An Efficient design of Binary comparators in Quantum Dot Cellular Automata

Size: px
Start display at page:

Download "An Efficient design of Binary comparators in Quantum Dot Cellular Automata"

Transcription

1 An Efficient design of Binary comparators in Quantum Dot Cellular Automata Dammalapati Dileep 1, Vallabhaneni Ramesh Babu 2 1 PG Scholar, Dept of ECE (VLSI &Amp; ES), V.K.R., V.N.B., & A.G.K. College of Engineering, AP, India, 2 Asst Prof, HOD, Dept of ECE, V.K.R., V.N.B., A.G.K. College of Engineering, AP, India, ledileep@gmail.com, vkrecehod@gmail.com@gmail.com Abstract: Quantum-dot cellular automata (QCA) are an attractive emerging technology suitable for the development of ultra dense low-power high-performance digital circuits. Efficient solutions have recently been proposed for several arithmetic circuits, such as adders, multipliers, and comparators. Nevertheless, since the design of digital circuits in QCA still poses several challenges, novel implementation strategies and methodologies are highly desirable. This paper proposes a new design approach oriented to the implementation of binary comparators in QCA. The comparators proposed here exhibit significantly higher speed and reduced overall area. In recent years the design of logic circuits based on QCA has received a great deal of attention. And special efforts have been directed towards arithmetic circuits, such as adders, multipliers, and comparators. In recent years the design of logic circuits based on QCA has received a great deal of attention. And special efforts have been directed towards arithmetic circuits, such as adders, multipliers, and comparators. This paper focuses on the design of efficient parallel QCA based n-bit full comparators. The main contribution of this paper is the introduction of a novel design methodology that allows low computational time and very compact layouts to be achieved. Keywords. Comparator, Adders, Multipliers. Introduction Quantum-dot cellular automata (QCA) are an attractive emerging technology suitable for the development of ultra-dense low-power high-performance digital circuits. QCA cells are used for both logic structures and interconnections that can exploit either the coplanar cross or the bridge technique. As an alternative to CMOS-VLSI, researchers have proposed an approach to computing with quantum dots, the quantum cellular automata (QCA). First proposed 1 in 1994, unlike conventional computers in which information is transferred from one place to another by means of electrical current, QCA transfers information by propagating a polarization state. QCA is based upon the encoding of binary information in the charge configuration within quantum dot cells. Computational power is provided by the Colombia interaction between QCA cells. No current between cells and any power or information is delivered to individual internal cells. Although most molecular electronics schemes focus on charge transfer through a molecule, charge transfer within a molecule offers an alternative physical basis for computation. A purely columbic mechanism for information transmission and processing has been extensively studied in theoretical work on quantum-dot cellular automata (QCA). This work envisions arrays of cells built from quantum dots or (on a molecular scale) from individual redox centres, in which charges move within the cells in response to external electric fields. According to this scheme, there is no need to let charges flow through the cells, computation is a ground-state phenomenon and contacts need only be made to some cells at the edges of the array (minimal interconnect). The local interconnections between cells are provided by the physics of cell-to-cell interaction due to the rearrangement of electron positions. While there is still much work to be done, early experimental results indicate that QCA may be an extremely viable alternative to CMOS. QCA cells and a simple QCA logical device have been successfully fabricated and tested. QCA is a nanostructure having as its basic cell a square four quantum dots structure charged with two free electrons able to tunnel through the dots within the cell. Because of columbic repulsion, the two electrons will always reside in opposite corners. The use of quantum-dots is a promising emerging technology for implementing digital systems at the Nano-scale level. Recently studied computational paradigms for quantum-dot technology include the use of locally connected quantum-dot cellular automata (QCA). This technique is based on the interaction of electrons within quantum dots that take advantage of quantum phenomena; the same phenomena that may prove problematic in future integrated circuit technologies as feature sizes continue to decrease. The potential application in telecommunications technologies of QCA and the proposed devices is widespread and clear. By taking full advantage of the unique features of this technology, we are able to create complete circuits on a single layer of QCA. Such devices are expected to function with ultralow power consumption and very high operating speeds. IJAEM SRC. All rights reserved

