Examples. Fire Piston (demo) Example (Comparison of processes)

Size: px
Start display at page:

Download "Examples. Fire Piston (demo) Example (Comparison of processes)"

Transcription

1 Examples Fire Piston (demo) Fire Piston istory Example (Comparison of processes) Fire piston calculations Example calculations Given initial state P1, V1 final V 2 3 diff ways: a) Isothermal isotherms b) Adiabatic c) Isobaric

2 Adiabatic Expansion (reversible & nonrevesible) Reversible adiabatic expansion (quasi-static) : Expanding gas push piston up work is done by gas W > 0 U < 0 (energy flows out of gas) For an Ideal Gas, U is a function of T only, So, U < 0 also implies T < 0 (temperature drops!) insulation Adiabatic free expansion (non-quasi-static /nonreversible): Gas expands into vacuum no work done W=0 Adiabatic Q = 0 1 st law gives U = 0 U remains unchanged and T is a constant!

3 Physics 262/266 George Mason University Prof. Paul So

4 Chapter 20: The 2 nd Law of Thermodynamics Preferential Direction in Thermodynamic Processes eat Engine and Efficiency The 2 nd Law of Thermodynamics The Carnot Cycle (the most efficient heat engine) Entropy Entropy and Disorder

5 Preferred Direction of Natural Processes Processes not observed in nature: Example 1: Ball absorbing heat energy from surrounding Then, converts it into mechanical energy and starts to bounce and roll Note: energy is conserved (1 st Law is NOT violated): heat mechanical eng. BUT, we don t observe this process in nature while the reverse occurs!

6 Preferred Direction of Natural Processes Example 2: cold Q hot Two objects are in thermal contact and heat flows from the cold object to the hot object. Again, energy is conserved (1 st Law is NOT violated): Q ( absorbed) Q ( release) 0 hot BUT, we don t observe this process in nature while the reverse occurs! cold

7 Disorder and Thermodynamic Processes The 2 nd Law of Thermodynamics is the physical principle which will delineate the preferred direction of natural processes. We will later see that The preferred direction of natural processes The degree of randomness (disorder) of the resulting state All natural processes in isolation will tend toward a state with a larger degree of disorder!

8 The 2 nd Law of Thermodynamics istorically, there are more than one but equivalent way to state the 2 nd Law: To address the condition in example #2, here is the Clausius Statement on the 2 nd Law: cold Q hot It is impossible for any process to have as its sole result the transfer of heat from a cooler to a hotter body.

9 The 2 nd Law of Thermodynamics There is also the Kelvin-Planck s Statement: It is impossible for any system to undergo a cyclic process in which it absorbs heat from a reservoir at a given temperature and converts the heat completely into mechanical work. This implies that all heat engines have limited efficiency! (efficiency of real mechanical engines ~ 15 to 40%) To understand this form of the 2 nd Law, we need to look at a toy model: heat engine

10 eat Engines Definition: A device that converts a given amount of heat into mechanical energy. All heat engines carry some working substance thru a cyclic process: Engine absorbs heat from hot reservoir at T Mechanical work is done by engine Engine releases residual heat to cold reservoir at T C D stering

11 Work Done by an eat Engine The heat engine works in a cyclic process, U 1 st Law gives, U Q W 0 0 net Qnet W where, Qnet Q QC Q QC explicit signs for heats

12 Efficiency for a eat Engine Thermal Efficiency e is defined as the ratio of the mechanical energy output to the heat energy input, e W Q what you get out what you put in Substituting W Q Q, we have W Q Q QC 1 1 Q Q Q e C C Q Q using explicit signs here C

13 A perfect (100% efficient) heat engine Q A perfect heat engine means 100% efficiency (e=1). This means that QC e1 1 means QC 0 Q All heat absorbed from reservoir T is converted into mechanical work W. No residual heat is released back. eperfect 1 The Kelvin-Planck s statement of the 2 nd Law does not allow this! e 1 D drinking bird realistic

14 Refrigerators Refrigerators are basically heat engine running in reverse. eat from inside the refrigerator (cold T reservoir) is absorbed and released into the room (high T reservoir) with the input of mechanical work.

15 Refrigerators From 1 st Law, Ucycle 0 QC Q W Q Q W C explicit signs (Note: we have put in the explicit signs according to our sign convention.) Q C (absorbed) positive Q (released) negative W (work is done on working substance by motor) negative Coefficient of Performance for a Refrigerator K what you get QC QC what you put in W Q Q C

16 A perfect Refrigerator K QC QC W Q Q C A perfect refrigerator means ( ). This means that Q Q or W C No mechanical work W is needed to transfer heat from the cold reservoir to the hot reservoir. The Clausius s statement of the 2 nd Law does not allow this! Krealistic 0 K

17 2 nd Law, Disorder, & Available Energy Two Forms of Energy in any Thermal Process: Internal Energy In the Kinetic-Molecular Model, this consists of the KE and PE associated with all the randomly moving microscopic molecules. (One typically cannot control the individual random motions of all these molecules.) Macroscopic Mechanical Energy The piston s motion in an automobile engine results from the coordinated macroscopic motion of the molecules. (Energy associated with this coordinated [ordered] motion can be used for useful work.)

