Computational Astrophysics

Size: px
Start display at page:

Download "Computational Astrophysics"

Transcription

1 Computatonal Astrophyscs Solvng for Gravty Alexander Knebe, Unversdad Autonoma de Madrd

2 Computatonal Astrophyscs Solvng for Gravty the equatons full set of equatons collsonless matter (e.g. dark matter d x DM = v DM dt d v DM = φ dt Posson s equaton Δφ = 4πGρ tot collsonal matter (e.g. gas deal gas equatons ρ t + ρ v ( = 0 p = ( γ 1ρε ( ρ v t & + ρ v v & ( + ( p + 1 ' ' 2µ B2 " B B + * µ * = ρ ( φ ρε = ρe 1 2 ρv 2 ( ρe t,% +. ' ρe + p + 1 -& 2µ B2 ( * v 1 µ v B [ ] B / 1 0 = ρ v ( φ + ( Γ L Maxwell s equaton B t = v B (

3 Computatonal Astrophyscs Solvng for Gravty the equatons full set of equatons collsonless matter (e.g. dark matter d x DM = v DM dt d v DM = φ and the force dt Posson s equaton Δφ = 4πGρ tot collsonal matter (e.g. gas deal gas equatons ρ t + ρ v ( = 0 p = ( γ 1ρε ( ρ v t & + ρ v v & ( + ( p + 1 ' ' 2µ B2 " B B + * µ * = ρ ( φ ρε = ρe 1 2 ρv 2 ( ρe t,% +. ' ρe + p + 1 -& 2µ B2 ( * v 1 µ v B [ ] B / 1 0 = ρ v ( φ + ( Γ L Maxwell s equaton B t = v B (

4 Computatonal Astrophyscs Solvng for Gravty Posson s Equaton Posson s equaton F ( x = m Φ( x ΔΦ( x = 4πGρ( x

5 Computatonal Astrophyscs Solvng for Gravty Posson s Equaton Posson s equaton F ( x = m Φ( x ΔΦ( x = 4πGρ( x partcle approach F ( x Gm = m j (x x j ( x 3 x j j grd approach ΔΦ( x, j,k = 4πGρ( x, j,k F ( x, j,k = m Φ( x, j,k ( x, j,k =poston of centre of grd cell (, j,k

6 Computatonal Astrophyscs Solvng for Gravty Posson s equaton F ( x = m Φ( x ΔΦ( x = 4πGρ( x weapon of choce: tree codes grd approach ΔΦ( x, j,k = 4πGρ( x, j,k F ( x, j,k = m Φ( x, j,k Posson s Equaton partcle approach F ( x Gm = m j (x x j ( x 3 x j j ( x, j,k =poston of centre of grd cell (, j,k

7 Computatonal Astrophyscs Solvng for Gravty Posson s Equaton Posson s equaton F ( x = m Φ( x ΔΦ( x = 4πGρ( x partcle approach F ( x Gm = m j (x x j ( x 3 x j j grd approach ΔΦ( x, j,k = 4πGρ( x, j,k F ( x, j,k = m Φ( x, j,k ( x, j,k =poston of centre of grd cell (, j,k weapon of choce: AMR codes

8 Computatonal Astrophyscs Solvng for Gravty the partcle-mesh (PM method

9 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton ΔΦ( g k,l,m = 4πGρ( g k,l,m F ( g k,l,m = m Φ( g k,l,m

10 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton ΔΦ( g k,l,m = 4πGρ( g k,l,m F ( g k,l,m = m Φ( g k,l,m

11 Computatonal Astrophyscs Partcle-Mesh Method Solvng for Gravty numercally ntegrate Posson s equaton ΔΦ( g k,l,m = 4πGρ( g k,l,m F ( g k,l,m = m Φ( g k,l,m 1. calculate mass densty on grd 2. solve Posson s equaton on grd 3. dfferentate potental to get forces 4. nterpolate forces back to partcles x ρ( g k,l,m Φ( g k,l,m F ( g k,l,m F ( g k,l,m F ( x N N

12 Computatonal Astrophyscs Partcle-Mesh Method Solvng for Gravty numercally ntegrate Posson s equaton ΔΦ( g k,l,m = 4πGρ( g k,l,m F ( g k,l,m = m Φ( g k,l,m 1. calculate mass densty on grd 2. solve Posson s equaton on grd 3. dfferentate potental to get forces 4. nterpolate forces back to partcles x ρ( g k,l,m Φ( g k,l,m F ( g k,l,m F ( g k,l,m F ( x sounds lke a waste of tme and computer resources, but exceptonally fast n practce

13 Computatonal Astrophyscs Partcle-Mesh Method Solvng for Gravty numercally ntegrate Posson s equaton ΔΦ( g k,l,m = 4πGρ( g k,l,m F ( g k,l,m = m Φ( g k,l,m 1. calculate mass densty on grd 2. solve Posson s equaton on grd 3. dfferentate potental to get forces 4. nterpolate forces back to partcles x ρ( g k,l,m Φ( g k,l,m F ( g k,l,m F ( g k,l,m F ( x

14 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method densty assgnment schemes x ρ( g k,l,m example: 1 partcle on 1 dmensonal grd M(g k = mw (d d = x g k ρ(g k = M(g k H partcle poston x grd pont g k H m x axs

15 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method densty assgnment schemes x ρ( g k,l,m example: 1 partcle on 1 dmensonal grd M(g k = mw (d ρ(g k = M(g k H d = x g k mass assgnment functon partcle poston x grd pont g k H m x axs

16 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method densty assgnment schemes x ρ( g k,l,m example: 1 partcle on 1 dmensonal grd herarchy of mass assgnment schemes: - Nearest-Grd-Pont NGP - Could-In-Cell CIC - Trangular-Shaped Cloud TSC - partcle poston x grd pont g k H m x axs

17 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method densty assgnment schemes x ρ( g k,l,m Nearest-Grd-Pont (NGP: mass assgnment functon: # W (d = $ 1 d H /2 % 0 otherwse H m x axs

18 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method densty assgnment schemes x ρ( g k,l,m Nearest-Grd-Pont (NGP: partcle shape: S(x = δ(x mass assgnment functon: # W (d = $ 1 d H /2 % 0 otherwse H m x axs

19 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method densty assgnment schemes x ρ( g k,l,m Cloud-In-Cell (CIC: mass assgnment functon: $ 1 d & H W (d = % d H & 0 '& otherwse H m x axs

20 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method densty assgnment schemes x ρ( g k,l,m Cloud-In-Cell (CIC: partcle shape: # S(x = $ 1 x H /2 % 0 otherwse mass assgnment functon: $ 1 d & H W (d = % d H & 0 '& otherwse H m x axs

