y, z) = 10x 1) Short Answer (4 points each)(show YOUR WORK) a) A 3.0 nc (positive) charge and a 1.0 nc (negative) charge are located 0.80 m apart from each other. What is the force on the 3.0 nc (positive) charge

More information

not to scale Show that the potential difference between the plates increases to about 80 V. Calculate the energy that is now stored by the capacitor.

not to scale Show that the potential difference between the plates increases to about 80 V. Calculate the energy that is now stored by the capacitor. Q1.The figure below shows a capacitor of capacitance 370 pf. It consists of two parallel metal plates of area 250 cm 2. A sheet of polythene that has a relative permittivity 2.3 completely fills the gap

More information

Capacitors. Example 1

Capacitors. Example 1 Physics 30AP Resistors and apacitors I apacitors A capacitor is a device for storing electrical charge that consists of two conducting objects placed near one another but not touching. A A typical capacitor

More information

Question 1. The figure shows four pairs of charged particles. For each pair, let V = 0 at infinity and consider V net at points on the x axis.

Question 1. The figure shows four pairs of charged particles. For each pair, let V = 0 at infinity and consider V net at points on the x axis. Question 1 The figure shows four pairs of charged particles. For each pair, let V = 0 at infinity and consider V net at points on the x axis. For which pairs is there a point at which V net = 0 between

More information

Chapter 24 Capacitance, Dielectrics, Electric Energy Storage

Chapter 24 Capacitance, Dielectrics, Electric Energy Storage Chapter 24 Capacitance, Dielectrics, Electric Energy Storage Units of Chapter 24 Capacitors (1, 2, & 3) Determination of Capacitance (4 & 5) Capacitors in Series and Parallel (6 & 7) Electric Energy Storage

More information

Exam 2 Practice Problems Part 1

Exam 2 Practice Problems Part 1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Exam 2 Practice Problems Part 1 Problem 1 Electric Field and Charge Distributions from Electric Potential An electric potential V ( z ) is described

More information

Chapter 2: Capacitors And Dielectrics

Chapter 2: Capacitors And Dielectrics hapter 2: apacitors And Dielectrics 2.1 apacitance and capacitors in series and parallel L.O 2.1.1 Define capacitance and use capacitance apacitor is a device that is capable of storing electric charges

More information

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers.

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers. Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers. 1. A charge q 1 = +5.0 nc is located on the y-axis, 15 µm above the origin, while another charge q

More information

Phys102 Second Major-181 Zero Version Coordinator: Kunwar, S Monday, November 19, 2018 Page: 1

Phys102 Second Major-181 Zero Version Coordinator: Kunwar, S Monday, November 19, 2018 Page: 1 Coordinator: Kunwar, S Monday, November 19, 2018 Page: 1 Q1. A neutral metal ball is suspended by a vertical string. When a positively charged insulating rod is placed near the ball (without touching),

More information

Chapter 17. Potential and Capacitance

Chapter 17. Potential and Capacitance Chapter 17 Potential and Capacitance Potential Voltage (potential) is the analogue of water pressure while current is the analogue of flow of water in say gal/min or Kg/s Think of a potential as the words

More information

CAPACITANCE. Capacitor. Because of the effect of capacitance, an electrical circuit can store energy, even after being de-energized.

CAPACITANCE. Capacitor. Because of the effect of capacitance, an electrical circuit can store energy, even after being de-energized. D ircuits APAITANE APAITANE Because of the effect of capacitance, an electrical circuit can store energy, even after being de-energized. EO 1.5 EO 1.6 EO 1.7 EO 1.8 EO 1.9 DESRIBE the construction of a

More information

104 Practice Exam 1-2/21/02

104 Practice Exam 1-2/21/02 104 Practice Exam 1-2/21/02 1. One mole of a substance contains 6.02 > 10 23 protons and an equal number of electrons. If the protons could somehow be separated from the electrons and placed in separate

More information

Do not fill out the information below until instructed to do so! Name: Signature: Section Number:

Do not fill out the information below until instructed to do so! Name: Signature:   Section Number: Do not fill out the information below until instructed to do so! Name: Signature: E-mail: Section Number: No calculators are allowed in the test. Be sure to put a box around your final answers and clearly