18 2 nd Law, Disorder, & Available Energy In a natural process (a block sliding to a stop), e.g. f v stopped slightly warmer due to friction before after The coordinated motion of the block is converted into the KE & PE of the slightly more agitated random motions of the molecules in the block/table. Macroscopic Mechanical Energy (KE of the block) is converted into Internal Energy through heat as a result of friction.

19 2 nd Law, Disorder, & Available Energy Now consider the reverse situation it is unlikely that one can coordinate ALL the randomly moving molecules in a concerted fashion. In other words, one typically cannot completely convert the internal energy of a system back into macroscopic mechanical energy. owever, this does not mean that internal energy is not accessible. An eat Engine is exactly the machine that can perform this conversion but only partially. The 2nd Law of Thermodynamics is basically a statement limiting the availability of internal energy for useful mechanical work.

20 The Carnot Cycle (Most Efficient eat Engine) A reversible cycle described by Sadi Carnot in The Carnot Theorem gives the theoretical limit to the thermal efficiency of any heat engine. The Carnot cycle consists of: A cycle operating between two temperatures: 2 reversible isothermal processes in which 2 reversible adiabatic processes in which An Ideal Gas as its working substance T T Q T and C T C

21 Steps of the Carnot Cycle animation

22 Steps of the Carnot Cycle animation

12 The Laws of Thermodynamics

12 The Laws of Thermodynamics June 14, 1998 12 The Laws of Thermodynamics Using Thermal Energy to do Work Understanding the laws of thermodynamics allows us to use thermal energy in a practical way. The first law of thermodynamics

More information

Chapter 16 The Second Law of Thermodynamics

Chapter 16 The Second Law of Thermodynamics Chapter 16 The Second Law of Thermodynamics To examine the directions of thermodynamic processes. To study heat engines. To understand internal combustion engines and refrigerators. To learn and apply

More information

Chapter 16 Thermodynamics

Chapter 16 Thermodynamics Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 16 Thermodynamics Thermodynamics Introduction Another area of physics is thermodynamics Continues with the principle of conservation of energy

More information

Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian

Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian Chapter 20 Heat Engines, Entropy and the Second Law of Thermodynamics Dr. Armen Kocharian First Law of Thermodynamics Review Review: The first law states that a change in internal energy in a system can

More information

Reversibility. Processes in nature are always irreversible: far from equilibrium

Reversibility. Processes in nature are always irreversible: far from equilibrium Reversibility Processes in nature are always irreversible: far from equilibrium Reversible process: idealized process infinitely close to thermodynamic equilibrium (quasi-equilibrium) Necessary conditions

More information

Chapter 12. The Laws of Thermodynamics

Chapter 12. The Laws of Thermodynamics Chapter 12 The Laws of Thermodynamics First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy of a system can be increased by Adding energy to the system Doing work

More information

Chapter 12. The Laws of Thermodynamics. First Law of Thermodynamics

Chapter 12. The Laws of Thermodynamics. First Law of Thermodynamics Chapter 12 The Laws of Thermodynamics First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy of a system can be increased by Adding energy to the system Doing work

More information

Thermodynamic Systems, States, and Processes

Thermodynamic Systems, States, and Processes Thermodynamics Thermodynamic Systems, States, and Processes A thermodynamic system is described by an equation of state, such as the ideal gas law. The location of the state can be plotted on a p V diagram,

More information

Lecture 26. Second law of thermodynamics. Heat engines and refrigerators.

Lecture 26. Second law of thermodynamics. Heat engines and refrigerators. ecture 26 Second law of thermodynamics. Heat engines and refrigerators. The Second aw of Thermodynamics Introduction The absence of the process illustrated above indicates that conservation of energy is

More information

Lecture Notes Set 4c: Heat engines and the Carnot cycle

Lecture Notes Set 4c: Heat engines and the Carnot cycle ecture Notes Set 4c: eat engines and the Carnot cycle Introduction to heat engines In the following sections the fundamental operating principles of the ideal heat engine, the Carnot engine, will be discussed.

