PHY101: Major Concepts in Physics I

Size: px
Start display at page:

Download "PHY101: Major Concepts in Physics I"

Transcription

1 Welcome back to PHY101: Major Concepts in Physics I Photo: S. T. Cummins

2 Photo: S. T. Cummins

3 Announcements Today is our final class! We will first discuss more on Chapters and then conduct a short course review via several example problems. Our final lab is this week on the Stirling engine. HW 11 is due by next Monday at noon in your TA s mailbox. Our final exam is on Friday, December 14, from 5:15-7:15PM in Stolkin.

4 See the updated equation sheet now containing all the formulas you need to know for the final exam!

5 Tenth (and final) set of Three Big Questions What is the molecular basis of temperature? How does temperature allow one tune between gases, liquids, and solids? What are the laws of thermodynamics? And how can we use them to do work? 5

6 Kinetic Theory of Ideal Gases Slide 6

7 Zeroth Law of Thermodynamics: If two objects are each in thermal equilibrium with a third object, then the two are in thermal equilibrium with one another. Different thermometers give the same results! Slide 7

8 First Law of Thermodynamics: The change in internal energy of a system is equal to the heat flow into the system plus the work done on the system. Slide 8

9 Slide 9

10 14.3 Example problem: In an experiment similar to that done by Joule (next slide), an object of mass 12.0 kg descends a distance of 1.25 m at constant speed while causing the rotation of a paddle wheel in an insulated container of water. If the descent is repeated 20.0 times, what is the internal energy increase of the water in joules? Slide 10

11 14.3 Slide 11

12 14.3 Strategy Each time the object descends, it converts gravitational potential energy into kinetic energy of the paddle wheel, which in turn agitates the water and converts kinetic energy into internal energy. Slide 12

13 Solution 14.3 Slide 13

14 Heat Capacity For a large number of substances, under normal conditions, the temperature change ΔT is approximately proportional to the heat Q. The constant of proportionality is called the heat capacity (symbol C ): The heat capacity depends both on the substance and on how much of it is present. Slide 14

15 Specific Heat The heat capacity of the water in a drinking glass is much smaller than the heat capacity of the water in Lake Ontario. Since the heat capacity of a system is proportional to the mass of the system, the specific heat capacity (symbol c ) of a substance is defined as the heat capacity per unit mass: Specific heat capacity is often abbreviated to specific heat. Slide 15

16 The equation applies when no phase change occurs. Slide 16

17 Slide 17

18 Slide 18

19 From Joule s 1849 paper

20 PHASE TRANSITIONS A phase transition occurs whenever a material is changed from one phase, such as the solid phase, to another, such as the liquid phase. During the two phase transitions, heat flow continues, and the internal energy changes, but the temperature of the mixture of two phases does not change. Slide 20

21 Slide 21

22 Definition of latent heat: The heat required per unit mass of substance to produce a phase change is called the latent heat ( L ). The word latent is related to the lack of temperature change during a phase transition. The sign of Q depends on the direction of the phase transition. For melting or boiling, Q > 0 (heat flows into the system). For freezing or condensation, Q < 0 (heat flows out of the system). Slide 22

23 Microscopic View of a Phase Change When a substance is in solid form, bonds between the atoms or molecules hold them near fixed equilibrium positions. Energy must be supplied to break the bonds and change the solid into a liquid. When the substance is changed from liquid to gas, energy is used to separate the molecules from the loose bonds holding them together and to move the molecules apart. Slide 23

24 Microscopic View of a Phase Change Temperature does not change during these phase transitions because the kinetic energy of the molecules is not changing. Instead, the potential energy of the molecules changes as work is done against the forces holding them together. Slide 24

25 Phase Diagrams A useful tool in the study of phase transitions is the phase diagram a diagram on which pressure is plotted on the vertical axis and temperature on the horizontal axis. Slide 25

26 Phase Diagrams The curves on the phase diagram are the demarcations between the solid, liquid, and gas phases. At the triple point, all three phases (solid, liquid, and gas) can coexist in equilibrium. Notice that the vapor pressure curve ends at the critical point. Slide 26

27 Phase Diagrams The curves on the phase diagram are the demarcations between the solid, liquid, and gas phases. At the triple point, all three phases (solid, liquid, and gas) can coexist in equilibrium. Notice that the vapor pressure curve ends at the critical point. Slide 27

28 Slide 28

29 A thermodynamic process is the method by which a system is changed from one equilibrium state to another. The equilibrium state of a system is described by a set of state variables such as pressure, temperature, volume, number of moles, and internal energy. State variables describe the equilbrium state of a system at some instant of time but not how the system got to that state. Heat and work are not state variables they describe how a system gets from one equilibrium state to another. Slide 29

30 The PV Diagram Each point on the curve represents an equilibrium state of the system. The PV diagram is a useful tool for analyzing thermodynamic processes. One of the chief uses of a PV diagram is to find the work done on the system. Slide 30

31 Work and Area Under a PV Curve Slide 31

32 Slide 32

33 On a PV diagram, what kind of process is represented by a horizontal line with an arrow pointing to the right? A. Isochoric process B. Isobaric compression C. Isothermal compression D. Isobaric expansion