More information

P114 University of Rochester NAME S. Manly Spring 2010

P114 University of Rochester NAME S. Manly Spring 2010 Exam 2 (March 23, 2010) Please read the problems carefully and answer them in the space provided. Write on the back of the page, if necessary. Show your work where indicated. Problem 1 ( 8 pts): In each

More information

Chapter 26. Capacitance and Dielectrics

Chapter 26. Capacitance and Dielectrics Chapter 26 Capacitance and Dielectrics Capacitors Capacitors are devices that store electric charge Examples of where capacitors are used include: radio receivers filters in power supplies energy-storing

More information

Capacitance and Dielectrics. Chapter 26 HW: P: 10,18,21,29,33,48, 51,53,54,68

Capacitance and Dielectrics. Chapter 26 HW: P: 10,18,21,29,33,48, 51,53,54,68 Capacitance and Dielectrics Chapter 26 HW: P: 10,18,21,29,33,48, 51,53,54,68 Capacitors Capacitors are devices that store electric charge and energy Examples of where capacitors are used include: radio

More information

Chapter 18 Solutions Set Up: (a) The proton has charge and mass Let point a be at the negative plate and

Chapter 18 Solutions Set Up: (a) The proton has charge and mass Let point a be at the negative plate and Chapter 18 Solutions *18.1. Set Up: Since the charge is positive the force on it is in the same direction as the electric field. Since the field is uniform the force is constant is upward is to the right,

More information

UNIT G485 Module Capacitors PRACTICE QUESTIONS (4)

UNIT G485 Module Capacitors PRACTICE QUESTIONS (4) UNIT G485 Module 2 5.2.1 Capacitors PRACTICE QUESTIONS (4) 1 A 2200 µf capacitor is charged to a p.d. of 9.0 V and then discharged through a 100 kω resistor. (a) Calculate : (i) The initial charge stored

More information

Chapter Electrostatic Potential and Capacitance

Chapter Electrostatic Potential and Capacitance Chapter Electrostatic Potential and Capacitance C/ 2 C/2 Ans: Q6. MockTime.com Q1. A 4µF conductor is charged to 400 volts and then its plates are joined through a resistance of 1 kω. The heat produced

More information

INDIAN SCHOOL MUSCAT FIRST TERM EXAMINATION PHYSICS

INDIAN SCHOOL MUSCAT FIRST TERM EXAMINATION PHYSICS Roll Number SET NO. General Instructions: INDIAN SCHOOL MUSCAT FIRST TERM EXAMINATION PHYSICS CLASS: XII Sub. Code: 04 Time Allotted: Hrs 0.04.08 Max. Marks: 70. All questions are compulsory. There are

More information

4 pt. (in J) 3.A

4 pt. (in J) 3.A Mark Reeves - Physics 22, Fall 2011 1 A point charge of mass 0.0699 kg and charge q = +6.87 µc is suspended by a thread between the vertical parallel plates of a parallel-plate capacitor, as shown in the

More information

Phys 2025, First Test. September 20, minutes Name:

Phys 2025, First Test. September 20, minutes Name: Phys 05, First Test. September 0, 011 50 minutes Name: Show all work for maximum credit. Each problem is worth 10 points. Work 10 of the 11 problems. k = 9.0 x 10 9 N m / C ε 0 = 8.85 x 10-1 C / N m e

More information

PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz

PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz Welcome back to PHY101: Major Concepts in Physics I Photo: J. M. Schwarz Announcements In class today we will finish Chapter 17 on electric potential energy and electric potential and perhaps begin Chapter

More information

Electric Field of a uniformly Charged Thin Spherical Shell

Electric Field of a uniformly Charged Thin Spherical Shell Electric Field of a uniformly Charged Thin Spherical Shell The calculation of the field outside the shell is identical to that of a point charge. The electric field inside the shell is zero. What are the

More information

Chapter 13. Capacitors

Chapter 13. Capacitors Chapter 13 Capacitors Objectives Describe the basic structure and characteristics of a capacitor Discuss various types of capacitors Analyze series capacitors Analyze parallel capacitors Analyze capacitive