21 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method densty assgnment schemes x ρ( g k,l,m Trangular-Shaped-Cloud (TSC: * 3 4 d 2 # &, % ( d H mass assgnment functon:, $ H ' 2, W (d = 1# 3 % 2 2 d 2 + & H, ( $ H ' 2 d 3H 2,, -, 0 otherwse H m x axs

22 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method densty assgnment schemes x ρ( g k,l,m Trangular-Shaped-Cloud (TSC: partcle shape: $ & S(x = 1 x % x H H '& 0 otherwse * 3 4 d 2 # &, % ( d H mass assgnment functon:, $ H ' 2, W (d = 1# 3 % 2 2 d 2 + & H, ( $ H ' 2 d 3H 2,, -, 0 otherwse H m x axs

23 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method densty assgnment schemes x ρ( g k,l,m N partcles on 3 dmensonal grd d = x g k,l,m M( g N k,l,m = m W ( d x W ( d y W ( d z =1 ρ( g k,l,m = M( g k,l,m H 3

24 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method densty assgnment schemes x ρ( g k,l,m N partcles on 3 dmensonal grd d = x g k,l,m M( g N k,l,m = m W ( d x W ( d y W ( d z =1 for every grd pont we need to loop over all N partcles ρ( g k,l,m = M( g k,l,m H 3

25 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method densty assgnment schemes - n practce x ρ( g k,l,m rather loop over all partcles and assgn them to the approprate grd ponts, because the mappng x g k s rather easy

26 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method densty assgnment schemes - n practce x ρ( g k,l,m example for CIC assgnment n 2D: x contrbutes ts mass m to the 4 closest grd ponts : m

27 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method densty assgnment schemes - n practce x ρ( g k,l,m example for CIC assgnment n 3D: x contrbutes ts mass m to the 8 closest grd ponts : g k,l,m +1 g k +1,l,m +1 g k,l,m g k +1,l,m g k,l +1,m +1 g k +1,l +1,m +1 g k,l +1,m g k +1,l +1,m

28 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method densty assgnment schemes whch scheme to choose? NGP = stepwse force CIC = contnuous pecewse lnear force (1 grd pont (8 grd ponts TSC = contnuous force and frst dervatve (27 grd ponts

29 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method densty assgnment schemes whch scheme to choose? NGP = too crude CIC = common choce ncreased smoothng of densty feld TSC = pretty smooth smoothng the densty feld wll lead to a bas n the forces but at the same tme decrease the varance bas = ( F( x F true ( x ε α var = F 2 ( x F( x 2 N β

30 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method densty assgnment schemes whch scheme to choose? NGP = too crude CIC = common choce TSC = pretty smooth smoothng the densty feld wll lead to a bas n the forces but at the same tme decrease the varance bas = ( F( x F true ( x ε α var = F 2 ( x F( x 2 N β (nterplay between N and ε: Nε 3 =const.

31 Computatonal Astrophyscs Partcle-Mesh Method Solvng for Gravty numercally ntegrate Posson s equaton ΔΦ( g k,l,m = 4πGρ( g k,l,m F ( g k,l,m = m Φ( g k,l,m 1. calculate mass densty on grd 2. solve Posson s equaton on grd 3. dfferentate potental to get forces 4. nterpolate forces back to partcles x ρ( g k,l,m Φ( g k,l,m F ( g k,l,m F ( g k,l,m F ( x

32 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton ΔΦ k,l,m = ρ k,l,m relaxaton technque: FTT technque: applcable and usable for any dfferental equaton only applcable and usable for lnear dfferental equaton

33 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton relaxaton technque obtan teratve solver by dscretzng dfferental equaton ΔΦ k,l,m = ρ k,l,m

34 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton relaxaton technque obtan teratve solver by dscretzng dfferental equaton ΔΦ k,l,m = ρ k,l,m ΔΦ k,l,m = Φ k,l,m ' * ' Φ *, k,l,m, x, x, =, Φ k,l,m, y, y, Φ, k,l,m, ( z + ( z + ' *, ' = 1 x, Φ Φ * k + 1,l,m k 1,l,m 2 2,, Φ H y, Φ, k,l + 1,m k,l 1,m 2 2 Φ k,l,m + 1 Φ, k,l,m 1, ( ( z + = 1 ' Φ k + 1 Φ,l,m k 1,l,m H ( x x Φ k,l + 1 2,m y Φ k,l 1 2,m y + Φ k,l,m z Φ k,l,m 1 2 z = 1 ( Φ H 2 k +1,l,m 2Φ k,l,m + Φ k 1,l,m + Φ k,l +1,m 2Φ k,l,m + Φ k,l 1,m + Φ k,l,m +1 2Φ k,l,m + Φ k,l,m 1 *, +

35 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton relaxaton technque obtan teratve solver by dscretzng dfferental equaton ΔΦ k,l,m = ρ k,l,m dscretzed Posson s equaton Φ k,l,m = 1 6 (Φ k +1,l,m + Φ k 1,l,m + Φ k,l +1,m + Φ k,l 1,m + Φ k,l,m +1 + Φ k,l,m 1 ρ k,l,m H 2

36 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton relaxaton technque obtan teratve solver by dscretzng dfferental equaton ΔΦ k,l,m = ρ k,l,m teratve soluton: Φ k,l,m +1 Φ k,l,m dscretzed Posson s equaton +1 Φ k,l,m = 1 6 (Φ k +1,l,m + Φ k 1,l,m + Φ k,l +1,m + Φ k,l 1,m + Φ k,l,m +1 + Φ k,l,m 1 ρ k,l,m H 2

37 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton relaxaton technque obtan teratve solver by dscretzng dfferental equaton k,l+1,m k-1,l,m k,l,m k+1,l,m k,l-1,m dscretzed Posson s equaton +1 Φ k,l,m = 1 6 (Φ k +1,l,m + Φ k 1,l,m + Φ k,l +1,m + Φ k,l 1,m + Φ k,l,m +1 + Φ k,l,m 1 ρ k,l,m H 2

38 Computatonal Astrophyscs Partcle-Mesh Method Solvng for Gravty numercally ntegrate Posson s equaton relaxaton technque obtan teratve solver by dscretzng dfferental equaton k-1,l,m k,l+1,m k,l,m k,l-1,m k+1,l,m applcable to grds of arbtrary geometry dscretzed Posson s equaton +1 Φ k,l,m = 1 6 (Φ k +1,l,m + Φ k 1,l,m + Φ k,l +1,m + Φ k,l 1,m + Φ k,l,m +1 + Φ k,l,m 1 ρ k,l,m H 2