34 On a PV diagram, what kind of process is represented by a horizontal line with an arrow pointing to the right? A. Isochoric process B. Isobaric compression C. Isothermal compression D. Isobaric expansion

35 A heat engine is a device designed to convert disordered energy (heat) into ordered energy (work). We will see that there is a fundamental limitation on how much ordered energy (mechanical work) can be produced by a heat engine from a given amount of disordered energy (heat) using the various thermodynamic processes. Slide 35

36 Cyclical Engines The engines that we will study operate in cycles. Each cycle consists of several thermodynamic processes that are repeated the same way during each cycle. In order for these processes to repeat the same way, the engine must end the cycle in the same state in which it started. In particular, the internal energy of the engine must be the same at the end of a cycle as it was in the beginning. Slide 36

37 Cyclical Engine The net work done by an engine during one cycle is equal to the net heat flow into the engine during the cycle. We stress that it is the net heat flow since an engine not only takes in heat but exhausts some as well. The figure shows the energy transfers during one cycle of a heat engine. Slide 37

38 Stirling engine demo!

39 Application: The Internal Combustion Engine Slide 39

40 Otto engine!

41 Efficiency and the First Law According to the first law of thermodynamics, the efficiency of a heat engine cannot exceed 100%. An efficiency of 100% would mean that all of the heat input is turned into useful work and no waste heat is exhausted. It might seem theoretically possible to make a 100% efficient engine by eliminating all of the imperfections in design such as friction and lack of perfect insulation. However, it is not, as we see in a moment. Slide 41

42 Now imagine a hypothetical reversible engine exchanging heat with two reservoirs. In this engine, no irreversible processes occur: there is no friction or other dissipation of energy, and heat only flows between systems that have the same temperature. In practice, there would have to be some small temperature difference to make heat flow from one system to another, but we can imagine making the temperature difference smaller and smaller. Hence, the reversible engine is an idealization, not something we can actually build. Slide 42

43 We can now show that the efficiency of this reversible engine depends only on the absolute temperatures of the two reservoirs; and the efficiency of a real engine that exchanges heat with two reservoirs cannot be greater than the efficiency of a reversible engine using the same two reservoirs. Slide 43

44 Efficiency of a Reversible Engine For a reversible engine, the ratio of the heat magnitudes is equal to the temperature ratio. The efficiency of a reversible engine cannot reach 100 percent. This is one way of stating the second law of thermodynamics! Slide 44

45 Another way to state the second law of thermodynamics : Heat never flows spontaneously from a colder body to a hotter body. (Spontaneous heat flow from a colder body to a hotter body would decrease the total disorder in the universe. The second law of thermodynamics determines what we sense as the direction of time none of the other physical laws we have studied would be violated if the direction of time were reversed.) Slide 45

46 Entropy If an amount of heat Q flows into a system at constant absolute temperature T, the entropy change of the system is If a small amount of heat Q flows from a hotter system to a colder system ( T H > T C ), the total entropy change of the system is Slide 46

47 The entropy of the universe never decreases. Note that a reversible process causes no change in the total entropy of the universe. This is yet a third way of stating the second law of thermodynamics! And engine/device that does not obey the second law of thermodynamics does not exist! Slide 47

48 Like the second law, the third law of thermodynamics can be stated in several equivalent ways. Although it is impossible to reach absolute zero, there is no limit on how close we can get. Slide 48

49 A friend tells you that he knows of a situation in which bowl of ice sitting by itself on a table in a room whose air temperature is 20 o C gives up heat the surrounding air. What s wrong with this concept? A. It would violate the 0 th law of thermodynamics B. It would violate the 1 st law of thermodynamics C. It would violate the 2 nd law of thermodynamics D. It would violate the 3 rd law of thermodynamics

50 A friend tells you that he knows of a situation in which bowl of ice sitting by itself on a table in a room whose air temperature is 20 o C gives up heat the surrounding air. What s wrong with this concept? A. It would violate the 0 th law of thermodynamics B. It would violate the 1 st law of thermodynamics C. It would violate the 2 nd law of thermodynamics D. It would violate the 3 rd law of thermodynamics

51 What is science? What is physics? What tools do you need to learn physics? What are forces? What laws govern forces? How can we apply the laws to solve problems? How does one define position, displacement, velocity, and acceleration? How does one describe motion along a line with constant velocity? How does one describe motion along a line with constant acceleration? How does one define position, displacement, velocity, and acceleration in the plane? How does one describe motion in the plane with constant acceleration? What is work? And how is it related to energy? What is energy? How many different types of energy are there? Energy is conserved. How can we apply this principle (combined with the concept of work ) to solve problems?

52 How does a solid respond to a deformation, i.e. a change in its size or shape? In what situations does simple harmonic motion occur and how does one describe it? How do fluids behave? What is electric charge? How do electric charges interact? What is an electric field? What is electric potential energy and electric potential? How does one store/harness the electric potential energy? How do electrical circuits work? What are magnetic fields? How can we harness magnetic fields to do work? How do magnetic fields affect the motion of certain objects? What is temperature and what is its molecular basis? How does temperature all one to tune between gases, liquids, and solids? What are the laws of thermodynamics? And how can we use them to do work?