More information

Energy Stored in Capacitors

Energy Stored in Capacitors Energy Stored in Capacitors U = 1 2 qv q = CV U = 1 2 CV 2 q 2 or U = 1 2 C 37 Energy Density in Capacitors (1) We define the, u, as the electric potential energy per unit volume Taking the ideal case

More information

Physics (

Physics ( Exercises Question 2: Two charges 5 0 8 C and 3 0 8 C are located 6 cm apart At what point(s) on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero

More information

Capacitors II. Physics 2415 Lecture 9. Michael Fowler, UVa

Capacitors II. Physics 2415 Lecture 9. Michael Fowler, UVa Capacitors II Physics 2415 Lecture 9 Michael Fowler, UVa Today s Topics First, some review then Storing energy in a capacitor How energy is stored in the electric field Dielectrics: why they strengthen

More information

A) 1, 2, 3, 4 B) 4, 3, 2, 1 C) 2, 3, 1, 4 D) 2, 4, 1, 3 E) 3, 2, 4, 1. Page 2

A) 1, 2, 3, 4 B) 4, 3, 2, 1 C) 2, 3, 1, 4 D) 2, 4, 1, 3 E) 3, 2, 4, 1. Page 2 1. Two parallel-plate capacitors with different plate separation but the same capacitance are connected in series to a battery. Both capacitors are filled with air. The quantity that is NOT the same for

More information

Direct Current (DC) Circuits

Direct Current (DC) Circuits Direct Current (DC) Circuits NOTE: There are short answer analysis questions in the Participation section the informal lab report. emember to include these answers in your lab notebook as they will be

More information

The Basic Capacitor. Water Tower / Capacitor Analogy. "Partnering With Our Clients for Combined Success"

The Basic Capacitor. Water Tower / Capacitor Analogy. Partnering With Our Clients for Combined Success CAPACITOR BASICS I How s Work The Basic A capacitor is an electrical device which serves to store up electrical energy for release at a predetermined time. In its most basic form, it is comprised of three

More information

Physics 2B Notes - Capacitors Spring 2018

Physics 2B Notes - Capacitors Spring 2018 Definition of a Capacitor Special Case: Parallel Plate Capacitor Capacitors in Series or Parallel Capacitor Network Definition of a Capacitor Webassign Chapter 0: 8, 9, 3, 4, 5 A capacitor is a device

More information

Chapter 26. Capacitance and Dielectrics

Chapter 26. Capacitance and Dielectrics Chapter 26 Capacitance and Dielectrics Circuits and Circuit Elements Electric circuits are the basis for the vast majority of the devices used in society. Circuit elements can be connected with wires to

More information

Capacitor Construction

Capacitor Construction Capacitor Construction Topics covered in this presentation: Capacitor Construction 1 of 13 Introduction to Capacitors A capacitor is a device that is able to store charge and acts like a temporary, rechargeable

More information

Definition of Capacitance

Definition of Capacitance Definition of Capacitance The capacitance, C, of a capacitor is defined as the ratio of the magnitude of the charge on either conductor to the potential difference between the conductors Q C = ΔV The SI

More information

F 13. The two forces are shown if Q 2 and Q 3 are connected, their charges are equal. F 12 = F 13 only choice A is possible. Ans: Q2.

F 13. The two forces are shown if Q 2 and Q 3 are connected, their charges are equal. F 12 = F 13 only choice A is possible. Ans: Q2. Q1. Three fixed point charges are arranged as shown in Figure 1, where initially Q 1 = 10 µc, Q = 15 µc, and Q 3 = 5 µc. If charges Q and Q 3 are connected by a very thin conducting wire and then disconnected,

More information

Parallel Plate Capacitor, cont. Parallel Plate Capacitor, final. Capacitance Isolated Sphere. Capacitance Parallel Plates, cont.

Parallel Plate Capacitor, cont. Parallel Plate Capacitor, final. Capacitance Isolated Sphere. Capacitance Parallel Plates, cont. Chapter 6 Capacitance and Dielectrics Capacitors! Capacitors are devices that store electric charge! Examples of where capacitors are used include:! radio receivers (tune frequency)! filters in power supplies!

