Relaxation Methods for Iterative Solution to Linear Systems of Equations

Size: px
Start display at page:

Download "Relaxation Methods for Iterative Solution to Linear Systems of Equations"

Transcription

1 Relaxaton Methods for Iteratve Soluton to Lnear Systems of Equatons Gerald Recktenwald Portland State Unversty Mechancal Engneerng Department

2 Overvew Techncal topcs Basc Concepts Statonary Methods a.k.a. Relaxaton methods Gauss Sedel Jacob SOR Context Relaxaton methods are not compettve as stand-alone teratve solvers. Relaxaton methods are used as smoothers n multgrd. Relaxaton methods provde the foundaton for consderng more sophstcated teratve solvers. Relaxaton Soluton to Lnear Systems page 1

3 Drect and Iteratve Methods Solve Ax = b where A s n n matrx, x and b are n element column vectors. Gaussan elmnaton wth backward substtuton s a Drect Method A Drect Method obtans the soluton n a fnte number of steps Soluton s equvalent to x = A 1 b Iteratve Methods obtan a sequence of approxmatons to the soluton x k k = 0, 1, 2,... such that (b Ax k ) 0 as k. Relaxaton Soluton to Lnear Systems page 2

4 Resdual The resdual r = b Ax s zero when x s the soluton to Ax = b. For an teratve method the resdual at teraton k s r k = b Ax k k = 0, 1, 2,... If an teratve methods converges, then r k 0 as k. Relaxaton Soluton to Lnear Systems page 3

5 Relaxaton Methods (1) Overvew Smple to program Converges slowly for large systems of equatons (large n) Not a useful stand alone soluton method Key ngredent to multgrd methods Examples Jacob Gauss-Sedel SOR Relaxaton Soluton to Lnear Systems page 4

6 Relaxaton Methods (2) Basc Idea Update elements of the soluton vector one element at a tme Solve a nodal equaton by assumng other nodal values are known N Apply the fnte volume method to get a S φ S a W φ W + a P φ P a E φ E a N φ N = b W P E If k s the teraton counter, we solve for φ k+1 P S φ k+1 P = 1 [ ] b + a S φ k S a + a W φ k W + a Eφ k E + a Nφ k N P Values of φ W, φ E, φ N and φ S are updated by applyng the teratve formula to the cells centered at those neghbor nodes. Relaxaton Soluton to Lnear Systems page 5

7 Matrx Notaton (1) On a structured mesh the nteror nodes can be numbered sequentally wth a mappng lke J=n y +2 =n x n y = I 1 + (J 2)n x 3 =n x +1 where n x s the number of cells n the x drecton and x s the value of the th dependent feld varable whch s located at the cells wth ndces I and J. The compass pont notaton y 2 =1 =2 =n x J=1 I=1 2 3 I=n x +2 x a S φ S a W φ W + a P φ P a E φ E a N φ N = b becomes a S, x n x a W, x 1 + a P, x a E, x +1 a W, x +n x = b Relaxaton Soluton to Lnear Systems page 6

8 Matrx Notaton (2) The natural orderng of nodes on a two-dmensonal structured mesh yelds a coeffcent matrx wth fve dagonals. Coeffcents on the dagonals correspond to a P coeffcent of φ P x and the four neghbor coeffcents a S, a W, a E, and a N. A = a S a W a P a E a N Relaxaton Soluton to Lnear Systems page 7

9 Matrx Notaton (3) In an unstructured mesh, the coeffcent matrx s also sparse, but the non-zero elements of the coeffcent matrx do not le along dagonals. Unstructured Mesh Non-zeros n coeffcent matrx To smplfy the presentaton, we ll use a structured mesh nz = 361 Relaxaton Soluton to Lnear Systems page 8

10 Relaxaton Methods Use relaxaton methods to solve Ax = b Relaxaton methods do not work for all A, but they do work for standard fnte-dfference and fnte-volume dscretzatons of the Posson equaton. Jacob Gauss-Sedel SOR Successve Over-relaxaton Relaxaton Soluton to Lnear Systems page 9

11 Jacob Iteraton (1) A dscrete model of the Posson equaton yelds a system of equatons that can be wrtten Ax = b. The equaton for the th nodal value s n a j x j = b j=1 where n s the total number of nodes n the doman. Extract the dagonal term from the sum a x + n a j x j = b j=1 j The precedng equaton wll not be satsfed untl, n the lmt as the number of teratons ncreased to. Relaxaton Soluton to Lnear Systems page 10