53 Example problems..

54

55

56 The equation sheet is your friend. It provides a concise summary of the course! Don t forget to fill out the on-line course evaluation!

57 The equation sheet is your friend. It provides a concise summary of the course! Don t forget to fill out the on-line course evaluation! Standing for truth, justice, and scientific method! Over and out, Professor Schwarz

PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz

PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz PHY101: Major Concepts in Physics I Photo: J. M. Schwarz Announcements We will be talking about the laws of thermodynamics today, which will help get you ready for next week s lab on the Stirling engine.

More information

PHY101: Major Concepts in Physics I

PHY101: Major Concepts in Physics I Welcome back to PHY101: Major Concepts in Physics I Photo: J. M. Schwarz Announcements In class today we will finish Chapter 20 (sections 3, 4, and 7). and then move to Chapter 13 (the first six sections).

More information

18.13 Review & Summary

18.13 Review & Summary 5/2/10 10:04 PM Print this page 18.13 Review & Summary Temperature; Thermometers Temperature is an SI base quantity related to our sense of hot and cold. It is measured with a thermometer, which contains

More information

Chapter 14 Heat and Temperature Notes

Chapter 14 Heat and Temperature Notes Chapter 14 Heat and Temperature Notes Section 1: Temperature The degree of or of an object. Related to the of an object s atoms or molecules What makes something hot? o Particles that make up o They have

More information

10.2 PROCESSES 10.3 THE SECOND LAW OF THERMO/ENTROPY Student Notes

10.2 PROCESSES 10.3 THE SECOND LAW OF THERMO/ENTROPY Student Notes 10.2 PROCESSES 10.3 THE SECOND LAW OF THERMO/ENTROPY Student Notes I. THE FIRST LAW OF THERMODYNAMICS A. SYSTEMS AND SURROUNDING B. PV DIAGRAMS AND WORK DONE V -1 Source: Physics for the IB Diploma Study

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

Temperature and Its Measurement

Temperature and Its Measurement Temperature and Its Measurement When the physical properties are no longer changing, the objects are said to be in thermal equilibrium. Two or more objects in thermal equilibrium have the same temperature.

More information

AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers!

AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers! AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers! Nicolas Léonard Sadi Carnot (1796-1832) Sadi Carnot was a French military engineer and physicist, often

More information

Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated.

Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated. Heat Energy Temperature and Thermometers Temperature is a measure of how hot or cold something is. Most materials expand when heated. Thermometers are instruments designed to measure temperature. In order

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

Chapter 9. Preview. Objectives Defining Temperature. Thermal Equilibrium. Thermal Expansion Measuring Temperature. Section 1 Temperature and

Chapter 9. Preview. Objectives Defining Temperature. Thermal Equilibrium. Thermal Expansion Measuring Temperature. Section 1 Temperature and Section 1 Temperature and Thermal Equilibrium Preview Objectives Defining Temperature Thermal Equilibrium Thermal Expansion Measuring Temperature Section 1 Temperature and Thermal Equilibrium Objectives

More information

Chapter 14 Temperature and Heat

Chapter 14 Temperature and Heat Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 14 Temperature and Heat Thermodynamics Starting a different area of physics called thermodynamics Thermodynamics focuses on energy rather than

More information

Chapter 12. The Laws of Thermodynamics. First Law of Thermodynamics

Chapter 12. The Laws of Thermodynamics. First Law of Thermodynamics Chapter 12 The Laws of Thermodynamics First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy of a system can be increased by Adding energy to the system Doing work

More information

S15--AP Phys Q4--Heat-Thermo Ch13_14_15 PRACTICE

S15--AP Phys Q4--Heat-Thermo Ch13_14_15 PRACTICE Name: Class: Date: S5--AP Phys Q4--Heat-Thermo Ch3_4_5 PRACTICE Multiple Choice Identify the choice that best completes the statement or answers the question.. Which of the following is a thermodynamic

More information

Survey of Thermodynamic Processes and First and Second Laws

Survey of Thermodynamic Processes and First and Second Laws Survey of Thermodynamic Processes and First and Second Laws Please select only one of the five choices, (a)-(e) for each of the 33 questions. All temperatures T are absolute temperatures. All experiments

More information

The First Law of Thermodynamics

The First Law of Thermodynamics Thermodynamics The First Law of Thermodynamics Thermodynamic Processes (isobaric, isochoric, isothermal, adiabatic) Reversible and Irreversible Processes Heat Engines Refrigerators and Heat Pumps The Carnot

More information

Entropy & the Second Law of Thermodynamics

Entropy & the Second Law of Thermodynamics PHYS102 Previous Exam Problems CHAPTER 20 Entropy & the Second Law of Thermodynamics Entropy gases Entropy solids & liquids Heat engines Refrigerators Second law of thermodynamics 1. The efficiency of

More information

The Direction of Spontaneous Change: Entropy and Free Energy

The Direction of Spontaneous Change: Entropy and Free Energy The Direction of Spontaneous Change: Entropy and Free Energy Reading: from Petrucci, Harwood and Herring (8th edition): Required for Part 1: Sections 20-1 through 20-4. Recommended for Part 1: Sections