2 An Efficient design of Binary comparators in Quantum Dot Cellular Automata Literature Survey In [1] an effort has been made to present the review of the work carried out in QCA till date, from the time of its invention in Shockley s transistor invented in 1952 has shrunk immensely as the years pass by, making the electronic computers very compact and one of the most powerful devices of the century. However advancements in Microelectronics as per Moore's law, face huge technical barriers in the future of transistor based computation due to the limitations posed at the nanoscale size. In view of this the International Technology Roadmap for Semiconductors (ITRS) has indicated several new technologies that are likely to replace the transistor based computation in the near future. Some of these include Resonant Tunnelling Diodes (RTDs), Single Electron Tunnelling (SET), Quantum Cellular Automata (QCA), and Tunnelling Phase Logic (TPL). Among these, QCA seems to be the most promising emerging technology, as a viable alternative to CMOS. Quantum-dot cellular automata (QCA) [2] is an attractive emerging technology suitable for the development of ultra-dense low-power high-performance digital circuits. It achieved speed performances higher than all the existing. QCA adders, with an area requirement comparable with the cheap RCA and CFA demonstrated. The novel adder operated in the RCA fashion, but it could propagate a carry signal through a number of cascaded MGs significantly lower than conventional RCA adders. In addition, because of the adopted basic logic and layout strategy, the number of clock cycles required for completing the elaboration was limited. As transistors decrease in size more and more of them can be accommodated in a single die, thus increasing chip computational capabilities. However, transistors cannot get much smaller than their current size. The quantumdot cellular automata (QCA) approach represents one of the possible solutions in overcoming this physical limit, even though the design of logic modules in QCA is not always straightforward. The design of ultra-low-power multipliers on quantum dot cellular automata (QCA) nanotechnology, promising very dense circuits and high operating frequencies, using a single homogeneous layer of the basic cells [3]. We construct structures without the earlier noise problems, verified by the QCA Designer coherence vector simulation. Our results show that the wiring overhead of the arithmetic circuits grows quadratically with the operand word length, and our pipelined array multiplier has linearly better performance-area efficiency than the previously proposed serial-parallel structure. Power analysis at the fundamental Landauer s limit shows, that the operating frequencies will indeed be bound by the energy dissipated in information erasure: under irreversible operation, the limits for the clock rates on molecular QCA are much lower, than the switching speeds of the technology. Quantum Dot Cellular Automata QCA is a novel emerging technology in which logic states are not stored as voltage levels, but rather the position of individual electrons. Conceptually, QCA represents binary information by utilizing a bistable charge configuration rather than a current switch. A QCA cell can be viewed as a set of four dots that are positioned at the corners of a square. A quantum dot is a site in a cell in which a charge can be localized. The cell contains two extra mobile electrons that can quantum mechanically tunnel between dots, but not cells. In the ground state and in the absence of external electrostatic perturbation. The electrons are forced to the corner positions to maximize their separation due to Coulomb repulsion. The two possible charge configurations are used to represent binary 0 and 1. Note that in the case of an isolated cell, the two polarization states are energetically degenerate. However the presence of other charges (neighbour cells) breaks the degeneracy and one polarization state becomes the cell ground state. The concept was originally discovered in the 1940s by Stanislaw Ulam and John von Neumann while they were contemporaries at Los Alamos National Laboratory. While studied by some throughout the 1950s and 1960s, it was not until the 1970s and Conway's Game of Life, a two-dimensional cellular automaton, that interest in the subject expanded beyond academia. In the 1980s, Stephen Wolfram engaged in a systematic study of one dimensional cellular automata, or what he calls elementary cellular automata; His research assistant Matthew Cook showed that one of these rules is Turing complete. Wolfram published A New Kind of Science in 2002, claiming that cellular automata have applications in many fields of science. These include computer processors and cryptography. The primary classifications of cellular automata as outlined by Wolfram are numbered one to four. They are, in order, automata in which patterns generally stabilize into homogeneity, automata in which patterns evolve into mostly stable or oscillating structures, automata in which patterns evolve in a seemingly chaotic fashion, and automata in which patterns become extremely complex and may last for a long time, with stable local structures. This last class are thought to be computationally universal, or capable of simulating a Turing machine. Special types of cellular automata are those which are reversible, in which only a single configuration leads directly to a subsequent one, and totality, in which the future value of individual cells depend on the total value of a group of neighbouring cells. Cellular automata can simulate a variety of real world systems, including biological and chemical ones.

3 Dammalapati Dileep, Vallabhaneni Ramesh Babu Design of 1-Bit COMPARATOR Data path components in modern high performance superscalar processors employ a significant amount of associative addressing logic based on the use of comparators that dissipate energy on a mismatch. In order to avoid the mismatch the design of comparator using microprocessor is designed. Their performance level is high but it consists of five metal layers. Hence it dissipate large amount of power. The design of two new comparator circuits that is predominantly dissipates energy on a match, thus resulting in very significant savings in comparator power dissipation. The logic structure and interconnection in the QCA cell are designed either in coplanar cross or bridge technique. QCA technology is the inverter and the majority gate (MG).These majority gates are performs with same clock signal. M (a,b,c)=a.b+a.c+b.c A 1-bit binary comparator receives two bit a and b and it compare whether a and b are equal, or greater than each other, or less than each other. This comparator is slow and d it takes large amount of power to yield the output. To overcome this problem a tree based architecture are exhibited to achieve high speed. The inputs are given to the majority gates which proceed through the proper number of cascaded in which OR, AND gates are implemented. In the tree based architecture the delay will increase according to the n bit comparator. A 1-bit QCA comparator is constructed only with three gates (two different forms of majority gates and only one inverter). In comparison to other existing implementation this method has demonstrated interesting results. Beside, some Boolean functions are expressed as examples and it has been shown, how our reduction method by applying new proposed item, decreases gate counts and levels. We will show and discuss that using of the proposed items can be efficient in designing majority gate based circuits. Implementation Results Fig.1: 1 bit comparator in QCA The 32 bit comparator circuit design is functionally verified through simulation. The simulation is performed by creating a library of reversible logic gates such as Peres gate, MG gate, Double Peres gate in Verilog. The Verilog library of reversible gates is used to implement gate level modelling of the proposed design. Using the test bench, exhaustive simulation is done to verify the functional correctness of the proposed circuit. The simulation is carried out using Xilinx 14.2 ISE simulator. Simulation result is shown in the Figure 2 to 6. Fig.2: RTL Schematic for 32 Bit Comparator