12 Solve for the next guess x. Jacob Iteraton (2) x = 1 ( b a n ) a j x j j=1 j ( ) In terms of the compass-pont notaton for the two-dmensonal fnte-volume method, the Equaton ( ) s φ (k+1) P = 1 [ b + a S φ (k) S a P + a W φ (k) W + a Eφ (k) E ] + a Nφ (k) N Equaton ( ) s not really the soluton for x untl all the other x j are known. In other words, the value of x from Equaton ( ) wll be correct only when the system of equatons Ax = b s solved. If matrx A has favorable propertes, the value of x from Equaton ( ) wll be closer to the soluton than the prevous guess at x. Relaxaton Soluton to Lnear Systems page 11

13 Jacob Iteraton (3) Let k be the teraton counter. The Jacob teraton formula s x (k+1) = 1 ( b a n j=1 j ) a j x (k) j = 1,..., n Ths formula mples that two copes of the x vector are mantaned n memory: one for teraton k and one for teraton k + 1. for k=1:maxt % -- For nodes away from the boundares for =(nx+1):n-nx xnew() = (b() + as()*x(-nx) + aw()*x(-1)... + an()*x(+nx) + ae()*x(+1) ) / ap(); end x = xnew; end Relaxaton Soluton to Lnear Systems page 12

14 Jacob Iteraton (4) The Jacob teratve formula can be wrtten as a matrx equaton. Let D = dag(a 11,..., a nn ) and B = D A then x (k+1) = 1 ( b a n j=1 j ) a j x (k) j s equvalent to x (k+1) = D 1 ( b + Bx (k) ) (1) where x (k+1) and x (k) are the soluton vectors at teraton k + 1 and k, respectvely. Relaxaton Soluton to Lnear Systems page 13

15 Jacob Iteraton (5) The matrx form of the teraton can be rewrtten x (k+1) = Hx (k) + d (2) where H = D 1 B d = D 1 b The matrx formulaton s prmarly useful n the analyss of teratve methods and n toy mplementatons n Matlab. The egenvalues of H determne the convergence rate of the teratons. Relaxaton Soluton to Lnear Systems page 14

16 Stoppng Crtera (1) Recall that the goal s to solve Ax = b where A s n n matrx, x and b are n element column vectors. Iteratve Methods obtan a sequence of approxmatons to the soluton x k k = 0, 1, 2,... such that b Ax k 0 as k. The resdual r = b Ax s zero when x s the soluton to Ax = b. Relaxaton Soluton to Lnear Systems page 15

17 Stoppng Crtera (2) For an teratve method the resdual at teraton k s r k = b Ax k k = 0, 1, 2,... If an teratve methods converges, then r k 0 as k. Snce r s a vector, what does t mean that r k 0? Use a convenent vector norm to test whether r s small enough. Relaxaton Soluton to Lnear Systems page 16

18 Jacob Iteraton (3) Soluton to a toy problem 2 T x + 2 T 2 y = 0 2 on 0 x L, 0 y W T = 0 on three boundares Soluton unform q on fourth boundary Soluton s obtaned by Matlab code demojacob Relaxaton Soluton to Lnear Systems page 17

19 Jacob Iteraton (4) Convergence of Jacob teratons slow as mesh s refned x 8 16 x x r 1 / r Iteraton Relaxaton Soluton to Lnear Systems page 18

20 Gauss-Sedel Iteraton (1) In the Jacob method x (k+1) s obtaned from the frozen values of x (k). The Gauss-Sedel method uses a smlar formula for updatng x (k+1), but the new value of s used as soon as t s avalable x (k+1) values from teraton k y values from teraton k+1 x Relaxaton Soluton to Lnear Systems page 19

21 Gauss-Sedel Iteraton (2) Replace nodal values as sweep progresses through the doman for k=1:maxt end % -- For nodes away from the boundares for =(nx+1):n-nx x() = (b() + as()*x(-nx) + aw()*x(-1)... + an()*x(+nx) + ae()*x(+1) ) / ap(); end Relaxaton Soluton to Lnear Systems page 20

22 Gauss-Sedel Iteraton (3) Consder the sweep through the nodal values n order of ncreasng : x (k+1) 1 = 1 ( b 1 a 11 n j=2 ) a 1j x (k) j x (k+1) 2 = 1 ( b 2 a 21 x (k+1) 1 a 22 n j=3 ) a 1j x (k) j x (k+1) 3 = 1 ( b 3 a 31 x (k+1) 1 a 32 x (k+1) 2 a 33 n j=4 ) a 1j x (k) j. x (k+1) = 1 ( b a 1 j=1 a j x (k+1) n j=+1 ) a 1j x (k) j (3) Relaxaton Soluton to Lnear Systems page 21