More information

Chapter 16 Thermodynamics

Chapter 16 Thermodynamics Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 16 Thermodynamics Thermodynamics Introduction Another area of physics is thermodynamics Continues with the principle of conservation of energy

More information

Physics 111. Lecture 42 (Walker: 18.9) Entropy & Disorder Final Review. May 15, 2009

Physics 111. Lecture 42 (Walker: 18.9) Entropy & Disorder Final Review. May 15, 2009 Physics 111 Lecture 42 (Walker: 18.9) Entropy & Disorder Final Review May 15, 2009 Review Session: Today, 3:10-4:00, TH230. Final exam, Monday May 18, 10:45-1:15. Lecture 42 1/32 The Physics 111 Final

More information

Chapter 12. The Laws of Thermodynamics

Chapter 12. The Laws of Thermodynamics Chapter 12 The Laws of Thermodynamics First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy of a system can be increased by Adding energy to the system Doing work

More information

T s change via collisions at boundary (not mechanical interaction)

T s change via collisions at boundary (not mechanical interaction) Lecture 14 Interaction of 2 systems at different temperatures Irreversible processes: 2nd Law of Thermodynamics Chapter 19: Heat Engines and Refrigerators Thermal interactions T s change via collisions

More information

First Law of Thermodynamics Second Law of Thermodynamics Mechanical Equivalent of Heat Zeroth Law of Thermodynamics Thermal Expansion of Solids

First Law of Thermodynamics Second Law of Thermodynamics Mechanical Equivalent of Heat Zeroth Law of Thermodynamics Thermal Expansion of Solids Slide 1 / 66 1 What is the name of the following statement: "When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium with each other"? A B C D E First Law

More information

Chapter 12 Thermodynamics

Chapter 12 Thermodynamics Chapter 12 Thermodynamics 12.1 Thermodynamic Systems, States, and Processes System: definite quantity of matter with real or imaginary boundaries If heat transfer is impossible, the system is thermally

More information

ΔU = Q W. Tue Dec 1. Assign 13/14 Friday Final: Fri Dec 11 2:30PM WALTER 145. Thermodynamics 1st Law. 2 nd Law. Heat Engines and Refrigerators

ΔU = Q W. Tue Dec 1. Assign 13/14 Friday Final: Fri Dec 11 2:30PM WALTER 145. Thermodynamics 1st Law. 2 nd Law. Heat Engines and Refrigerators Tue Dec 1 Thermodynamics 1st Law ΔU = Q W 2 nd Law SYS Heat Engines and Refrigerators Isobaric: W = PΔV Isochoric: W = 0 Isothermal: ΔU = 0 Adiabatic: Q = 0 Assign 13/14 Friday Final: Fri Dec 11 2:30PM

More information

This Week. 6/2/2015 Physics 214 Summer

This Week. 6/2/2015 Physics 214 Summer This Week Heat and Temperature Water and Ice Our world would be different if water didn t expand Engines We can t use all the energy! Why is a diesel engine more efficient? Geysers: You have to be faithful

More information

THERMODYNAMICS. Zeroth law of thermodynamics. Isotherm

THERMODYNAMICS. Zeroth law of thermodynamics. Isotherm 12 THERMODYNAMICS Zeroth law of thermodynamics Two systems separately in thermal equilibrium with a third system are in thermal equilibrium with each other. Isotherm It is the graph connecting pressure

More information

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law Units of Chapter 17 & 19 Temperature and the Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion Heat and Mechanical Work

More information

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition MME 2010 METALLURGICAL THERMODYNAMICS II Fundamentals of Thermodynamics for Systems of Constant Composition Thermodynamics addresses two types of problems: 1- Computation of energy difference between two

More information

Physics 5D PRACTICE FINAL EXAM Fall 2013

Physics 5D PRACTICE FINAL EXAM Fall 2013 Print your name: Physics 5D PRACTICE FINAL EXAM Fall 2013 Real Exam is Wednesday December 11 Thimann Lecture 3 4:00-7:00 pm Closed book exam two 8.5x11 sheets of notes ok Note: Avogadro s number N A =

More information

Chapter 19. Heat Engines

Chapter 19. Heat Engines Chapter 19 Heat Engines Thermo Processes Eint = Q+ W Adiabatic No heat exchanged Q = 0 and E int = W Isobaric Constant pressure W = P (V f V i ) and E int = Q + W Isochoric Constant Volume W = 0 and E

More information

Hence. The second law describes the direction of energy transfer in spontaneous processes

Hence. The second law describes the direction of energy transfer in spontaneous processes * Heat and Work The first law of thermodynamics states that: Although energy has many forms, the total quantity of energy is constant. When energy disappears in one form, it appears simultaneously in other

More information

(prev) (top) (next) (Throughout, we will assume the processes involve an ideal gas with constant n.)

(prev) (top) (next) (Throughout, we will assume the processes involve an ideal gas with constant n.) 1 of 9 8/22/12 9:51 PM (prev) (top) (next) Thermodynamics 1 Thermodynamic processes can be: 2 isothermal processes, ΔT = 0 (so P ~ 1 / V); isobaric processes, ΔP = 0 (so T ~ V); isovolumetric or isochoric

More information

TB [103 marks] The damping of the system is now increased. Which describes the change in ƒ 0 and the change in A 0?