39 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton relaxaton technque how to sweep through the grd? k,l+1,m k-1,l,m k,l,m k+1,l,m k,l-1,m dscretzed Posson s equaton +1 Φ k,l,m = 1 6 (Φ k +1,l,m + Φ k 1,l,m + Φ k,l +1,m + Φ k,l 1,m + Φ k,l,m +1 + Φ k,l,m 1 ρ k,l,m H 2

40 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton relaxaton technque how to sweep through the grd?? dscretzed Posson s equaton +1 Φ k,l,m = 1 6 (Φ k +1,l,m + Φ k 1,l,m + Φ k,l +1,m + Φ k,l 1,m + Φ k,l,m +1 + Φ k,l,m 1 ρ k,l,m H 2

41 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton relaxaton technque how to sweep through the grd?? dscretzed Posson s equaton +1 Φ k,l,m = 1 6 (Φ k +1,l,m + Φ k 1,l,m + Φ k,l +1,m + Φ k,l 1,m + Φ k,l,m +1 + Φ k,l,m 1 ρ k,l,m H 2

42 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton relaxaton technque Gauss-Sedel sweeps: k,l+1,m k-1,l,m k,l,m k+1,l,m k,l-1,m dscretzed Posson s equaton +1 Φ k,l,m = 1 6 (Φ k +1,l,m + Φ k 1,l,m + Φ k,l +1,m + Φ k,l 1,m + Φ k,l,m +1 + Φ k,l,m 1 ρ k,l,m H 2

43 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton relaxaton technque Gauss-Sedel sweeps: loop over all black cells loop over all red cells one teraton of the potental Φ k,l,m +1 Φ k,l,m how many teratons are necessary? dscretzed Posson s equaton +1 Φ k,l,m = 1 6 (Φ k +1,l,m + Φ k 1,l,m + Φ k,l +1,m + Φ k,l 1,m + Φ k,l,m +1 + Φ k,l,m 1 ρ k,l,m H 2

44 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton relaxaton technque stoppng crteron: ΔΦ k,l,m = ρ k,l,m dscretzed Posson s equaton +1 Φ k,l,m = 1 6 (Φ k +1,l,m + Φ k 1,l,m + Φ k,l +1,m + Φ k,l 1,m + Φ k,l,m +1 + Φ k,l,m 1 ρ k,l,m H 2

45 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton relaxaton technque stoppng crteron: ΔΦ k,l,m? ρ k,l,m & 0 dscretzed Posson s equaton +1 Φ k,l,m = 1 6 (Φ k +1,l,m + Φ k 1,l,m + Φ k,l +1,m + Φ k,l 1,m + Φ k,l,m +1 + Φ k,l,m 1 ρ k,l,m H 2

46 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton relaxaton technque stoppng crteron: ΔΦ k,l,m? ρ k,l,m & 0 densty as gven by mass assgnment scheme densty as gven by currently best guess for Φ dscretzed Posson s equaton +1 Φ k,l,m = 1 6 (Φ k +1,l,m + Φ k 1,l,m + Φ k,l +1,m + Φ k,l 1,m + Φ k,l,m +1 + Φ k,l,m 1 ρ k,l,m H 2

47 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton relaxaton technque stoppng crteron: ΔΦ k,l,m? ρ k,l,m & 0 resdual: R = ΔΦ k,l,m ρ k,l,m = sutable norm dscretzed Posson s equaton +1 Φ k,l,m = 1 6 (Φ k +1,l,m + Φ k 1,l,m + Φ k,l +1,m + Φ k,l 1,m + Φ k,l,m +1 + Φ k,l,m 1 ρ k,l,m H 2

48 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton relaxaton technque stoppng crteron: ΔΦ k,l,m? ρ k,l,m & 0 R = ΔΦ k,l,m ρ k,l,m ετ = sutable norm tolerance error estmate dscretzed Posson s equaton +1 Φ k,l,m = 1 6 (Φ k +1,l,m + Φ k 1,l,m + Φ k,l +1,m + Φ k,l 1,m + Φ k,l,m +1 + Φ k,l,m 1 ρ k,l,m H 2

49 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton relaxaton technque stoppng crteron: R = ΔΦ k,l,m ρ k,l,m ετ - truncaton error: error due to dscreteness of grd dscretzed Posson s equaton +1 Φ k,l,m = 1 6 (Φ k +1,l,m + Φ k 1,l,m + Φ k,l +1,m + Φ k,l 1,m + Φ k,l,m +1 + Φ k,l,m 1 ρ k,l,m H 2

50 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton relaxaton technque stoppng crteron: R = ΔΦ k,l,m ρ k,l,m ετ - truncaton error: error due to dscreteness of grd estmaton "" " compare soluton on actual grd to soluton on coarser grd dscretzed Posson s equaton +1 Φ k,l,m = 1 6 (Φ k +1,l,m + Φ k 1,l,m + Φ k,l +1,m + Φ k,l 1,m + Φ k,l,m +1 + Φ k,l,m 1 ρ k,l,m H 2

51 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton relaxaton technque stoppng crteron: R = ΔΦ k,l,m ρ k,l,m ετ = ε T k,l,m - truncaton error: [ ] ΔΦ k,l,m Τ k,l,m = P Δ( RΦ k,l,m ( RΦ k,l,m Δ RΦ k,l,m =Φ j,n,p 1 ( = ρ j,n, p ( [ ] = ρ k,l,m P Δ RΦ k,l,m restrcton to coarser grd prolongaton to fner grd dscretzed Posson s equaton +1 Φ k,l,m = 1 6 (Φ k +1,l,m + Φ k 1,l,m + Φ k,l +1,m + Φ k,l 1,m + Φ k,l,m +1 + Φ k,l,m 1 ρ k,l,m H 2

52 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton relaxaton technque stoppng crteron: R = ΔΦ k,l,m ρ k,l,m ετ = ε T k,l,m - truncaton error: [ ] ΔΦ k,l,m Τ k,l,m = P Δ( RΦ k,l,m ( RΦ k,l,m =Φ j,n,p 1 Δ( RΦ k,l,m = ρ j,n, p [ ( ] = ρ k,l,m P Δ RΦ k,l,m? = ΔΦ k,l,m dscretzed Posson s equaton +1 Φ k,l,m = 1 6 (Φ k +1,l,m + Φ k 1,l,m + Φ k,l +1,m + Φ k,l 1,m + Φ k,l,m +1 + Φ k,l,m 1 ρ k,l,m H 2