23 Gauss-Sedel Iteraton (4) Coeffcents that multply new values A x = b new values old values = Coeffcents that multply old values Agan, let and defne D = dag(a 11,..., a nn ) L = lower trangular part of A U = upper trangular part of A Then Gauss-Sedel teratons correspond to the splttng of A A = D L U Note that A LU,.e.,, L and U are not the usual factors of A. Relaxaton Soluton to Lnear Systems page 22

24 Equaton (3) can be rewrtten as Gauss-Sedel Iteraton (5) a x (k+1) = b 1 j=1 a j x (k+1) n j=+1 a 1j x (k) j or or a x (k+1) 1 j=1 a j x (k+1) = b n j=+1 a 1j x (k) j Dx (k+1) Lx (k+1) = b + Ux (k) = (D L)x (k+1) = Ux (k) + b or x (k+1) = (D L) 1 (Ux (k) + b) (4) Relaxaton Soluton to Lnear Systems page 23

25 Gauss-Sedel Iteraton (6) Note: The order n whch the nodes are processed n the Gauss-Sedel teratons wll affect the path toward the soluton. In other words, for two dfferent orderngs of the nodes, the ntermedate terates of x wl be dfferent. The Jacob teraton does not depend on the order n whch the nodes are numbered. Much of the classcal theory of relaxaton methods assumes that the nodes and numbered n natural order. Relaxaton Soluton to Lnear Systems page 24

26 SOR: Successve Over-Relaxaton (1) Let ˆx (k+1) be the updated value of x from the Gauss-Sedel formula, vz. ˆx (k+1) = 1 ( b a j< a j x (k+1) j j> ) a j x (k) j (5) Instead of takng ˆx (k+1) as the value of x at the k + 1 step, use x (k+1) = ωˆx (k+1) + (1 ω)x (k) (6) where ω s a scalar weghtng factor. The basc step n Equaton (5) s called relaxaton. ω = 1 for Gauss-Sedel ω < 1 causes the teratons to more slowly move toward the soluton. Ths s called under-relaxaton. ω > 1 causes the teratons to accelerate,.e. to be more aggressve. Ths s called over-relaxaton. Relaxaton Soluton to Lnear Systems page 25

27 Relaxaton as an update We can rewrte Equaton (6) as x (k+1) = x (k) + ω ( ˆx (k+1) ) x (k) (7) or where x (k+1) x (k+1) = x (k) + ω x (k+1) (8) = ˆx (k+1) x (k) x (k+1) s the update to x n teraton k. x (k+1) ω x (k+1) s the drecton n whch the soluton s changng. s a magnfed (ω > 1) or reduced (ω < 1) change to the soluton. Relaxaton Soluton to Lnear Systems page 26

28 SOR: Successve Over-Relaxaton (2) Substtute Equaton (6) nto Equaton (5) x (k+1) = (1 ω)x k + ω a ( b j< a j x (k+1) j j> ) a j x (k) j (9) Multply through by a and rearrange to get a x (k+1) + ω j< a j x (k+1) j = (1 ω)a x k ω j> a j x (k) j + ωb Use the splttng A = D L U and the precedng equaton becomes Dx (k+1) ωlx (k+1) = (1 ω)dx (k) + ωux (k) + ωb (D ωl)x (k+1) = [ (1 ω)dx (k) + ωu ] x (k) + ωb x (k+1) = (D ωl) 1[ (1 ω)dx (k) + ωu ] x (k) + ω(d ωl) 1 b Relaxaton Soluton to Lnear Systems page 27

29 SOR: Successve Over-Relaxaton (3) The update equaton s x (k+1) = (D ωl) 1[ (1 ω)dx (k) + ωu ] x (k) + ω(d ωl) 1 b Thus where x (k+1) = Hx (k) + d H = (D ωl) 1[ (1 ω)dx (k) + ωu ] d = ω(d ωl) 1 b The speed of convergence depends on the egenvalues of H. Relaxaton Soluton to Lnear Systems page 28

30 On a coarse 8 8 mesh Compare Relaxaton Convergence 10 4 Jacob Gauss Sedel SOR 10 3 r Iteraton Relaxaton Soluton to Lnear Systems page 29

31 On a slghtly fner mesh Compare Relaxaton Convergence 10 5 Jacob Gauss Sedel SOR 10 4 r Iteraton Relaxaton Soluton to Lnear Systems page 30

32 Summary of Convergence for Relaxaton SOR s better than Gauss-Sedel Gauss-Sedel s better than Jacob All methods converge more slowly as the number of unknowns ncreases = Relaxaton methods don t work on fne meshes Multgrd explots ths dea Use relaxaton on multple levels Transfer soluton from fne to coarse levels and back agan Use multgrd as an nner teratve solver to accelerate solutons on fne meshes Relaxaton Soluton to Lnear Systems page 31

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 13 GENE H GOLUB 1 Iteratve Methods Very large problems (naturally sparse, from applcatons): teratve methods Structured matrces (even sometmes dense,

More information

Vector Norms. Chapter 7 Iterative Techniques in Matrix Algebra. Cauchy-Bunyakovsky-Schwarz Inequality for Sums. Distances. Convergence.