More information

Chapter 12 Thermodynamics

Chapter 12 Thermodynamics Chapter 12 Thermodynamics 12.1 Thermodynamic Systems, States, and Processes System: definite quantity of matter with real or imaginary boundaries If heat transfer is impossible, the system is thermally

More information

Irreversible Processes

Irreversible Processes Irreversible Processes Examples: Block sliding on table comes to rest due to friction: KE converted to heat. Heat flows from hot object to cold object. Air flows into an evacuated chamber. Reverse process

More information

Entropy and the Second and Third Laws of Thermodynamics

Entropy and the Second and Third Laws of Thermodynamics CHAPTER 5 Entropy and the Second and Third Laws of Thermodynamics Key Points Entropy, S, is a state function that predicts the direction of natural, or spontaneous, change. Entropy increases for a spontaneous

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

Thermodynamics Second Law Heat Engines

Thermodynamics Second Law Heat Engines Thermodynamics Second Law Heat Engines Lana Sheridan De Anza College May 10, 2018 Last time entropy (microscopic perspective) Overview heat engines heat pumps Carnot engines Heat Engines Steam engines

More information

October 18, 2011 Carnot cycle - 1

October 18, 2011 Carnot cycle - 1 Carnot Cycle In 1824, Sadi Carnot (1796-1832) published a short book, eflections on the Motive Power of Fire (The book is now free online You should try it out) To construct an engine, Carnot noted, at

More information

Survey of Thermodynamic Processes and First and Second Laws

Survey of Thermodynamic Processes and First and Second Laws Survey of Thermodynamic Processes and First and Second Laws Please select only one of the five choices, (a)-(e) for each of the 33 questions. All temperatures T are absolute temperatures. All experiments

More information

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Thermodynamics is that branch of science which deals with energy transfer A system may be closed, open or isolated system

More information

University Physics (Prof. David Flory) Chapt_21 Monday, November 26, 2007 Page 1

University Physics (Prof. David Flory) Chapt_21 Monday, November 26, 2007 Page 1 University Physics (Prof. David Flory) Chapt_21 Monday, November 26, 2007 Page 1 Name: Date: 1. Let k be the Boltzmann constant. If the configuration of the molecules in a gas changes so that the multiplicity

More information

Chapter 19. Heat Engines

Chapter 19. Heat Engines Chapter 19 Heat Engines Thermo Processes Eint = Q+ W Adiabatic No heat exchanged Q = 0 and E int = W Isobaric Constant pressure W = P (V f V i ) and E int = Q + W Isochoric Constant Volume W = 0 and E

More information

Heat Machines (Chapters 18.6, 19)

Heat Machines (Chapters 18.6, 19) eat Machines (hapters 8.6, 9) eat machines eat engines eat pumps The Second Law of thermodynamics Entropy Ideal heat engines arnot cycle Other cycles: Brayton, Otto, Diesel eat Machines Description The

More information

Lecture Outline Chapter 18. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 18. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 18 Physics, 4 th Edition James S. Walker Chapter 18 The Laws of Thermodynamics Units of Chapter 18 The Zeroth Law of Thermodynamics The First Law of Thermodynamics Thermal Processes

More information

Chapter 11 Heat Engines and The Second Law of Thermodynamics

Chapter 11 Heat Engines and The Second Law of Thermodynamics Chapter 11 Heat Engines and The Second Law of Thermodynamics Heat Engines Heat engines use a temperature difference involving a high temperature (T H ) and a low temperature (T C ) to do mechanical work.

More information

Lecture 9. Heat engines. Pre-reading: 20.2

Lecture 9. Heat engines. Pre-reading: 20.2 Lecture 9 Heat engines Pre-reading: 20.2 Review Second law when all systems taking part in a process are included, the entropy remains constant or increases. No process is possible in which the total entropy

More information

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Introduction to 2 nd Law and Entropy.

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Introduction to 2 nd Law and Entropy. Department of Mechanical Engineering ME 322 Mechanical Engineering hermodynamics Introduction to 2 nd aw and Entropy ecture 18 Example Consider an adiabatic compressor steadily moving R125, P2 2 430 psia

More information

CARNOT CYCLE = T = S ( U,V )

CARNOT CYCLE = T = S ( U,V ) hermodynamics CANO CYCE Do not trouble students with history In 1824, Sadi Carnot (1796-1832) published a short book, eflections on the Motive Power of Fire (he book is now free online You should try it

More information

AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers!

AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers! AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers! Nicolas Léonard Sadi Carnot (1796-1832) Sadi Carnot was a French military engineer and physicist, often

More information

CHAPTER 2 THE SECOND LAW OF THERMODYNAMICS Instructor: Prof. Dr. Uğur Atikol

CHAPTER 2 THE SECOND LAW OF THERMODYNAMICS Instructor: Prof. Dr. Uğur Atikol CHAPTER 2 THE SECOND LAW OF THERMODYNAMICS Instructor: Prof. Dr. Uğur Atikol Chapter 2 The Second Law of Thrmodynamics Outline Closed Systems History One-thermal reservoir Reversibility and irreversible

More information

Physics 207 Lecture 27. Lecture 26. Chapters 18, entropy and second law of thermodynamics Chapter 19, heat engines and refrigerators

Physics 207 Lecture 27. Lecture 26. Chapters 18, entropy and second law of thermodynamics Chapter 19, heat engines and refrigerators Goals: Lecture 26 Chapters 18, entropy and second law of thermodynamics Chapter 19, heat engines and refrigerators Reading assignment for Wednesday: Chapter 20. Physics 207: Lecture 27, Pg 1 Entropy A

More information

Free expansion (Joule); Constant U Forced expansion (Joule-Kelvin); Constant H. Joule-Kelvin coefficient - heating or cooling on JK expansion?

Free expansion (Joule); Constant U Forced expansion (Joule-Kelvin); Constant H. Joule-Kelvin coefficient - heating or cooling on JK expansion? ...Thermodynamics Adiabats: How c P and c V get into the exponent PV γ Free expansion (Joule); Constant U Forced expansion (Joule-Kelvin); Constant H Joule-Kelvin coefficient - heating or cooling on JK

More information

Heat What is heat? Work = 2. PdV 1

Heat What is heat? Work = 2. PdV 1 eat What is heat? eat (Q) is the flow or transfer of energy from one system to another Often referred to as heat flow or heat transfer Requires that one system must be at a higher temperature than the

More information

Chapter 19. Heat Engines

Chapter 19. Heat Engines Chapter 19 Heat Engines QuickCheck 19.11 The efficiency of this Carnot heat engine is A. Less than 0.5. B. 0.5. C. Between 0.5 and 1.0. D. 2.0. E. Can t say without knowing Q H. 2013 Pearson Education,

More information

Chapter 20 Entropy and the 2nd Law of Thermodynamics

Chapter 20 Entropy and the 2nd Law of Thermodynamics Chapter 20 Entropy and the 2nd Law of Thermodynamics A one-way processes are processes that can occur only in a certain sequence and never in the reverse sequence, like time. these one-way processes are

More information

Lecture 21: Introducing the Second Law, Irreversibilities

Lecture 21: Introducing the Second Law, Irreversibilities ME 200 Thermodynamics I Spring 2016 Lecture 21: Introducing the Second Law, Irreversibilities Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai,

More information

Lecture 2 Entropy and Second Law

Lecture 2 Entropy and Second Law Lecture 2 Entropy and Second Law Etymology: Entropy, entropie in German. En from energy and trope turning toward Turning to energy Motivation for a Second Law!! First law allows us to calculate the energy

More information

Reversibility, Irreversibility and Carnot cycle. Irreversible Processes. Reversible Processes. Carnot Cycle

Reversibility, Irreversibility and Carnot cycle. Irreversible Processes. Reversible Processes. Carnot Cycle Reversibility, Irreversibility and Carnot cycle The second law of thermodynamics distinguishes between reversible and irreversible processes. If a process can proceed in either direction without violating

More information

I.D The Second Law Q C

I.D The Second Law Q C I.D he Second Law he historical development of thermodynamics follows the industrial revolution in the 19 th century, and the advent of heat engines. It is interesting to see how such practical considerations

More information

1. INTRODUCTION TO REFRIGERATION AND AIR CONDITION

1. INTRODUCTION TO REFRIGERATION AND AIR CONDITION CHAPTER ONE 1. INTRODUCTION TO REFRIGERATION AND AIR CONDITION Refrigeration may be defined as the process of reducing and maintaining a temperature of a space or material below that of the surroundings.

More information

The Kelvin-Planck statement of the second law

The Kelvin-Planck statement of the second law The Kelvin-Planck statement of the second law It is impossible for any device that operates on a cycle to receive heat from a single reservoir and produce a net amount of work Q W E =ΔE net net net, mass

More information

Chapter 4 - Second Law of Thermodynamics

Chapter 4 - Second Law of Thermodynamics Chapter 4 - The motive power of heat is independent of the agents employed to realize it. -Nicolas Léonard Sadi Carnot David J. Starling Penn State Hazleton Fall 2013 An irreversible process is a process

More information

CHAPTER - 12 THERMODYNAMICS

CHAPTER - 12 THERMODYNAMICS CHAPER - HERMODYNAMICS ONE MARK QUESIONS. What is hermodynamics?. Mention the Macroscopic variables to specify the thermodynamics. 3. How does thermodynamics differ from Mechanics? 4. What is thermodynamic

More information

Adiabatic Expansion (DQ = 0)

Adiabatic Expansion (DQ = 0) Adiabatic Expansion (DQ = 0) Occurs if: change is made sufficiently quickly and/or with good thermal isolation. Governing formula: PV g = constant where g = C P /C V Adiabat P Isotherms V Because PV/T

More information

(prev) (top) (next) (Throughout, we will assume the processes involve an ideal gas with constant n.)