53 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton relaxaton technque stoppng crteron: R = ΔΦ k,l,m ρ k,l,m ετ = ε T k,l,m R εt dscretzed Posson s equaton +1 Φ k,l,m = 1 6 (Φ k +1,l,m + Φ k 1,l,m + Φ k,l +1,m + Φ k,l 1,m + Φ k,l,m +1 + Φ k,l,m 1 ρ k,l,m H 2

54 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton relaxaton technque stoppng crteron: R = ΔΦ k,l,m ρ k,l,m ετ = ε T k,l,m R faster convergence? εt dscretzed Posson s equaton +1 Φ k,l,m = 1 6 (Φ k +1,l,m + Φ k 1,l,m + Φ k,l +1,m + Φ k,l 1,m + Φ k,l,m +1 + Φ k,l,m 1 ρ k,l,m H 2

55 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton relaxaton technque convergence: R = ΔΦ k,l,m ρ k,l,m - slow convergence: R +1 R large-scale errors n Φ cannot be relaxed suffcently fast on the actual grd => use coarser grds to speed up convergence dscretzed Posson s equaton +1 Φ k,l,m = 1 6 (Φ k +1,l,m + Φ k 1,l,m + Φ k,l +1,m + Φ k,l 1,m + Φ k,l,m +1 + Φ k,l,m 1 ρ k,l,m H 2

56 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton relaxaton technque convergence: R = ΔΦ k,l,m ρ k,l,m - slow convergence: R +1 R mult-grd relaxaton technques => beyond the scope of ths lecture though dscretzed Posson s equaton +1 Φ k,l,m = 1 6 (Φ k +1,l,m + Φ k 1,l,m + Φ k,l +1,m + Φ k,l 1,m + Φ k,l,m +1 + Φ k,l,m 1 ρ k,l,m H 2

57 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton ΔΦ k,l,m = ρ k,l,m Green s functon method: - solve dfferental equaton by Fourer transformaton - applcable and usable for lnear dfferental equatons

58 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton fast fourer transform method Green s functon method ΔΦ = ρ Φ( x = G( x x $ ρ( x $ d 3 $ x ; G( x = 1 4π x

59 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton fast fourer transform method Green s functon method ΔΦ = ρ Φ( x = G( x x $ ρ( x $ d 3 $ x ; G( x = 1 4π x Φ = ρ G FFT " convoluton becomes multplcaton ˆ Φ = ˆ ρ ˆ G (wth G ˆ = 1 for Posson s equaton k 2

60 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton fast fourer transform method Green s functon method ΔΦ = ρ Φ( x = G( x x $ ρ( x $ d 3 $ x ; G( x = 1 4π x Φ = ρ G FFT " convoluton becomes multplcaton ˆ Φ = ˆ ρ ˆ G (wth G ˆ = 1 for Posson s equaton k 2 Φ FFT -1 (FFT demands a regular grd though

61 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton fast fourer transform method dscretzed Green s functon G ˆ ( k = 1 k 2 " G ˆ ( g k,l,m = # sn 2 % $ k x 2 1 & # ( + sn k & 2 y # k % ( + sn 2 z & % ( ' $ 2 ' $ 2 ' G ˆ ( g 0,0,0 = 0, k x = 2π k L, k y = 2π l L, k y = 2π m L

62 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton accuracy of ether relaxaton or FFT method to solve Posson s equaton?

63 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton pure PM calculaton

64 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton pure PM calculaton

65 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton pure PM calculaton the force s automatcally softened... (cf. tree-code lecture

66 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton pure PM calculaton the force s automatcally softened...but what f need to resolve smaller scales?

67 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton pure PM calculaton ntroducton of fner grds n hgh densty regons

68 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton AMR calculaton Yahag & Yosh (2001

69 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton AMR calculaton detals later Yahag & Yosh (2001

70 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton pure PM calculaton and what are these wggles?

71 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton pure PM calculaton and what are these wggles?

72 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method numercally ntegrate Posson s equaton pure PM calculaton force ansotropy and what are these wggles?

73 Computatonal Astrophyscs Partcle-Mesh Method Solvng for Gravty numercally ntegrate Posson s equaton ΔΦ( g k,l,m = 4πGρ( g k,l,m F ( g k,l,m = m Φ( g k,l,m 1. calculate mass densty on grd 2. solve Posson s equaton on grd 3. dfferentate potental to get forces 4. nterpolate forces back to partcles x ρ( g k,l,m Φ( g k,l,m F ( g k,l,m F ( g k,l,m F ( x

74 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method obtanng the forces F ( g k,l,m = m Φ( g k,l,m F x ( g k,l,m = m Φ( g k +1,l,m Φ( g k 1,l,m 2H F y ( g k,l,m = m Φ( g k,l +1,m Φ( g k,l 1,m F z ( g k,l,m = m Φ( 2H g k,l,m +1 Φ( g k,l,m 1 2H k-1,l,m k,l+1,m k,l,m k,l-1,m k+1,l,m H = (current grd spacng

75 Computatonal Astrophyscs Partcle-Mesh Method Solvng for Gravty numercally ntegrate Posson s equaton ΔΦ( g k,l,m = 4πGρ( g k,l,m F ( g k,l,m = m Φ( g k,l,m 1. calculate mass densty on grd 2. solve Posson s equaton on grd 3. dfferentate potental to get forces 4. nterpolate forces back to partcles x ρ( g k,l,m Φ( g k,l,m F ( g k,l,m F ( g k,l,m F ( x

76 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method nterpolatng the forces F ( g k,l,m F ( r

77 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method nterpolatng the forces F ( g k,l,m F ( r use the nverse of the mass assgnment scheme to nsure momentum conservaton and mnmze force ansotropes F( r = k l m F( g k,l,m W ( r g k,l,m n practce the trple sum s only over 8 (CIC or 27 (TSC cells

78 Computatonal Astrophyscs Solvng for Gravty Partcle-Mesh Method nterpolatng the forces F ( g k,l,m F ( r use the nverse of the mass assgnment scheme to nsure momentum conservaton and mnmze force ansotropes F( r = k l m F( g k,l,m W ( r g k,l,m *check by calculatng the total (perodc force: N F tot = F( r = =... = N =1 =1 k l m N N =... =1 j=1 k,l,m k #, l #, m# F( g k,l,m W ( r g k,l,m m m j W ( r H 3 g k,l,m G( g k,l,m g k #, l #, m # W ( r j g # ant-symmetrc = 0 (because of nvarance under coordnate nverson k, l #, m # PM scheme: F x ( g k,l,m = m Φ( g k+1,l,m Φ( g k 1,l,m 2H Φ( g k,l,m = G( g k,l,m g k #, l #, m # ρ( g # k# l# m# ρ( g k,l,m = M( g k,l,m H 3 N M( g k,l,m = m W ( r g k,l,m =1 k, l #, m #

79 Computatonal Astrophyscs Summary Solvng for Gravty Partcle-Mesh (PM method ΔΦ( g k,l,m = 4πGρ( g k,l,m F ( g k,l,m = m Φ( g k,l,m 1. calculate mass densty on grd 2. solve Posson s equaton on grd 3. dfferentate potental to get forces 4. nterpolate forces back to partcles x ρ( g k,l,m Φ( g k,l,m F ( g k,l,m F ( g k,l,m F ( x anyone fances to wrte a PM code as the project?