Vector Norms. Chapter 7 Iterative Techniques in Matrix Algebra. Cauchy-Bunyakovsky-Schwarz Inequality for Sums. Distances. Convergence. Vector Norms Chapter 7 Iteratve Technques n Matrx Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematcs Unversty of Calforna, Berkeley Math 128B Numercal Analyss Defnton A vector norm

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 17. a ij x (k) b i. a ij x (k+1) (D + L)x (k+1) = b Ux (k)

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 17. a ij x (k) b i. a ij x (k+1) (D + L)x (k+1) = b Ux (k) STAT 309: MATHEMATICAL COMPUTATIONS I FALL 08 LECTURE 7. sor method remnder: n coordnatewse form, Jacob method s = [ b a x (k) a and Gauss Sedel method s = [ b a = = remnder: n matrx form, Jacob method

More information

FTCS Solution to the Heat Equation

FTCS Solution to the Heat Equation FTCS Soluton to the Heat Equaton ME 448/548 Notes Gerald Recktenwald Portland State Unversty Department of Mechancal Engneerng gerry@pdx.edu ME 448/548: FTCS Soluton to the Heat Equaton Overvew 1. Use

More information

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b Int J Contemp Math Scences, Vol 3, 28, no 17, 819-827 A New Refnement of Jacob Method for Soluton of Lnear System Equatons AX=b F Naem Dafchah Department of Mathematcs, Faculty of Scences Unversty of Gulan,

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 218 LECTURE 16 1 why teratve methods f we have a lnear system Ax = b where A s very, very large but s ether sparse or structured (eg, banded, Toepltz, banded plus

More information

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method Soluton of Lnear System of Equatons and Matr Inverson Gauss Sedel Iteraton Method It s another well-known teratve method for solvng a system of lnear equatons of the form a + a22 + + ann = b a2 + a222

More information

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numerical methods for pricing American type derivatives Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

More information

1 GSW Iterative Techniques for y = Ax

1 GSW Iterative Techniques for y = Ax 1 for y = A I m gong to cheat here. here are a lot of teratve technques that can be used to solve the general case of a set of smultaneous equatons (wrtten n the matr form as y = A), but ths chapter sn

More information

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS)

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS) Some Comments on Acceleratng Convergence of Iteratve Sequences Usng Drect Inverson of the Iteratve Subspace (DIIS) C. Davd Sherrll School of Chemstry and Bochemstry Georga Insttute of Technology May 1998

More information

Finite Element Modelling of truss/cable structures

Finite Element Modelling of truss/cable structures Pet Schreurs Endhoven Unversty of echnology Department of Mechancal Engneerng Materals echnology November 3, 214 Fnte Element Modellng of truss/cable structures 1 Fnte Element Analyss of prestressed structures

More information

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 ) Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

More information

Deriving the X-Z Identity from Auxiliary Space Method

Deriving the X-Z Identity from Auxiliary Space Method Dervng the X-Z Identty from Auxlary Space Method Long Chen Department of Mathematcs, Unversty of Calforna at Irvne, Irvne, CA 92697 chenlong@math.uc.edu 1 Iteratve Methods In ths paper we dscuss teratve

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Implicit Integration Henyey Method

Implicit Integration Henyey Method Implct Integraton Henyey Method In realstc stellar evoluton codes nstead of a drect ntegraton usng for example the Runge-Kutta method one employs an teratve mplct technque. Ths s because the structure

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 umercal Solutons of oundary-value Problems n Os ovember 7, 7 umercal Solutons of oundary- Value Problems n Os Larry aretto Mechancal ngneerng 5 Semnar n ngneerng nalyss ovember 7, 7 Outlne Revew stff equaton

More information

Multigrid Methods and Applications in CFD

Multigrid Methods and Applications in CFD Multgrd Metods and Applcatons n CFD Mcael Wurst 0 May 009 Contents Introducton Typcal desgn of CFD solvers 3 Basc metods and ter propertes for solvng lnear systems of equatons 4 Geometrc Multgrd 3 5 Algebrac

More information

for Linear Systems With Strictly Diagonally Dominant Matrix

for Linear Systems With Strictly Diagonally Dominant Matrix MATHEMATICS OF COMPUTATION, VOLUME 35, NUMBER 152 OCTOBER 1980, PAGES 1269-1273 On an Accelerated Overrelaxaton Iteratve Method for Lnear Systems Wth Strctly Dagonally Domnant Matrx By M. Madalena Martns*

More information

Inexact Newton Methods for Inverse Eigenvalue Problems

Inexact Newton Methods for Inverse Eigenvalue Problems Inexact Newton Methods for Inverse Egenvalue Problems Zheng-jan Ba Abstract In ths paper, we survey some of the latest development n usng nexact Newton-lke methods for solvng nverse egenvalue problems.