More information

Electrostatics and Electric Potential - Outline

Electrostatics and Electric Potential - Outline Electrostatics and Electric Potential - Outline 1. Understand the basic properties of electric charge, including conservation of charge and that charges are quantized. 2. Differentiate between conductors

More information

ELECTROSTATICS (Important formulae and Concepts) I Electric charges and Coulomb s law

ELECTROSTATICS (Important formulae and Concepts) I Electric charges and Coulomb s law ELECTROSTATICS (Important formulae and Concepts) I Electric charges and Coulomb s law II Electric Field and Electric Dipole www.nrpschool.com www.nrpschool.com III ELECTRIC POTENTIAL www.nrpschool.com

More information

26 Capacitance and Dielectrics

26 Capacitance and Dielectrics Green Items that must be covered for the national test Blue Items from educator.com Red Items from the 8 th edition of Serway 26 Capacitance and Dielectrics 26.1 Definition of Capacitance 26.2 Calculating

More information

Compiled and rearranged by Sajit Chandra Shakya

Compiled and rearranged by Sajit Chandra Shakya 1 (a) Define capacitance. [May/June 2005] 1...[1] (b) (i) One use of a capacitor is for the storage of electrical energy. Briefly explain how a capacitor stores energy......[2] (ii) Calculate the change

More information

Coulomb s constant k = 9x10 9 N m 2 /C 2

Coulomb s constant k = 9x10 9 N m 2 /C 2 1 Part 2: Electric Potential 2.1: Potential (Voltage) & Potential Energy q 2 Potential Energy of Point Charges Symbol U mks units [Joules = J] q 1 r Two point charges share an electric potential energy

More information

Physics (

Physics ( Question 2.12: A charge of 8 mc is located at the origin. Calculate the work done in taking a small charge of 2 10 9 C from a point P (0, 0, 3 cm) to a point Q (0, 4 cm, 0), via a point R (0, 6 cm, 9 cm).

More information

CLASS XII ELECTROSTATICS

CLASS XII ELECTROSTATICS PHYSICAL EDUCATION CLASS XII To do practice of specific game & develop skill. Answer the following questions:- UNIT- I a) Write type of tournament & explain. b) Draw know fixtures for number of teams-

More information

Capacitance & Capacitors, Energy Stored in Capacitors Challenge Problems

Capacitance & Capacitors, Energy Stored in Capacitors Challenge Problems Problem 1: Capacitance & Capacitors, Energy Stored in Capacitors Challenge Problems A parallel-plate capacitor is charged to a potential V 0, charge Q 0 and then disconnected from the battery. The separation

More information

Class 6. Capacitance and Capacitors. Physics 106. Winter Press CTRL-L to view as a slide show. Class 6. Physics 106.

Class 6. Capacitance and Capacitors. Physics 106. Winter Press CTRL-L to view as a slide show. Class 6. Physics 106. and in and Energy Winter 2018 Press CTRL-L to view as a slide show. From last time: The field lines are related to the field as follows: What is the electric potential? How are the electric field and the

More information

Chapter 24: Capacitance and dielectrics

Chapter 24: Capacitance and dielectrics Chapter 24: Capacitance and dielectrics Capacitor: a device store electric energy How to define capacitance In parallel and/or in series Electric energy stored in a capacitor Dielectric materials Capacitor:

More information

Physics Lecture: 16 MON 23 FEB Capacitance I

Physics Lecture: 16 MON 23 FEB Capacitance I Physics 2113 Jonathan Dowling Physics 2113 Lecture: 16 MON 23 FEB Capacitance I Capacitors and Capacitance Capacitor: any two conductors, one with charge +Q, other with charge Q Potential DIFFERENCE between

More information

(21/703) At what distance from a point charge of 8µC would the potential equal 3.6X10 4 V?

(21/703) At what distance from a point charge of 8µC would the potential equal 3.6X10 4 V? (/73) At what distance from a point charge of 8µC would the potential equal 3.6X 4 V? (6/73) A positron has the same charge as a proton but the same mass as an electron. Suppose a positron moves 5. cm

More information