(prev) (top) (next) (Throughout, we will assume the processes involve an ideal gas with constant n.) 1 of 9 8/22/12 9:51 PM (prev) (top) (next) Thermodynamics 1 Thermodynamic processes can be: 2 isothermal processes, ΔT = 0 (so P ~ 1 / V); isobaric processes, ΔP = 0 (so T ~ V); isovolumetric or isochoric

More information

Chapter 20 The Second Law of Thermodynamics

Chapter 20 The Second Law of Thermodynamics Chapter 20 The Second Law of Thermodynamics When we previously studied the first law of thermodynamics, we observed how conservation of energy provided us with a relationship between U, Q, and W, namely

More information

T s change via collisions at boundary (not mechanical interaction)

T s change via collisions at boundary (not mechanical interaction) Lecture 14 Interaction of 2 systems at different temperatures Irreversible processes: 2nd Law of Thermodynamics Chapter 19: Heat Engines and Refrigerators Thermal interactions T s change via collisions

More information

Second Law of Thermodynamics -

Second Law of Thermodynamics - Second Law of Thermodynamics - REVIEW ENTROPY EXAMPLE Dr. Garrick 1/19/09 First Law of Thermodynamics you can t win! First Law of Thermodynamics: Energy cannot be Created or Destroyed the total energy

More information

THERMODYNAMICS. Zeroth law of thermodynamics. Isotherm

THERMODYNAMICS. Zeroth law of thermodynamics. Isotherm 12 THERMODYNAMICS Zeroth law of thermodynamics Two systems separately in thermal equilibrium with a third system are in thermal equilibrium with each other. Isotherm It is the graph connecting pressure

More information

The First Law of Thermodynamics

The First Law of Thermodynamics Thermodynamics The First Law of Thermodynamics Thermodynamic Processes (isobaric, isochoric, isothermal, adiabatic) Reversible and Irreversible Processes Heat Engines Refrigerators and Heat Pumps The Carnot

More information

Lecture 10: Heat Engines and Reversible Processes

Lecture 10: Heat Engines and Reversible Processes Lecture 10: Heat Engines and Reversible Processes Last time we started discussing cyclic heat engines these are devices that convert heat energy into mechanical work We found that in general, heat engines

More information

Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas (2)

Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas (2) 1. This question is about thermodynamic processes. (a) Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas.......... An ideal gas is held in a container by a moveable

More information

18.13 Review & Summary

18.13 Review & Summary 5/2/10 10:04 PM Print this page 18.13 Review & Summary Temperature; Thermometers Temperature is an SI base quantity related to our sense of hot and cold. It is measured with a thermometer, which contains

More information

ΔU = Q W. Tue Dec 1. Assign 13/14 Friday Final: Fri Dec 11 2:30PM WALTER 145. Thermodynamics 1st Law. 2 nd Law. Heat Engines and Refrigerators

ΔU = Q W. Tue Dec 1. Assign 13/14 Friday Final: Fri Dec 11 2:30PM WALTER 145. Thermodynamics 1st Law. 2 nd Law. Heat Engines and Refrigerators Tue Dec 1 Thermodynamics 1st Law ΔU = Q W 2 nd Law SYS Heat Engines and Refrigerators Isobaric: W = PΔV Isochoric: W = 0 Isothermal: ΔU = 0 Adiabatic: Q = 0 Assign 13/14 Friday Final: Fri Dec 11 2:30PM

More information

Second Law of Thermodynamics

Second Law of Thermodynamics Dr. Alain Brizard College Physics II (PY 211) Second Law of Thermodynamics Textbook Reference: Chapter 20 sections 1-4. Second Law of Thermodynamics (Clausius) Heat flows naturally from a hot object to

More information

Chapter 5. The Second Law of Thermodynamics (continued)

Chapter 5. The Second Law of Thermodynamics (continued) hapter 5 he Second Law of hermodynamics (continued) Second Law of hermodynamics Alternative statements of the second law, lausius Statement of the Second Law It is impossible for any system to operate

More information

11/29/2017 IRREVERSIBLE PROCESSES. UNIT 2 Thermodynamics: Laws of thermodynamics, ideal gases, and kinetic theory

11/29/2017 IRREVERSIBLE PROCESSES. UNIT 2 Thermodynamics: Laws of thermodynamics, ideal gases, and kinetic theory 11/9/017 AP PHYSICS UNIT Thermodynamics: Laws of thermodynamics, ideal gases, and kinetic theory CHAPTER 13 SECOND LAW OF THERMODYNAMICS IRREVERSIBLE PROCESSES The U G of the water-earth system at the

More information

Thermodynamics. 1.1 Introduction. Thermodynamics is a phenomenological description of properties of macroscopic systems in thermal equilibrium.