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

The Discretization Process

The Discretization Process FMIA F Moukalled L Mangan M Darwsh An Advanced Introducton wth OpenFOAM and Matlab Ths textbook explores both the theoretcal foundaton of the Fnte Volume Method (FVM) and ts applcatons n Computatonal Flud

More information

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems Chapter. Ordnar Dfferental Equaton Boundar Value (BV) Problems In ths chapter we wll learn how to solve ODE boundar value problem. BV ODE s usuall gven wth x beng the ndependent space varable. p( x) q(

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Computational Astrophysics

Computational Astrophysics Computatonal Astrophyscs Solvng for Gravty Alexander Knebe, Unversdad Autonoma de Madrd Computatonal Astrophyscs Solvng for Gravty the equatons full set of equatons collsonless matter (e.g. dark matter

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Some modelling aspects for the Matlab implementation of MMA

Some modelling aspects for the Matlab implementation of MMA Some modellng aspects for the Matlab mplementaton of MMA Krster Svanberg krlle@math.kth.se Optmzaton and Systems Theory Department of Mathematcs KTH, SE 10044 Stockholm September 2004 1. Consdered optmzaton

More information

New Method for Solving Poisson Equation. on Irregular Domains

New Method for Solving Poisson Equation. on Irregular Domains Appled Mathematcal Scences Vol. 6 01 no. 8 369 380 New Method for Solvng Posson Equaton on Irregular Domans J. Izadan and N. Karamooz Department of Mathematcs Facult of Scences Mashhad BranchIslamc Azad

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

Lecture 3. Ax x i a i. i i

Lecture 3. Ax x i a i. i i 18.409 The Behavor of Algorthms n Practce 2/14/2 Lecturer: Dan Spelman Lecture 3 Scrbe: Arvnd Sankar 1 Largest sngular value In order to bound the condton number, we need an upper bound on the largest

More information

ELE B7 Power Systems Engineering. Power Flow- Introduction

ELE B7 Power Systems Engineering. Power Flow- Introduction ELE B7 Power Systems Engneerng Power Flow- Introducton Introducton to Load Flow Analyss The power flow s the backbone of the power system operaton, analyss and desgn. It s necessary for plannng, operaton,

More information

Bootstrap AMG for Markov Chain Computations

Bootstrap AMG for Markov Chain Computations Bootstrap AMG for Markov Chan Computatons Karsten Kahl Bergsche Unverstät Wuppertal May 27, 200 Outlne Markov Chans Subspace Egenvalue Approxmaton Ingredents of Least Squares Interpolaton Egensolver Bootstrap

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method Journal of Electromagnetc Analyss and Applcatons, 04, 6, 0-08 Publshed Onlne September 04 n ScRes. http://www.scrp.org/journal/jemaa http://dx.do.org/0.46/jemaa.04.6000 The Exact Formulaton of the Inverse

More information

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k)

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k) ISSN 1749-3889 (prnt), 1749-3897 (onlne) Internatonal Journal of Nonlnear Scence Vol.17(2014) No.2,pp.188-192 Modfed Block Jacob-Davdson Method for Solvng Large Sparse Egenproblems Hongy Mao, College of

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

PART 8. Partial Differential Equations PDEs

PART 8. Partial Differential Equations PDEs he Islamc Unverst of Gaza Facult of Engneerng Cvl Engneerng Department Numercal Analss ECIV 3306 PAR 8 Partal Dfferental Equatons PDEs Chapter 9; Fnte Dfference: Ellptc Equatons Assocate Prof. Mazen Abualtaef

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt Physcs 543 Quantum Mechancs II Fall 998 Hartree-Fock and the Self-consstent Feld Varatonal Methods In the dscusson of statonary perturbaton theory, I mentoned brey the dea of varatonal approxmaton schemes.