80 Computatonal Astrophyscs Solvng for Gravty Alexander Knebe, Unversdad Autonoma de Madrd

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 13 GENE H GOLUB 1 Iteratve Methods Very large problems (naturally sparse, from applcatons): teratve methods Structured matrces (even sometmes dense,

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numerical methods for pricing American type derivatives Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 218 LECTURE 16 1 why teratve methods f we have a lnear system Ax = b where A s very, very large but s ether sparse or structured (eg, banded, Toepltz, banded plus

More information

Polynomial Regression Models

Polynomial Regression Models LINEAR REGRESSION ANALYSIS MODULE XII Lecture - 6 Polynomal Regresson Models Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Test of sgnfcance To test the sgnfcance

More information

Relaxation Methods for Iterative Solution to Linear Systems of Equations

Relaxation Methods for Iterative Solution to Linear Systems of Equations Relaxaton Methods for Iteratve Soluton to Lnear Systems of Equatons Gerald Recktenwald Portland State Unversty Mechancal Engneerng Department gerry@pdx.edu Overvew Techncal topcs Basc Concepts Statonary

More information

6.3.4 Modified Euler s method of integration

6.3.4 Modified Euler s method of integration 6.3.4 Modfed Euler s method of ntegraton Before dscussng the applcaton of Euler s method for solvng the swng equatons, let us frst revew the basc Euler s method of numercal ntegraton. Let the general from

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georga Tech PHYS 624 Mathematcal Methods of Physcs I Instructor: Predrag Cvtanovć Fall semester 202 Homework Set #7 due October 30 202 == show all your work for maxmum credt == put labels ttle legends

More information

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES COMPUTATIONAL FLUID DYNAMICS: FDM: Appromaton of Second Order Dervatves Lecture APPROXIMATION OF SECOMD ORDER DERIVATIVES. APPROXIMATION OF SECOND ORDER DERIVATIVES Second order dervatves appear n dffusve

More information

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 12

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 12 REVIEW Lecture 11: 2.29 Numercal Flud Mechancs Fall 2011 Lecture 12 End of (Lnear) Algebrac Systems Gradent Methods Krylov Subspace Methods Precondtonng of Ax=b FINITE DIFFERENCES Classfcaton of Partal

More information

Integrals and Invariants of Euler-Lagrange Equations

Integrals and Invariants of Euler-Lagrange Equations Lecture 16 Integrals and Invarants of Euler-Lagrange Equatons ME 256 at the Indan Insttute of Scence, Bengaluru Varatonal Methods and Structural Optmzaton G. K. Ananthasuresh Professor, Mechancal Engneerng,

More information

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructons by George Hardgrove Chemstry Department St. Olaf College Northfeld, MN 55057 hardgrov@lars.acc.stolaf.edu Copyrght George

More information

( ) [ ( k) ( k) ( x) ( ) ( ) ( ) [ ] ξ [ ] [ ] [ ] ( )( ) i ( ) ( )( ) 2! ( ) = ( ) 3 Interpolation. Polynomial Approximation.

( ) [ ( k) ( k) ( x) ( ) ( ) ( ) [ ] ξ [ ] [ ] [ ] ( )( ) i ( ) ( )( ) 2! ( ) = ( ) 3 Interpolation. Polynomial Approximation. 3 Interpolaton {( y } Gven:,,,,,, [ ] Fnd: y for some Mn, Ma Polynomal Appromaton Theorem (Weerstrass Appromaton Theorem --- estence ε [ ab] f( P( , then there ests a polynomal

More information

10/23/2003 PHY Lecture 14R 1

10/23/2003 PHY Lecture 14R 1 Announcements. Remember -- Tuesday, Oct. 8 th, 9:30 AM Second exam (coverng Chapters 9-4 of HRW) Brng the followng: a) equaton sheet b) Calculator c) Pencl d) Clear head e) Note: If you have kept up wth

More information

Multigrid Methods and Applications in CFD

Multigrid Methods and Applications in CFD Multgrd Metods and Applcatons n CFD Mcael Wurst 0 May 009 Contents Introducton Typcal desgn of CFD solvers 3 Basc metods and ter propertes for solvng lnear systems of equatons 4 Geometrc Multgrd 3 5 Algebrac

More information

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS)

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS) Some Comments on Acceleratng Convergence of Iteratve Sequences Usng Drect Inverson of the Iteratve Subspace (DIIS) C. Davd Sherrll School of Chemstry and Bochemstry Georga Insttute of Technology May 1998

More information

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression 11 MACHINE APPLIED MACHINE LEARNING LEARNING MACHINE LEARNING Gaussan Mture Regresson 22 MACHINE APPLIED MACHINE LEARNING LEARNING Bref summary of last week s lecture 33 MACHINE APPLIED MACHINE LEARNING

More information

2.29 Numerical Fluid Mechanics

2.29 Numerical Fluid Mechanics REVIEW Lecture 10: Sprng 2015 Lecture 11 Classfcaton of Partal Dfferental Equatons PDEs) and eamples wth fnte dfference dscretzatons Parabolc PDEs Ellptc PDEs Hyperbolc PDEs Error Types and Dscretzaton

More information

Lecture 2: Numerical Methods for Differentiations and Integrations

Lecture 2: Numerical Methods for Differentiations and Integrations Numercal Smulaton of Space Plasmas (I [AP-4036] Lecture 2 by Lng-Hsao Lyu March, 2018 Lecture 2: Numercal Methods for Dfferentatons and Integratons As we have dscussed n Lecture 1 that numercal smulaton

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b Int J Contemp Math Scences, Vol 3, 28, no 17, 819-827 A New Refnement of Jacob Method for Soluton of Lnear System Equatons AX=b F Naem Dafchah Department of Mathematcs, Faculty of Scences Unversty of Gulan,

More information

Feb 14: Spatial analysis of data fields

Feb 14: Spatial analysis of data fields Feb 4: Spatal analyss of data felds Mappng rregularly sampled data onto a regular grd Many analyss technques for geophyscal data requre the data be located at regular ntervals n space and/or tme. hs s