Thermodynamics. 1.1 Introduction. Thermodynamics is a phenomenological description of properties of macroscopic systems in thermal equilibrium. 1 hermodynamics 1.1 Introduction hermodynamics is a phenomenological description of properties of macroscopic systems in thermal equilibrium. Imagine yourself as a post-newtonian physicist intent on understanding

More information

Two mark questions and answers UNIT II SECOND LAW 1. Define Clausius statement. It is impossible for a self-acting machine working in a cyclic process, to transfer heat from a body at lower temperature

More information

Spring_#7. Thermodynamics. Youngsuk Nam.

Spring_#7. Thermodynamics. Youngsuk Nam. Spring_#7 Thermodynamics Youngsuk Nam ysnam1@khu.ac.kr You can t connect the dots looking forward; you can only connect them looking backwards. So you have to trust that the dots will somehow connect in

More information

The Story of Spontaneity and Energy Dispersal. You never get what you want: 100% return on investment

The Story of Spontaneity and Energy Dispersal. You never get what you want: 100% return on investment The Story of Spontaneity and Energy Dispersal You never get what you want: 100% return on investment Spontaneity Spontaneous process are those that occur naturally. Hot body cools A gas expands to fill

More information

Atkins / Paula Physical Chemistry, 8th Edition. Chapter 3. The Second Law

Atkins / Paula Physical Chemistry, 8th Edition. Chapter 3. The Second Law Atkins / Paula Physical Chemistry, 8th Edition Chapter 3. The Second Law The direction of spontaneous change 3.1 The dispersal of energy 3.2 Entropy 3.3 Entropy changes accompanying specific processes

More information

Physics 1501 Lecture 37

Physics 1501 Lecture 37 Physics 1501: Lecture 37 Todays Agenda Announcements Homework #12 (Dec. 9): 2 lowest dropped Midterm 2 in class Wednesday Friday: review session bring your questions Todays topics Chap.18: Heat and Work»

More information

Classification following properties of the system in Intensive and Extensive

Classification following properties of the system in Intensive and Extensive Unit I Classification following properties of the system in Intensive and Extensive Extensive : mass, weight, volume, potential energy, Kinetic energy, Internal energy, entropy, exergy, energy, magnetization

More information

Equivalence of Kelvin-Planck and Clausius statements

Equivalence of Kelvin-Planck and Clausius statements Equivalence of Kelvin-Planck and Clausius statements Violation of Clausius statement Violation of Kelvin-Planck statement Violation of Kelvin-Planck statement Violation of Clausius statement Violation

More information

Lesson 12. Luis Anchordoqui. Physics 168. Tuesday, November 28, 17

Lesson 12. Luis Anchordoqui. Physics 168. Tuesday, November 28, 17 Lesson 12 Physics 168 1 Temperature and Kinetic Theory of Gases 2 Atomic Theory of Matter On microscopic scale, arrangements of molecules in solids, liquids, and gases are quite different 3 Temperature

More information

Active Learners Reflective Learners Use both ways equally frequently More Inclined to be Active More inclined to be Reflective

Active Learners Reflective Learners Use both ways equally frequently More Inclined to be Active More inclined to be Reflective Active Learners Reflective Learners Use both ways equally frequently More Inclined to be Active More inclined to be Reflective Sensory Leaners Intuitive Learners Use both ways equally frequently More inclined

More information

Reversible Processes. Furthermore, there must be no friction (i.e. mechanical energy loss) or turbulence i.e. it must be infinitely slow.

Reversible Processes. Furthermore, there must be no friction (i.e. mechanical energy loss) or turbulence i.e. it must be infinitely slow. Reversible Processes A reversible thermodynamic process is one in which the universe (i.e. the system and its surroundings) can be returned to their initial conditions. Because heat only flows spontaneously

More information

Aljalal-Phys March 2004-Ch21-page 1. Chapter 21. Entropy and the Second Law of Thermodynamics

Aljalal-Phys March 2004-Ch21-page 1. Chapter 21. Entropy and the Second Law of Thermodynamics Aljalal-Phys.102-27 March 2004-Ch21-page 1 Chapter 21 Entropy and the Second Law of hermodynamics Aljalal-Phys.102-27 March 2004-Ch21-page 2 21-1 Some One-Way Processes Egg Ok Irreversible process Egg

More information

THERMODYNAMICS b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium.

THERMODYNAMICS b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium. THERMODYNAMICS Important Points:. Zeroth Law of Thermodynamics: a) This law gives the concept of temperature. b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium.