More information

An Iterative Method for Finite-Element Solutions of the Nonlinear Poisson-Boltzmann Equation

An Iterative Method for Finite-Element Solutions of the Nonlinear Poisson-Boltzmann Equation WEA TRANACTION on COMPUTER An Iteratve Method for Fnte-Element olutons of the Nonlnear Posson-Boltzmann Equaton Natonal Kaohsung Normal Unversty Department of Mathematcs No. 6, Ho-png st Rd., Lngya Dstrct,

More information

MEM 255 Introduction to Control Systems Review: Basics of Linear Algebra

MEM 255 Introduction to Control Systems Review: Basics of Linear Algebra MEM 255 Introducton to Control Systems Revew: Bascs of Lnear Algebra Harry G. Kwatny Department of Mechancal Engneerng & Mechancs Drexel Unversty Outlne Vectors Matrces MATLAB Advanced Topcs Vectors A

More information

Problem adapted reduced models based on Reaction-Diffusion Manifolds (REDIMs)

Problem adapted reduced models based on Reaction-Diffusion Manifolds (REDIMs) Problem adapted reduced models based on Reacton-Dffuson Manfolds (REDIMs) V Bykov, U Maas Thrty-Second Internatonal Symposum on ombuston, Montreal, anada, 3-8 August, 8 Problem Statement: Smulaton of reactng

More information

[7] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Clis, New Jersey, (1962).

[7] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Clis, New Jersey, (1962). [7] R.S. Varga, Matrx Iteratve Analyss, Prentce-Hall, Englewood ls, New Jersey, (962). [8] J. Zhang, Multgrd soluton of the convecton-duson equaton wth large Reynolds number, n Prelmnary Proceedngs of

More information

Linear Feature Engineering 11

Linear Feature Engineering 11 Lnear Feature Engneerng 11 2 Least-Squares 2.1 Smple least-squares Consder the followng dataset. We have a bunch of nputs x and correspondng outputs y. The partcular values n ths dataset are x y 0.23 0.19

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

Solution of the Navier-Stokes Equations

Solution of the Navier-Stokes Equations Numercal Flud Mechancs Fall 2011 Lecture 25 REVIEW Lecture 24: Soluton of the Naver-Stokes Equatons Dscretzaton of the convectve and vscous terms Dscretzaton of the pressure term Conservaton prncples Momentum

More information

Common loop optimizations. Example to improve locality. Why Dependence Analysis. Data Dependence in Loops. Goal is to find best schedule:

Common loop optimizations. Example to improve locality. Why Dependence Analysis. Data Dependence in Loops. Goal is to find best schedule: 15-745 Lecture 6 Data Dependence n Loops Copyrght Seth Goldsten, 2008 Based on sldes from Allen&Kennedy Lecture 6 15-745 2005-8 1 Common loop optmzatons Hostng of loop-nvarant computatons pre-compute before

More information

A PROCEDURE FOR SIMULATING THE NONLINEAR CONDUCTION HEAT TRANSFER IN A BODY WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY.

A PROCEDURE FOR SIMULATING THE NONLINEAR CONDUCTION HEAT TRANSFER IN A BODY WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY. Proceedngs of the th Brazlan Congress of Thermal Scences and Engneerng -- ENCIT 006 Braz. Soc. of Mechancal Scences and Engneerng -- ABCM, Curtba, Brazl,- Dec. 5-8, 006 A PROCEDURE FOR SIMULATING THE NONLINEAR

More information

Chapter Newton s Method

Chapter Newton s Method Chapter 9. Newton s Method After readng ths chapter, you should be able to:. Understand how Newton s method s dfferent from the Golden Secton Search method. Understand how Newton s method works 3. Solve

More information

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 12

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 12 REVIEW Lecture 11: 2.29 Numercal Flud Mechancs Fall 2011 Lecture 12 End of (Lnear) Algebrac Systems Gradent Methods Krylov Subspace Methods Precondtonng of Ax=b FINITE DIFFERENCES Classfcaton of Partal

More information

Normally, in one phase reservoir simulation we would deal with one of the following fluid systems:

Normally, in one phase reservoir simulation we would deal with one of the following fluid systems: TPG4160 Reservor Smulaton 2017 page 1 of 9 ONE-DIMENSIONAL, ONE-PHASE RESERVOIR SIMULATION Flud systems The term sngle phase apples to any system wth only one phase present n the reservor In some cases

More information

Lecture 5.8 Flux Vector Splitting

Lecture 5.8 Flux Vector Splitting Lecture 5.8 Flux Vector Splttng 1 Flux Vector Splttng The vector E n (5.7.) can be rewrtten as E = AU (5.8.1) (wth A as gven n (5.7.4) or (5.7.6) ) whenever, the equaton of state s of the separable form

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

Supplement: Proofs and Technical Details for The Solution Path of the Generalized Lasso

Supplement: Proofs and Technical Details for The Solution Path of the Generalized Lasso Supplement: Proofs and Techncal Detals for The Soluton Path of the Generalzed Lasso Ryan J. Tbshran Jonathan Taylor In ths document we gve supplementary detals to the paper The Soluton Path of the Generalzed