More information

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of Chapter 7 Generalzed and Weghted Least Squares Estmaton The usual lnear regresson model assumes that all the random error components are dentcally and ndependently dstrbuted wth constant varance. When

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

Electron-Impact Double Ionization of the H 2

Electron-Impact Double Ionization of the H 2 I R A P 6(), Dec. 5, pp. 9- Electron-Impact Double Ionzaton of the H olecule Internatonal Scence Press ISSN: 9-59 Electron-Impact Double Ionzaton of the H olecule. S. PINDZOLA AND J. COLGAN Department

More information

Turbulent Flow. Turbulent Flow

Turbulent Flow. Turbulent Flow http://www.youtube.com/watch?v=xoll2kedog&feature=related http://br.youtube.com/watch?v=7kkftgx2any http://br.youtube.com/watch?v=vqhxihpvcvu 1. Caothc fluctuatons wth a wde range of frequences and

More information

Chapter 3 Differentiation and Integration

Chapter 3 Differentiation and Integration MEE07 Computer Modelng Technques n Engneerng Chapter Derentaton and Integraton Reerence: An Introducton to Numercal Computatons, nd edton, S. yakowtz and F. zdarovsky, Mawell/Macmllan, 990. Derentaton

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

SOLVING NON-LINEAR SYSTEMS BY NEWTON s METHOD USING SPREADSHEET EXCEL Tay Kim Gaik Universiti Tun Hussein Onn Malaysia

SOLVING NON-LINEAR SYSTEMS BY NEWTON s METHOD USING SPREADSHEET EXCEL Tay Kim Gaik Universiti Tun Hussein Onn Malaysia SOLVING NON-LINEAR SYSTEMS BY NEWTON s METHOD USING SPREADSHEET EXCEL Tay Km Gak Unverst Tun Hussen Onn Malaysa Kek Se Long Unverst Tun Hussen Onn Malaysa Rosmla Abdul-Kahar

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is. Moments of Inerta Suppose a body s movng on a crcular path wth constant speed Let s consder two quanttes: the body s angular momentum L about the center of the crcle, and ts knetc energy T How are these

More information

4DVAR, according to the name, is a four-dimensional variational method.

4DVAR, according to the name, is a four-dimensional variational method. 4D-Varatonal Data Assmlaton (4D-Var) 4DVAR, accordng to the name, s a four-dmensonal varatonal method. 4D-Var s actually a drect generalzaton of 3D-Var to handle observatons that are dstrbuted n tme. The

More information

Chapter 4: Root Finding

Chapter 4: Root Finding Chapter 4: Root Fndng Startng values Closed nterval methods (roots are search wthn an nterval o Bsecton Open methods (no nterval o Fxed Pont o Newton-Raphson o Secant Method Repeated roots Zeros of Hgher-Dmensonal

More information

Chapter Newton s Method

Chapter Newton s Method Chapter 9. Newton s Method After readng ths chapter, you should be able to:. Understand how Newton s method s dfferent from the Golden Secton Search method. Understand how Newton s method works 3. Solve

More information

Quantum Mechanics I Problem set No.1

Quantum Mechanics I Problem set No.1 Quantum Mechancs I Problem set No.1 Septembe0, 2017 1 The Least Acton Prncple The acton reads S = d t L(q, q) (1) accordng to the least (extremal) acton prncple, the varaton of acton s zero 0 = δs = t

More information

Lossy Compression. Compromise accuracy of reconstruction for increased compression.

Lossy Compression. Compromise accuracy of reconstruction for increased compression. Lossy Compresson Compromse accuracy of reconstructon for ncreased compresson. The reconstructon s usually vsbly ndstngushable from the orgnal mage. Typcally, one can get up to 0:1 compresson wth almost

More information

1 GSW Iterative Techniques for y = Ax

1 GSW Iterative Techniques for y = Ax 1 for y = A I m gong to cheat here. here are a lot of teratve technques that can be used to solve the general case of a set of smultaneous equatons (wrtten n the matr form as y = A), but ths chapter sn

More information

Classification as a Regression Problem

Classification as a Regression Problem Target varable y C C, C,, ; Classfcaton as a Regresson Problem { }, 3 L C K To treat classfcaton as a regresson problem we should transform the target y nto numercal values; The choce of numercal class

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Hidden Markov Models & The Multivariate Gaussian (10/26/04)

Hidden Markov Models & The Multivariate Gaussian (10/26/04) CS281A/Stat241A: Statstcal Learnng Theory Hdden Markov Models & The Multvarate Gaussan (10/26/04) Lecturer: Mchael I. Jordan Scrbes: Jonathan W. Hu 1 Hdden Markov Models As a bref revew, hdden Markov models

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018 MATH 5630: Dscrete Tme-Space Model Hung Phan, UMass Lowell March, 08 Newton s Law of Coolng Consder the coolng of a well strred coffee so that the temperature does not depend on space Newton s law of collng

More information

N-Body Simulation. Typical uncertainty: π = 4 Acircle/Asquare! 4 ncircle/n. πest π = O(n

N-Body Simulation. Typical uncertainty: π = 4 Acircle/Asquare! 4 ncircle/n. πest π = O(n N-Body Smulaton Solvng the CBE wth a 6-D grd takes too many cells. Instead, we use a Monte-Carlo method. Example: Monte-Carlo calculaton of π. Scatter n ponts n square; count number ncrcle fallng wthn

More information

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics )

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics ) Ismor Fscher, 8//008 Stat 54 / -8.3 Summary Statstcs Measures of Center and Spread Dstrbuton of dscrete contnuous POPULATION Random Varable, numercal True center =??? True spread =???? parameters ( populaton

More information

Nice plotting of proteins II

Nice plotting of proteins II Nce plottng of protens II Fnal remark regardng effcency: It s possble to wrte the Newton representaton n a way that can be computed effcently, usng smlar bracketng that we made for the frst representaton

More information

A constant recursive convolution technique for frequency dependent scalar wave equation based FDTD algorithm

A constant recursive convolution technique for frequency dependent scalar wave equation based FDTD algorithm J Comput Electron (213) 12:752 756 DOI 1.17/s1825-13-479-2 A constant recursve convoluton technque for frequency dependent scalar wave equaton bed FDTD algorthm M. Burak Özakın Serkan Aksoy Publshed onlne:

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecture 7 Specal Relatvty (Chapter 7) What We Dd Last Tme Worked on relatvstc knematcs Essental tool for epermental physcs Basc technques are easy: Defne all 4 vectors Calculate c-o-m

More information

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR 5.0, Prncples of Inorganc Chemstry II MIT Department of Chemstry Lecture 3: Vbratonal Spectroscopy and the IR Vbratonal spectroscopy s confned to the 00-5000 cm - spectral regon. The absorpton of a photon