TB [103 marks] The damping of the system is now increased. Which describes the change in ƒ 0 and the change in A 0? TB [103 marks] 1. A periodic driving force of frequency ƒ acts on a system which undergoes forced oscillations of amplitude A. The graph below shows the variation with ƒ of A. The maximum amplitude A 0

More information

A). Yes. B). No. Q15 Is it possible for a solid metal ball to float in mercury?

A). Yes. B). No. Q15 Is it possible for a solid metal ball to float in mercury? Q15 Is it possible for a solid metal ball to float in mercury? A). Yes. B). No. The upward force is the weight of liquid displaced and the downward force is the weight of the ball. If the density of the

More information

Thermodynamics B Test

Thermodynamics B Test Northern Regional: January 19 th, 2019 Thermodynamics B Test Name(s): Team Name: School Name: Team Number: Rank: Score: Science Olympiad North Florida Regional at the University of Florida Thermodynamics

More information

Kinetic Theory continued

Kinetic Theory continued Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

More information

Thermal Physics. Topics to be covered. Slide 2 / 105. Slide 1 / 105. Slide 3 / 105. Slide 4 / 105. Slide 5 / 105. Slide 6 / 105.

Thermal Physics. Topics to be covered. Slide 2 / 105. Slide 1 / 105. Slide 3 / 105. Slide 4 / 105. Slide 5 / 105. Slide 6 / 105. Slide 1 / 105 Slide 2 / 105 Topics to be covered Thermal Physics Temperature and Thermal quilibrium Gas Laws Internal nergy Heat Work Laws of Thermodynamics Heat ngines Slide 3 / 105 Thermodynamics System

More information

Physics 121, April 24. Heat and the First Law of Thermodynamics. Department of Physics and Astronomy, University of Rochester

Physics 121, April 24. Heat and the First Law of Thermodynamics. Department of Physics and Astronomy, University of Rochester Physics 121, April 24. Heat and the First Law of Thermodynamics. Physics 121. April 24, 2008. Course Information Topics to be discussed today: Heat First law of thermodynamics Second law of thermodynamics

More information

Physics 121, April 24. Heat and the First Law of Thermodynamics. Physics 121. April 24, Physics 121. April 24, Course Information

Physics 121, April 24. Heat and the First Law of Thermodynamics. Physics 121. April 24, Physics 121. April 24, Course Information Physics 121, April 24. Heat and the First Law of Thermodynamics. Physics 121. April 24, 2008. Course Information Topics to be discussed today: Heat First law of thermodynamics Second law of thermodynamics

More information

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Zeroeth Law Two systems individually in thermal equilibrium with a third

More information

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:-

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:- UNIVERSITY COLLEGE LONDON University of London EXAMINATION FOR INTERNAL STUDENTS For The Following Qualifications:- B.Sc. M.Sci. Physics 1B28: Thermal Physics COURSE CODE : PHYSIB28 UNIT VALUE : 0.50 DATE

More information

Kinetic Theory continued

Kinetic Theory continued Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

More information

THERMODYNAMICS b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium.

THERMODYNAMICS b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium. THERMODYNAMICS Important Points:. Zeroth Law of Thermodynamics: a) This law gives the concept of temperature. b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium.

More information

Second Law of Thermodynamics -

Second Law of Thermodynamics - Second Law of Thermodynamics - REVIEW ENTROPY EXAMPLE Dr. Garrick 1/19/09 First Law of Thermodynamics you can t win! First Law of Thermodynamics: Energy cannot be Created or Destroyed the total energy

More information

First Law of Thermodynamics. Example of Spontaneous Rxns. Reversible and Irreversible 8/2/2016

First Law of Thermodynamics. Example of Spontaneous Rxns. Reversible and Irreversible 8/2/2016 First Law of Thermodynamics The first law of thermodynamics states that the energy of the universe is conserved. If one object loses energy, another has to gain that energy. The mathematical relationship

More information

Chapter 11 Heat Engines and The Second Law of Thermodynamics

Chapter 11 Heat Engines and The Second Law of Thermodynamics Chapter 11 Heat Engines and The Second Law of Thermodynamics Heat Engines Heat engines use a temperature difference involving a high temperature (T H ) and a low temperature (T C ) to do mechanical work.

More information

Lecture Outline Chapter 18. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 18. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 18 Physics, 4 th Edition James S. Walker Chapter 18 The Laws of Thermodynamics Units of Chapter 18 The Zeroth Law of Thermodynamics The First Law of Thermodynamics Thermal Processes

More information

Lecture PowerPoints. Chapter 13 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 13 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 13 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A

ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A 1. What is meant by thermodynamics system? (A/M 2006) Thermodynamics system is defined as any space or matter or group of matter

More information

Chapter 19. Heat Engines

Chapter 19. Heat Engines Chapter 19 Heat Engines QuickCheck 19.11 The efficiency of this Carnot heat engine is A. Less than 0.5. B. 0.5. C. Between 0.5 and 1.0. D. 2.0. E. Can t say without knowing Q H. 2013 Pearson Education,

More information

A thermodynamic system is taken from an initial state X along the path XYZX as shown in the PV-diagram.