More information

Module 3: Element Properties Lecture 1: Natural Coordinates

Module 3: Element Properties Lecture 1: Natural Coordinates Module 3: Element Propertes Lecture : Natural Coordnates Natural coordnate system s bascally a local coordnate system whch allows the specfcaton of a pont wthn the element by a set of dmensonless numbers

More information

The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

The equation of motion of a dynamical system is given by a set of differential equations. That is (1) Dynamcal Systems Many engneerng and natural systems are dynamcal systems. For example a pendulum s a dynamcal system. State l The state of the dynamcal system specfes t condtons. For a pendulum n the absence

More information

36.1 Why is it important to be able to find roots to systems of equations? Up to this point, we have discussed how to find the solution to

36.1 Why is it important to be able to find roots to systems of equations? Up to this point, we have discussed how to find the solution to ChE Lecture Notes - D. Keer, 5/9/98 Lecture 6,7,8 - Rootndng n systems o equatons (A) Theory (B) Problems (C) MATLAB Applcatons Tet: Supplementary notes rom Instructor 6. Why s t mportant to be able to

More information

MAE140 - Linear Circuits - Fall 13 Midterm, October 31

MAE140 - Linear Circuits - Fall 13 Midterm, October 31 Instructons ME140 - Lnear Crcuts - Fall 13 Mdterm, October 31 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Optimal Control of Temperature in Fluid Flow

Optimal Control of Temperature in Fluid Flow Kawahara Lab. 5 March. 27 Optmal Control of Temperature n Flud Flow Dasuke YAMAZAKI Department of Cvl Engneerng, Chuo Unversty Kasuga -3-27, Bunkyou-ku, Tokyo 2-855, Japan E-mal : d33422@educ.kc.chuo-u.ac.jp

More information

The Finite Element Method

The Finite Element Method The Fnte Element Method GENERAL INTRODUCTION Read: Chapters 1 and 2 CONTENTS Engneerng and analyss Smulaton of a physcal process Examples mathematcal model development Approxmate solutons and methods of

More information

Professor Terje Haukaas University of British Columbia, Vancouver The Q4 Element

Professor Terje Haukaas University of British Columbia, Vancouver  The Q4 Element Professor Terje Haukaas Unversty of Brtsh Columba, ancouver www.nrsk.ubc.ca The Q Element Ths document consders fnte elements that carry load only n ther plane. These elements are sometmes referred to

More information

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES COMPUTATIONAL FLUID DYNAMICS: FDM: Appromaton of Second Order Dervatves Lecture APPROXIMATION OF SECOMD ORDER DERIVATIVES. APPROXIMATION OF SECOND ORDER DERIVATIVES Second order dervatves appear n dffusve

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

2 Finite difference basics

2 Finite difference basics Numersche Methoden 1, WS 11/12 B.J.P. Kaus 2 Fnte dfference bascs Consder the one- The bascs of the fnte dfference method are best understood wth an example. dmensonal transent heat conducton equaton T

More information

The KMO Method for Solving Non-homogenous, m th Order Differential Equations

The KMO Method for Solving Non-homogenous, m th Order Differential Equations The KMO Method for Solvng Non-homogenous, m th Order Dfferental Equatons Davd Krohn Danel Marño-Johnson John Paul Ouyang March 14, 2013 Abstract Ths paper shows a smple tabular procedure for fndng the

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

DUE: WEDS FEB 21ST 2018

DUE: WEDS FEB 21ST 2018 HOMEWORK # 1: FINITE DIFFERENCES IN ONE DIMENSION DUE: WEDS FEB 21ST 2018 1. Theory Beam bendng s a classcal engneerng analyss. The tradtonal soluton technque makes smplfyng assumptons such as a constant

More information

6) Derivatives, gradients and Hessian matrices

6) Derivatives, gradients and Hessian matrices 30C00300 Mathematcal Methods for Economsts (6 cr) 6) Dervatves, gradents and Hessan matrces Smon & Blume chapters: 14, 15 Sldes by: Tmo Kuosmanen 1 Outlne Defnton of dervatve functon Dervatve notatons

More information

Time-Varying Systems and Computations Lecture 6

Time-Varying Systems and Computations Lecture 6 Tme-Varyng Systems and Computatons Lecture 6 Klaus Depold 14. Januar 2014 The Kalman Flter The Kalman estmaton flter attempts to estmate the actual state of an unknown dscrete dynamcal system, gven nosy

More information

Parallel VLSI CAD Algorithms. Lecture 7 Iterative methods for IC thermal analysis Zhuo Feng