More information

The goal of thermodynamics is to understand how heat can be converted to work. Not all the heat energy can be converted to mechanical energy

The goal of thermodynamics is to understand how heat can be converted to work. Not all the heat energy can be converted to mechanical energy Thermodynamics The goal of thermodynamics is to understand how heat can be converted to work Main lesson: Not all the heat energy can be converted to mechanical energy This is because heat energy comes

More information

第 1 頁, 共 6 頁 Chap20 1. Test Bank, Question 5 Which of the following is NOT a state variable? Work Internal energy Entropy Temperature Pressure 2. Test Bank, Question 18 Let denote the change in entropy

More information

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 7 Entropy by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics: An Engineering Approach, 5th ed.,

More information

Physics 101: Lecture 28 Thermodynamics II

Physics 101: Lecture 28 Thermodynamics II Physics 101: Lecture 28 Thermodynamics II Final Today s lecture will cover Textbook Chapter 15.6-15.9 Check Final Exam Room Assignment! Bring ID! Be sure to check your gradebook! (send me your net ID if

More information

Chap. 3 The Second Law. Spontaneous change

Chap. 3 The Second Law. Spontaneous change Chap. 3 The Second Law Spontaneous change Some things happen naturally; some things don t. the spontaneous direction of change, the direction of change that does not require work to be done to bring it

More information

DAY 28. Summary of Primary Topics Covered. The 2 nd Law of Thermodynamics

DAY 28. Summary of Primary Topics Covered. The 2 nd Law of Thermodynamics DAY 28 Summary of Primary Topics Covered The 2 nd Law of Thermodynamics The 2 nd Law of Thermodynamics says this - - Heat energy naturally flows from hotter objects to colder objects. We know this happens,

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

Physics 101: Lecture 28 Thermodynamics II

Physics 101: Lecture 28 Thermodynamics II Physics 101: Lecture 28 Thermodynamics II Final Today s lecture will cover Textbook Chapter 15.6-15.9 Check Final Exam Room Assignment! Bring ID! Be sure to check your gradebook! Physics 101: Lecture 28,

More information

Thermodynamics. AP Physics B

Thermodynamics. AP Physics B Thermodynamics AP Physics B ork done by a gas Suppose you had a piston filled with a specific amount of gas. As you add heat, the temperature rises and thus the volume of the gas expands. The gas then

More information

PHY101: Major Concepts in Physics I

PHY101: Major Concepts in Physics I Welcome back to PHY101: Major Concepts in Physics I Photo: S. T. Cummins Photo: S. T. Cummins Announcements Today is our final class! We will first discuss more on Chapters 14-15 and then conduct a short

More information

Thermodynamic Third class Dr. Arkan J. Hadi

Thermodynamic Third class Dr. Arkan J. Hadi 5.5 ENTROPY CHANGES OF AN IDEAL GAS For one mole or a unit mass of fluid undergoing a mechanically reversible process in a closed system, the first law, Eq. (2.8), becomes: Differentiation of the defining

More information

Basic thermodynamics. heat to the high temperature reservoir.

Basic thermodynamics. heat to the high temperature reservoir. Consider a heat engine that is operating in a cyclic process takes heat (QH) from a high temperature reservoir & converts completely into work (W), violating the Kelvin Planck statement. Let the work W,

More information

Engineering Thermodynamics. Chapter 5. The Second Law of Thermodynamics

Engineering Thermodynamics. Chapter 5. The Second Law of Thermodynamics 5.1 Introduction Chapter 5 The Second aw of Thermodynamics The second law of thermodynamics states that processes occur in a certain direction, not in just any direction. Physical processes in nature can

More information

The laws of Thermodynamics. Work in thermodynamic processes

The laws of Thermodynamics. Work in thermodynamic processes The laws of Thermodynamics ork in thermodynamic processes The work done on a gas in a cylinder is directly proportional to the force and the displacement. = F y = PA y It can be also expressed in terms

More information

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Thermodynamics is that branch of science which deals with energy transfer A system may be closed, open or isolated system

More information

Chemistry 163B Refrigerators and Generalization of Ideal Gas Carnot (four steps to exactitude) E&R pp 86-91, Raff pp.