A thermodynamic system is taken from an initial state X along the path XYZX as shown in the PV-diagram. AP Physics Multiple Choice Practice Thermodynamics 1. The maximum efficiency of a heat engine that operates between temperatures of 1500 K in the firing chamber and 600 K in the exhaust chamber is most

More information

Thermodynamics I - Enthalpy

Thermodynamics I - Enthalpy Thermodynamics I - Enthalpy Tinoco Chapter 2 Secondary Reference: J.B. Fenn, Engines, Energy and Entropy, Global View Publishing, Pittsburgh, 2003. 1 Thermodynamics CHEM 2880 - Kinetics An essential foundation

More information

Entropy Changes & Processes

Entropy Changes & Processes Entropy Changes & Processes Chapter 4 of Atkins: he Second Law: he Concepts Section 4.3, 7th edition; 3.3, 8th and 9th editions Entropy of Phase ransition at the ransition emperature Expansion of the Perfect

More information

Lecture 2: Zero law of thermodynamics

Lecture 2: Zero law of thermodynamics Lecture 2: Zero law of thermodynamics 1. Thermometers and temperature scales 2. Thermal contact and thermal equilibrium 3. Zeroth law of thermodynamics 1. Thermometers and Temperature scales We often associate

More information

Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, Chapter 7 ENTROPY

Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, Chapter 7 ENTROPY Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 7 ENTROPY Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Class 22 - Second Law of Thermodynamics and Entropy

Class 22 - Second Law of Thermodynamics and Entropy Class 22 - Second Law of Thermodynamics and Entropy The second law of thermodynamics The first law relates heat energy, work and the internal thermal energy of a system, and is essentially a statement

More information

Chapter 16. Copyright 2010 Pearson Education, Inc.

Chapter 16. Copyright 2010 Pearson Education, Inc. Chapter 16 Temperature and Heat Units of Chapter 16 Temperature and the Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion Heat and Mechanical Work Specific Heats Conduction, Convection,

More information

CHAPTER 17 WORK, HEAT, & FIRST LAW OF THERMODYNAMICS

CHAPTER 17 WORK, HEAT, & FIRST LAW OF THERMODYNAMICS CHAPTER 17 WORK, HEAT, and the FIRST LAW OF THERMODYNAMICS In this chapter, we will examine various thermal properties of matter, as well as several mechanisms by which energy can be transferred to and

More information

Lecture 10: Heat Engines and Reversible Processes

Lecture 10: Heat Engines and Reversible Processes Lecture 10: Heat Engines and Reversible Processes Last time we started discussing cyclic heat engines these are devices that convert heat energy into mechanical work We found that in general, heat engines

More information

CHAPTER - 12 THERMODYNAMICS

CHAPTER - 12 THERMODYNAMICS CHAPER - HERMODYNAMICS ONE MARK QUESIONS. What is hermodynamics?. Mention the Macroscopic variables to specify the thermodynamics. 3. How does thermodynamics differ from Mechanics? 4. What is thermodynamic

More information

2012 Thermodynamics Division C

2012 Thermodynamics Division C Team: Team Number: Team Member Names: 1. 2. Instructions: Answer all questions on the test paper. If you need more room, you may attach extra paper. The test is worth a total of 50 points. Show all work

More information

What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold?

What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold? Heat and Temperature Section 1: Temperature What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold? 1 Intro: Discussion A person

More information

Heat What is heat? Work = 2. PdV 1

Heat What is heat? Work = 2. PdV 1 eat What is heat? eat (Q) is the flow or transfer of energy from one system to another Often referred to as heat flow or heat transfer Requires that one system must be at a higher temperature than the

More information

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Thermodynamics is that branch of science which deals with energy transfer A system may be closed, open or isolated system

More information

Heat Machines (Chapters 18.6, 19)

Heat Machines (Chapters 18.6, 19) eat Machines (hapters 8.6, 9) eat machines eat engines eat pumps The Second Law of thermodynamics Entropy Ideal heat engines arnot cycle Other cycles: Brayton, Otto, Diesel eat Machines Description The

More information

Physics 101: Lecture 28 Thermodynamics II

Physics 101: Lecture 28 Thermodynamics II Physics 101: Lecture 28 Thermodynamics II Final Today s lecture will cover Textbook Chapter 15.6-15.9 Check Final Exam Room Assignment! Bring ID! Be sure to check your gradebook! Physics 101: Lecture 28,

More information

Lecture 44: Review Thermodynamics I

Lecture 44: Review Thermodynamics I ME 00 Thermodynamics I Lecture 44: Review Thermodynamics I Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 0040, P. R. China Email : liyo@sjtu.edu.cn

More information

THE SECOND LAW OF THERMODYNAMICS. Professor Benjamin G. Levine CEM 182H Lecture 5

THE SECOND LAW OF THERMODYNAMICS. Professor Benjamin G. Levine CEM 182H Lecture 5 THE SECOND LAW OF THERMODYNAMICS Professor Benjamin G. Levine CEM 182H Lecture 5 Chemical Equilibrium N 2 + 3 H 2 2 NH 3 Chemical reactions go in both directions Systems started from any initial state