More information

Integrals and Invariants of

Integrals and Invariants of Lecture 16 Integrals and Invarants of Euler Lagrange Equatons NPTEL Course Varatonal Methods and Structural Optmzaton G. K. Ananthasuresh Professor, Mechancal Engneerng, Indan Insttute of Scence, Banagalore

More information

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity 1 Module 1 : The equaton of contnuty Lecture 1: Equaton of Contnuty 2 Advanced Heat and Mass Transfer: Modules 1. THE EQUATION OF CONTINUITY : Lectures 1-6 () () () (v) (v) Overall Mass Balance Momentum

More information

CHAPTER 14 GENERAL PERTURBATION THEORY

CHAPTER 14 GENERAL PERTURBATION THEORY CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves

More information

FTCS Solution to the Heat Equation

FTCS Solution to the Heat Equation FTCS Soluton to the Heat Equaton ME 448/548 Notes Gerald Recktenwald Portland State Unversty Department of Mechancal Engneerng gerry@pdx.edu ME 448/548: FTCS Soluton to the Heat Equaton Overvew 1. Use

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 31 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 6. Rdge regresson The OLSE s the best lnear unbased

More information

The EM Algorithm (Dempster, Laird, Rubin 1977) The missing data or incomplete data setting: ODL(φ;Y ) = [Y;φ] = [Y X,φ][X φ] = X

The EM Algorithm (Dempster, Laird, Rubin 1977) The missing data or incomplete data setting: ODL(φ;Y ) = [Y;φ] = [Y X,φ][X φ] = X The EM Algorthm (Dempster, Lard, Rubn 1977 The mssng data or ncomplete data settng: An Observed Data Lkelhood (ODL that s a mxture or ntegral of Complete Data Lkelhoods (CDL. (1a ODL(;Y = [Y;] = [Y,][

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 151 Lecture 3 Lagrange s Equatons (Goldsten Chapter 1) Hamlton s Prncple (Chapter 2) What We Dd Last Tme! Dscussed mult-partcle systems! Internal and external forces! Laws of acton and

More information

Conservation of Angular Momentum = "Spin"

Conservation of Angular Momentum = Spin Page 1 of 6 Conservaton of Angular Momentum = "Spn" We can assgn a drecton to the angular velocty: drecton of = drecton of axs + rght hand rule (wth rght hand, curl fngers n drecton of rotaton, thumb ponts

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 umercal Solutons of oundary-value Problems n Os ovember 7, 7 umercal Solutons of oundary- Value Problems n Os Larry aretto Mechancal ngneerng 5 Semnar n ngneerng nalyss ovember 7, 7 Outlne Revew stff equaton

More information

2 Finite difference basics

2 Finite difference basics Numersche Methoden 1, WS 11/12 B.J.P. Kaus 2 Fnte dfference bascs Consder the one- The bascs of the fnte dfference method are best understood wth an example. dmensonal transent heat conducton equaton T

More information

Math1110 (Spring 2009) Prelim 3 - Solutions

Math1110 (Spring 2009) Prelim 3 - Solutions Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

More information

Army Ants Tunneling for Classical Simulations

Army Ants Tunneling for Classical Simulations Electronc Supplementary Materal (ESI) for Chemcal Scence. Ths journal s The Royal Socety of Chemstry 2014 electronc supplementary nformaton (ESI) for Chemcal Scence Army Ants Tunnelng for Classcal Smulatons

More information

Report on Image warping

Report on Image warping Report on Image warpng Xuan Ne, Dec. 20, 2004 Ths document summarzed the algorthms of our mage warpng soluton for further study, and there s a detaled descrpton about the mplementaton of these algorthms.

More information

Solution of the Navier-Stokes Equations

Solution of the Navier-Stokes Equations Numercal Flud Mechancs Fall 2011 Lecture 25 REVIEW Lecture 24: Soluton of the Naver-Stokes Equatons Dscretzaton of the convectve and vscous terms Dscretzaton of the pressure term Conservaton prncples Momentum

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS IJRRAS 8 (3 September 011 www.arpapress.com/volumes/vol8issue3/ijrras_8_3_08.pdf NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS H.O. Bakodah Dept. of Mathematc

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Application of the Adjoint Method for Vehicle Aerodynamic Optimization. Dr. Thomas Blacha, Audi AG

Application of the Adjoint Method for Vehicle Aerodynamic Optimization. Dr. Thomas Blacha, Audi AG Applcaton of the Adjont Method for Vehcle Aerodynamc Optmzaton Dr. Thomas Blacha, Aud AG GoFun, Braunschweg 22.3.2017 2 AUDI AG, Dr. Thomas Blacha, Applcaton of the Adjont Method for Vehcle Aerodynamc

More information

Formal solvers of the RT equation

Formal solvers of the RT equation Formal solvers of the RT equaton Formal RT solvers Runge- Kutta (reference solver) Pskunov N.: 979, Master Thess Long characterstcs (Feautrer scheme) Cannon C.J.: 970, ApJ 6, 55 Short characterstcs (Hermtan

More information

Affine and Riemannian Connections

Affine and Riemannian Connections Affne and Remannan Connectons Semnar Remannan Geometry Summer Term 2015 Prof Dr Anna Wenhard and Dr Gye-Seon Lee Jakob Ullmann Notaton: X(M) space of smooth vector felds on M D(M) space of smooth functons

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

High resolution entropy stable scheme for shallow water equations

High resolution entropy stable scheme for shallow water equations Internatonal Symposum on Computers & Informatcs (ISCI 05) Hgh resoluton entropy stable scheme for shallow water equatons Xaohan Cheng,a, Yufeng Ne,b, Department of Appled Mathematcs, Northwestern Polytechncal

More information

UPGRADE OF THE GSP GYROKINETIC CODE MID-YEAR PROGRESS REPORT

UPGRADE OF THE GSP GYROKINETIC CODE MID-YEAR PROGRESS REPORT 12/6/211 1 UPGRADE OF THE GSP GYROKINETIC CODE MID-YEAR PROGRESS REPORT George Wlke gwlke@umd.edu December 6, 211 Supersor: Wllam Dorland, Dept. of Physcs bdorland@umd.edu Abstract: Smulatons of turbulent

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values Fall 007 Soluton to Mdterm Examnaton STAT 7 Dr. Goel. [0 ponts] For the general lnear model = X + ε, wth uncorrelated errors havng mean zero and varance σ, suppose that the desgn matrx X s not necessarly