Parallel VLSI CAD Algorithms. Lecture 7 Iterative methods for IC thermal analysis Zhuo Feng Parallel VLSI CAD Algortms Lecture 7 Iteratve metods for IC termal analyss Zuo Feng 7. We ve taled about usng LU to solve a sparse lnear matr t problem Anoter way of dealng wt sparse matr problems s to

More information

Linear Regression Analysis: Terminology and Notation

Linear Regression Analysis: Terminology and Notation ECON 35* -- Secton : Basc Concepts of Regresson Analyss (Page ) Lnear Regresson Analyss: Termnology and Notaton Consder the generc verson of the smple (two-varable) lnear regresson model. It s represented

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

Inductance Calculation for Conductors of Arbitrary Shape

Inductance Calculation for Conductors of Arbitrary Shape CRYO/02/028 Aprl 5, 2002 Inductance Calculaton for Conductors of Arbtrary Shape L. Bottura Dstrbuton: Internal Summary In ths note we descrbe a method for the numercal calculaton of nductances among conductors

More information

CHAPTER 14 GENERAL PERTURBATION THEORY

CHAPTER 14 GENERAL PERTURBATION THEORY CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger JAB Chan Long-tal clams development ASTIN - September 2005 B.Verder A. Klnger Outlne Chan Ladder : comments A frst soluton: Munch Chan Ladder JAB Chan Chan Ladder: Comments Black lne: average pad to ncurred

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0 Bezer curves Mchael S. Floater August 25, 211 These notes provde an ntroducton to Bezer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of the

More information

General viscosity iterative method for a sequence of quasi-nonexpansive mappings

General viscosity iterative method for a sequence of quasi-nonexpansive mappings Avalable onlne at www.tjnsa.com J. Nonlnear Sc. Appl. 9 (2016), 5672 5682 Research Artcle General vscosty teratve method for a sequence of quas-nonexpansve mappngs Cuje Zhang, Ynan Wang College of Scence,

More information

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty Addtonal Codes usng Fnte Dfference Method Benamn Moll 1 HJB Equaton for Consumpton-Savng Problem Wthout Uncertanty Before consderng the case wth stochastc ncome n http://www.prnceton.edu/~moll/ HACTproect/HACT_Numercal_Appendx.pdf,

More information

Formulas for the Determinant

Formulas for the Determinant page 224 224 CHAPTER 3 Determnants e t te t e 2t 38 A = e t 2te t e 2t e t te t 2e 2t 39 If 123 A = 345, 456 compute the matrx product A adj(a) What can you conclude about det(a)? For Problems 40 43, use

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

A MODIFIED METHOD FOR SOLVING SYSTEM OF NONLINEAR EQUATIONS

A MODIFIED METHOD FOR SOLVING SYSTEM OF NONLINEAR EQUATIONS Journal of Mathematcs and Statstcs 9 (1): 4-8, 1 ISSN 1549-644 1 Scence Publcatons do:1.844/jmssp.1.4.8 Publshed Onlne 9 (1) 1 (http://www.thescpub.com/jmss.toc) A MODIFIED METHOD FOR SOLVING SYSTEM OF

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016 ME140 - Lnear rcuts - Wnter 16 Fnal, March 16, 2016 Instructons () The exam s open book. You may use your class notes and textbook. You may use a hand calculator wth no communcaton capabltes. () You have

More information

Robust Norm Equivalencies and Preconditioning

Robust Norm Equivalencies and Preconditioning Robust Norm Equvalences and Precondtonng Karl Scherer Insttut für Angewandte Mathematk, Unversty of Bonn, Wegelerstr. 6, 53115 Bonn, Germany Summary. In ths contrbuton we report on work done n contnuaton

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise. Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Effects of Ignoring Correlations When Computing Sample Chi-Square. John W. Fowler February 26, 2012

Effects of Ignoring Correlations When Computing Sample Chi-Square. John W. Fowler February 26, 2012 Effects of Ignorng Correlatons When Computng Sample Ch-Square John W. Fowler February 6, 0 It can happen that ch-square must be computed for a sample whose elements are correlated to an unknown extent.

More information

Ballot Paths Avoiding Depth Zero Patterns

Ballot Paths Avoiding Depth Zero Patterns Ballot Paths Avodng Depth Zero Patterns Henrch Nederhausen and Shaun Sullvan Florda Atlantc Unversty, Boca Raton, Florda nederha@fauedu, ssull21@fauedu 1 Introducton In a paper by Sapounaks, Tasoulas,

More information

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata Multlayer Perceptrons and Informatcs CG: Lecture 6 Mrella Lapata School of Informatcs Unversty of Ednburgh mlap@nf.ed.ac.uk Readng: Kevn Gurney s Introducton to Neural Networks, Chapters 5 6.5 January,

More information