More information

Lesson 12. Luis Anchordoqui. Physics 168. Tuesday, November 28, 17

Lesson 12. Luis Anchordoqui. Physics 168. Tuesday, November 28, 17 Lesson 12 Physics 168 1 Temperature and Kinetic Theory of Gases 2 Atomic Theory of Matter On microscopic scale, arrangements of molecules in solids, liquids, and gases are quite different 3 Temperature

More information

Thermodynamics C Test

Thermodynamics C Test Northern Regional: January 19 th, 2019 Thermodynamics C Test Name(s): Team Name: School Name: Team Number: Rank: Score: Science Olympiad North Florida Regional at the University of Florida Thermodynamics

More information

Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat Chapter 10 Temperature and Heat Thermodynamics deals with 1. Temperature. 2. The transfer and transformation of energy. 3. The relationship between macroscopic properties and microscopic dynamics. Temperature

More information

Today. Work, Energy, Power loose ends Temperature Second Law of Thermodynamics

Today. Work, Energy, Power loose ends Temperature Second Law of Thermodynamics Today Announcements: HW#5 is due by 8:00 am Wed. Feb. 5th. Extra Credit Exam due by Tomorrow 8am. Work, Energy, Power loose ends Temperature Second Law of Thermodynamics ISP09s9 Lecture 11-1- Energy and

More information

DAY 28. Summary of Primary Topics Covered. The 2 nd Law of Thermodynamics

DAY 28. Summary of Primary Topics Covered. The 2 nd Law of Thermodynamics DAY 28 Summary of Primary Topics Covered The 2 nd Law of Thermodynamics The 2 nd Law of Thermodynamics says this - - Heat energy naturally flows from hotter objects to colder objects. We know this happens,

More information

Two mark questions and answers UNIT II SECOND LAW 1. Define Clausius statement. It is impossible for a self-acting machine working in a cyclic process, to transfer heat from a body at lower temperature

More information

PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz

PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz Welcome back to PHY101: Major Concepts in Physics I Photo: J. M. Schwarz Announcements In class today we will finish Chapter 17 on electric potential energy and electric potential and perhaps begin Chapter

More information

Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011.

Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011. Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 7 ENTROPY Mehmet Kanoglu University of Gaziantep Copyright The McGraw-Hill

More information

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Thermodynamics and Statistical Physics

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Thermodynamics and Statistical Physics Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Thermodynamics and Statistical Physics Key contents: Temperature scales Thermal expansion Temperature and heat, specific heat Heat and

More information

The need for something else: Entropy

The need for something else: Entropy Lecture 27 Goals: Ch. 18 ualitatively understand 2 nd Law of Thermodynamics Ch. 19 Understand the relationship between work and heat in a cycling process Follow the physics of basic heat engines and refrigerators.

More information

EXPERIENCE COLLEGE BEFORE COLLEGE

EXPERIENCE COLLEGE BEFORE COLLEGE Mechanics, Heat, and Sound (PHY302K) College Unit Week Dates Big Ideas Subject Learning Outcomes Assessments Apply algebra, vectors, and trigonometry in context. Employ units in problems. Course Mathematics

More information

Temperature and Heat. Chapter 17. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman

Temperature and Heat. Chapter 17. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Chapter 17 Temperature and Heat PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Goals for Chapter 17 To delineate the three different

More information

Boundary. Surroundings

Boundary. Surroundings Thermodynamics Thermodynamics describes the physics of matter using the concept of the thermodynamic system, a region of the universe that is under study. All quantities, such as pressure or mechanical

More information

Chapter 1. The Properties of Gases Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 1. The Properties of Gases Fall Semester Physical Chemistry 1 (CHM2201) Chapter 1. The Properties of Gases 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The Perfect Gas 1.1 The states of gases 1.2 The gas laws Real Gases 1.3 Molecular interactions 1.4 The van

More information

How to please the rulers of NPL-213 the geese

How to please the rulers of NPL-213 the geese http://www.walkingmountains. org/2015/03/reintroduction-ofthe-canada-goose/ How to please the rulers of NPL-213 the geese (Entropy and the 2 nd Law of Thermodynamics) Physics 116 2017 Tues. 3/21, Thurs

More information

Examples. Fire Piston (demo) Example (Comparison of processes)

Examples. Fire Piston (demo) Example (Comparison of processes) Examples Fire Piston (demo) Fire Piston istory http://en.wikipedia.org/wiki/fire_piston Example 19.68 (Comparison of processes) Fire piston calculations http://complex.gmu.edu/www-phys/phys262/soln/fire_piston.pdf

More information

Module - 1: Thermodynamics

Module - 1: Thermodynamics Thermodynamics: Module - : Thermodynamics Thermodynamics (Greek: thermos = heat and dynamic = change) is the study of the conversion of energy between heat and other forms, mechanical in particular. All

More information

11/29/2017 IRREVERSIBLE PROCESSES. UNIT 2 Thermodynamics: Laws of thermodynamics, ideal gases, and kinetic theory