More information

Using TranSIESTA (II): Integration contour and tbtrans

Using TranSIESTA (II): Integration contour and tbtrans Usng TranSIESTA (II): Integraton contour and tbtrans Frederco D. Novaes December 15, 2009 Outlne Usng TranSIESTA The ntegraton contour Electron densty from GF Why go complex? The non-equlbrum stuaton Usng

More information

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k)

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k) ISSN 1749-3889 (prnt), 1749-3897 (onlne) Internatonal Journal of Nonlnear Scence Vol.17(2014) No.2,pp.188-192 Modfed Block Jacob-Davdson Method for Solvng Large Sparse Egenproblems Hongy Mao, College of

More information

New Method for Solving Poisson Equation. on Irregular Domains

New Method for Solving Poisson Equation. on Irregular Domains Appled Mathematcal Scences Vol. 6 01 no. 8 369 380 New Method for Solvng Posson Equaton on Irregular Domans J. Izadan and N. Karamooz Department of Mathematcs Facult of Scences Mashhad BranchIslamc Azad

More information

STATISTICAL MECHANICS

STATISTICAL MECHANICS STATISTICAL MECHANICS Thermal Energy Recall that KE can always be separated nto 2 terms: KE system = 1 2 M 2 total v CM KE nternal Rgd-body rotaton and elastc / sound waves Use smplfyng assumptons KE of

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Inexact Newton Methods for Inverse Eigenvalue Problems

Inexact Newton Methods for Inverse Eigenvalue Problems Inexact Newton Methods for Inverse Egenvalue Problems Zheng-jan Ba Abstract In ths paper, we survey some of the latest development n usng nexact Newton-lke methods for solvng nverse egenvalue problems.

More information

Lab session: numerical simulations of sponateous polarization

Lab session: numerical simulations of sponateous polarization Lab sesson: numercal smulatons of sponateous polarzaton Emerc Boun & Vncent Calvez CNRS, ENS Lyon, France CIMPA, Hammamet, March 2012 Spontaneous cell polarzaton: the 1D case The Hawkns-Voturez model for

More information

Solutions to Exercises in Astrophysical Gas Dynamics

Solutions to Exercises in Astrophysical Gas Dynamics 1 Solutons to Exercses n Astrophyscal Gas Dynamcs 1. (a). Snce u 1, v are vectors then, under an orthogonal transformaton, u = a j u j v = a k u k Therefore, u v = a j a k u j v k = δ jk u j v k = u j

More information

Grid Generation around a Cylinder by Complex Potential Functions

Grid Generation around a Cylinder by Complex Potential Functions Research Journal of Appled Scences, Engneerng and Technolog 4(): 53-535, 0 ISSN: 040-7467 Mawell Scentfc Organzaton, 0 Submtted: December 0, 0 Accepted: Januar, 0 Publshed: June 0, 0 Grd Generaton around

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 17. a ij x (k) b i. a ij x (k+1) (D + L)x (k+1) = b Ux (k)

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 17. a ij x (k) b i. a ij x (k+1) (D + L)x (k+1) = b Ux (k) STAT 309: MATHEMATICAL COMPUTATIONS I FALL 08 LECTURE 7. sor method remnder: n coordnatewse form, Jacob method s = [ b a x (k) a and Gauss Sedel method s = [ b a = = remnder: n matrx form, Jacob method

More information

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics ECOOMICS 35*-A Md-Term Exam -- Fall Term 000 Page of 3 pages QUEE'S UIVERSITY AT KIGSTO Department of Economcs ECOOMICS 35* - Secton A Introductory Econometrcs Fall Term 000 MID-TERM EAM ASWERS MG Abbott

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

Linear Momentum. Center of Mass.

Linear Momentum. Center of Mass. Lecture 6 Chapter 9 Physcs I 03.3.04 Lnear omentum. Center of ass. Course webste: http://faculty.uml.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcssprng.html

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physcs 607 Exam 1 Please be well-organzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on

More information

arxiv: v1 [physics.flu-dyn] 16 Sep 2013

arxiv: v1 [physics.flu-dyn] 16 Sep 2013 Three-Dmensonal Smoothed Partcle Hydrodynamcs Method for Smulatng Free Surface Flows Rzal Dw Prayogo a,b, Chrstan Fredy Naa a a Faculty of Mathematcs and Natural Scences, Insttut Teknolog Bandung, Jl.

More information

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming EEL 6266 Power System Operaton and Control Chapter 3 Economc Dspatch Usng Dynamc Programmng Pecewse Lnear Cost Functons Common practce many utltes prefer to represent ther generator cost functons as sngle-

More information

Note 10. Modeling and Simulation of Dynamic Systems

Note 10. Modeling and Simulation of Dynamic Systems Lecture Notes of ME 475: Introducton to Mechatroncs Note 0 Modelng and Smulaton of Dynamc Systems Department of Mechancal Engneerng, Unversty Of Saskatchewan, 57 Campus Drve, Saskatoon, SK S7N 5A9, Canada

More information

. The kinetic energy of this system is T = T i. m i. Now let s consider how the kinetic energy of the system changes in time. Assuming each.

. The kinetic energy of this system is T = T i. m i. Now let s consider how the kinetic energy of the system changes in time. Assuming each. Chapter 2 Systems of Partcles 2. Work-Energy Theorem Consder a system of many partcles, wth postons r and veloctes ṙ. The knetc energy of ths system s T = T = 2 mṙ2. 2. Now let s consder how the knetc

More information

SIO 224. m(r) =(ρ(r),k s (r),µ(r))

SIO 224. m(r) =(ρ(r),k s (r),µ(r)) SIO 224 1. A bref look at resoluton analyss Here s some background for the Masters and Gubbns resoluton paper. Global Earth models are usually found teratvely by assumng a startng model and fndng small

More information

Computational Fluid Dynamics. Smoothed Particle Hydrodynamics. Simulations. Smoothing Kernels and Basis of SPH

Computational Fluid Dynamics. Smoothed Particle Hydrodynamics. Simulations. Smoothing Kernels and Basis of SPH Computatonal Flud Dynamcs If you want to learn a bt more of the math behnd flud dynamcs, read my prevous post about the Naver- Stokes equatons and Newtonan fluds. The equatons derved n the post are the

More information

A linear imaging system with white additive Gaussian noise on the observed data is modeled as follows:

A linear imaging system with white additive Gaussian noise on the observed data is modeled as follows: Supplementary Note Mathematcal bacground A lnear magng system wth whte addtve Gaussan nose on the observed data s modeled as follows: X = R ϕ V + G, () where X R are the expermental, two-dmensonal proecton

More information

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Frank L. H. Wolfs Department of Physcs and Astronomy, Unversty of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Course Informaton: Lab report # 3. Exam # 2. Mult-Partcle

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information