Chemistry 163B Refrigerators and Generalization of Ideal Gas Carnot (four steps to exactitude) E&R pp 86-91, Raff pp. statements of the Second Law of hermodynamics Chemistry 163B Refrigerators and Generalization of Ideal Gas Carnot (four steps to exactitude) E&R pp 86-91, 109-111 Raff pp. 159-164 1. Macroscopic properties

More information

0 questions at random and keep in order

0 questions at random and keep in order Page 1 of 9 This chapter has 57 questions. Scroll down to see and select individual questions or narrow the list using the checkboxes below. 0 questions at random and keep in order s - (45) - (13) Fill

More information

Classical Approach to 2 nd Law for CM

Classical Approach to 2 nd Law for CM Classical Approach to 2 nd aw for CM Start with observations about the ability to build devices (thermodynamic cycles) Clausius Statement of 2 nd aw concerns cycles that cause heat transfer from low temperature

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

Photon steam engines. Work can be extracted from a single heat bath at the boundary between classical and quantum thermodynamics

Photon steam engines. Work can be extracted from a single heat bath at the boundary between classical and quantum thermodynamics Photon steam engines Work can be extracted from a single heat bath at the boundary between classical and quantum thermodynamics A quantum Carnot engine. Hot atoms flow from a heat bath at temperature T

More information

Thermodynamics: Reversibility and Carnot

Thermodynamics: Reversibility and Carnot Thermodynamics: Reversibility and Carnot From Warmup It seems like this reading (for Friday) explained the homework assigned for Wednesday's lecture. Is homework based on the previous lecture, or the current

More information

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name:

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name: Lesson 23 1. (10 pt) Write the equation for the thermal efficiency of a Carnot heat engine below: T η = T 1 L H 2. (10 pt) Can the thermal efficiency of an actual engine ever exceed that of an equivalent

More information

Physics 101: Lecture 28 Thermodynamics II

Physics 101: Lecture 28 Thermodynamics II Physics 101: Lecture 28 Thermodynamics II Final Today s lecture will cover Textbook Chapter 15.6-15.9 Check Final Exam Room Assignment! Bring ID! Be sure to check your gradebook! Physics 101: Lecture 28,

More information

SOLUTION: Consider the system to be the refrigerator (shown in the following schematic), which operates over a cycle in normal operation.

SOLUTION: Consider the system to be the refrigerator (shown in the following schematic), which operates over a cycle in normal operation. Soln_21 An ordinary household refrigerator operating in steady state receives electrical work while discharging net energy by heat transfer to its surroundings (e.g., the kitchen). a. Is this a violation

More information

S15--AP Phys Q4--Heat-Thermo Ch13_14_15 PRACTICE

S15--AP Phys Q4--Heat-Thermo Ch13_14_15 PRACTICE Name: Class: Date: S5--AP Phys Q4--Heat-Thermo Ch3_4_5 PRACTICE Multiple Choice Identify the choice that best completes the statement or answers the question.. Which of the following is a thermodynamic

More information

SECOND LAW OF THERMODYNAMICS

SECOND LAW OF THERMODYNAMICS SECOND LAW OF THERMODYNAMICS 2 ND Law of Thermodynamics Puts a limitation on the conversion of some forms of energy Determines the scope of an energy conversion and if an energy conversion is possible

More information

Lecture 2.7 Entropy and the Second law of Thermodynamics During last several lectures we have been talking about different thermodynamic processes.

Lecture 2.7 Entropy and the Second law of Thermodynamics During last several lectures we have been talking about different thermodynamic processes. ecture 2.7 Entropy and the Second law of hermodynamics During last several lectures we have been talking about different thermodynamic processes. In particular, we have discussed heat transfer between

More information

Laws of Thermodynamics

Laws of Thermodynamics Laws of Thermodynamics The Three Laws of Thermodynamics - The first lawof thermodynamics, also called conservation of energy. We can use this knowledge to determine the amount of energy in a system, the

More information

Name Class Date. c. 273 K

Name Class Date. c. 273 K Exercises 24.1 Absolute Zero (page 469) 1. Is the following sentence true or false? There is no limit to how cold an object can get. 2. Define absolute zero. 3. Circle the letter of each statement about

More information

Lecture 2 Entropy and Second Law

Lecture 2 Entropy and Second Law Lecture 2 Entropy and Second Law Etymology: Entropy, entropie in German. En from energy and trope turning toward Turning to energy Zeroth law temperature First law energy Second law - entropy CY1001 2010

More information

The Limits of Efficiency. The Limits of Efficiency. The Limits of Efficiency

The Limits of Efficiency. The Limits of Efficiency. The Limits of Efficiency The Limits of Efficiency If a perfectly reversible heat engine is used to operate a perfectly reversible refrigerator, the two devices exactly cancel each other. 2017 Pearson Education, Inc. Slide 20-1

More information

Basic Thermodynamics. Prof. S. K. Som. Department of Mechanical Engineering. Indian Institute of Technology, Kharagpur.

Basic Thermodynamics. Prof. S. K. Som. Department of Mechanical Engineering. Indian Institute of Technology, Kharagpur. Basic Thermodynamics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 06 Second Law and its Corollaries I Good afternoon, I welcome you all to this

More information