11/29/2017 IRREVERSIBLE PROCESSES. UNIT 2 Thermodynamics: Laws of thermodynamics, ideal gases, and kinetic theory 11/9/017 AP PHYSICS UNIT Thermodynamics: Laws of thermodynamics, ideal gases, and kinetic theory CHAPTER 13 SECOND LAW OF THERMODYNAMICS IRREVERSIBLE PROCESSES The U G of the water-earth system at the

More information

Chapter 15: Thermal Properties of Matter

Chapter 15: Thermal Properties of Matter Chapter 15 Lecture Chapter 15: Thermal Properties of Matter Goals for Chapter 15 To understand and learn to use the mole and Avogadro's number. To see applications for equations of state. To study the

More information

Chapter 20 Second Law of Thermodynamics. Copyright 2009 Pearson Education, Inc.

Chapter 20 Second Law of Thermodynamics. Copyright 2009 Pearson Education, Inc. Chapter 20 Second Law of Thermodynamics It is easy to produce thermal energy using work, but how does one produce work using thermal energy? This is a heat engine; mechanical energy can be obtained from

More information

Chemical thermodynamics the area of chemistry that deals with energy relationships

Chemical thermodynamics the area of chemistry that deals with energy relationships Chemistry: The Central Science Chapter 19: Chemical Thermodynamics Chemical thermodynamics the area of chemistry that deals with energy relationships 19.1: Spontaneous Processes First law of thermodynamics

More information

Chapter 19 The First Law of Thermodynamics

Chapter 19 The First Law of Thermodynamics Chapter 19 The First Law of Thermodynamics The first law of thermodynamics is an extension of the principle of conservation of energy. It includes the transfer of both mechanical and thermal energy. First

More information

The first law of thermodynamics. U = internal energy. Q = amount of heat energy transfer

The first law of thermodynamics. U = internal energy. Q = amount of heat energy transfer Thermodynamics Investigation of the energy transfer by heat and work and how natural systems behave (Q) Heat transfer of energy due to temp differences. (W) Work transfer of energy through mechanical means.

More information

ENTROPY. Chapter 7. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A. Boles.

ENTROPY. Chapter 7. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A. Boles. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 7 ENTROPY Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc. Permission required

More information

Lecture Outline Chapter 17. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 17. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 17 Physics, 4 th Edition James S. Walker Chapter 17 Phases and Phase Changes Ideal Gases Kinetic Theory Units of Chapter 17 Solids and Elastic Deformation Phase Equilibrium and

More information

Physics 111. Lecture 35 (Walker: ) Thermal Physics I: Temperature Thermal Expansion. April 29, Temperature (T)

Physics 111. Lecture 35 (Walker: ) Thermal Physics I: Temperature Thermal Expansion. April 29, Temperature (T) Physics 111 Lecture 35 (Walker: 16.1-3) Thermal Physics I: Temperature Thermal Expansion April 29, 2009 Lecture 35 1/26 Temperature (T) Temperature (T) is a measure of how hot or cold something is Temperature

More information

12 The Laws of Thermodynamics

12 The Laws of Thermodynamics June 14, 1998 12 The Laws of Thermodynamics Using Thermal Energy to do Work Understanding the laws of thermodynamics allows us to use thermal energy in a practical way. The first law of thermodynamics

More information

Physics 2: Fluid Mechanics and Thermodynamics

Physics 2: Fluid Mechanics and Thermodynamics Physics 2: Fluid Mechanics and Thermodynamics Đào Ngọc Hạnh Tâm Office: A1.503, email: dnhtam@hcmiu.edu.vn HCMIU, Vietnam National University Acknowledgment: Most of these slides are supported by Prof.

More information

Quiz C&J page 365 (top), Check Your Understanding #12: Consider an ob. A) a,b,c,d B) b,c,a,d C) a,c,b,d D) c,b,d,a E) b,a,c,d

Quiz C&J page 365 (top), Check Your Understanding #12: Consider an ob. A) a,b,c,d B) b,c,a,d C) a,c,b,d D) c,b,d,a E) b,a,c,d Quiz on Chapter 12 Quiz 10 1. C&J page 365 (top), Check Your Understanding #12: Consider an ob A) a,b,c,d B) b,c,a,d C) a,c,b,d D) c,b,d,a E) b,a,c,d Quiz 10 1. C&J page 365 (top), Check Your Understanding

More information

Spring_#7. Thermodynamics. Youngsuk Nam.

Spring_#7. Thermodynamics. Youngsuk Nam. Spring_#7 Thermodynamics Youngsuk Nam ysnam1@khu.ac.kr You can t connect the dots looking forward; you can only connect them looking backwards. So you have to trust that the dots will somehow connect in

More information

Classes at: - Topic: Thermodynamics. = E v. = G f T 1

Classes at: - Topic: Thermodynamics. = E v. = G f T 1 PHYSICAL CHEMISTRY by: SHAILENDRA KR. Classes at: - SCIENCE TUTORIALS; Opp. Khuda Baksh Library, Ashok Rajpath, Patna PIN POINT STUDY CIRCLE; House No. 5A/65, Opp. Mahual Kothi, Alpana Market, Patna Topic:

More information