4 An Efficient design of Binary comparators in Quantum Dot Cellular Automata Fig.3.Top Level technical schematic for 32 Bit comparator A= B= Fig.4: Assigning input values to ISE simulator Simulation Comparator output in registers Fig.5: Simulator output for 32bit comparator

5 Dammalapati Dileep, Vallabhaneni Ramesh Babu Table 1: 32-Bit comparator Device utilization Summary Total Power: 0.26mW Fig.6: Power Report Conclusion and Future Scope A new methodology useful to design binary comparators in QCA has been presented. In this thesis, a novel plan for QCA cell has been acquainted with develops a 32 bit comparator. The study has had an immediate application to the outline of rationale capacities in QCA where the rationale primitives are three-and five-info greater part door. As a contextual analysis, the proposed strategy is utilized to add to a 1-bit QCA viper that is built with just two greater part doors and one inverter. Likewise, a few samples shows that our technique has impressive impact on circuits improving as our proposed thing diminish the level tallies and the quantity of greater part and inverter. It is normal that the new plan for QCA cells and the new type of larger part entryway and the lessening technique. The system is big enough to have a lot of work in the future. By connecting n-bit QCA comparator. However, this bit-serial approach requires a complicated clocking scheme. In this thesis we demonstrate that it is possible to design a QCA one-bit comparator, with the same reduced hardware as the bitserial comparator. References [1] Design of Efficient Binary Comparators in Quantum-Dot Cellular Automata, StefaniaPerri, Senior Member, IEEE, Pasquale Corsonello, Member, IEEE, and Giuseppe Cocorullo, Member, IEEE- March [2] L. Lu, W. Liu, M. O Neill, and E. E. Swartzlander Jr., QCA systolic Array design, IEEE Trans. Computer., vol. 62, no. 3, pp , Mar [3] S. Perri and P. Corsonello, New methodology for the design of efficientbinary circuits addition inqca, IEEE Trans.Nanotechnology., vol. 11, no. 6, pp , Nov [4] V. Pudi and K. Sridharan, New decomposition theorems on majoritylogic for low-delay adder designs in quantum dot cellular automata, IEEE Trans. Circuits Syst. II: Exp. Brief, vol. 59, no. 10, pp ,Oct

6 An Efficient design of Binary comparators in Quantum Dot Cellular Automata [5] V. Pudi and K. Sridharan, Efficient design of a hybrid adder in quantumdotcellular automata, IEEE Trans. VLSI Syst., vol. 19, no. 9, pp , Jul [6] H.R Bhagyalaksmi, M.K.Venkatesha An Improved Design of A Multiplier Using Reversible Logic Gates International Journal of Engineering Science and Technology vol.2(8),2010. [7] S. Ying, T. Pei, and L. Xiao, Efficient design of QCA optimal universallogic gate ULG.2 and its application, in Proc. Int. Conf. Comput. Appl.Syst. Modeling (ICCASM), 2010, pp [8] H. Thapliyal, N. Ranganathan and S.Kotiyal, Reversible Logic Based Design and Test of Field Coupled Nanocomputing Circuits", To Appear Springer Lecture Notes on Computer Science State-of the-art-survey Series Special Volume on Field-Coupled Nanocomputing, [9] H. Thapliyal, N. Ranganathan and S. Kotiyal, Design of Testable Reversible Sequential Circuits ", IEEE Transactions on VLSI, vol. 21, no.7, pp , July [10] HimanshuThapliyal, nagarajanranganathan Design of Reversible sequential Circuits Optimizing Quantum Cost, Delay and Garbage Outputs ACM on Emerging Technologies in Computer Systems, Vol.6, No.4, Article 14, Pub.date: December 2010 [11] MahmoodKalemate, Mariam ZomorodiMoghadam, KeivanNavi, A Novel Design of Reversible Squarer Circuit Int. J. Emerg. Sci., 3(4), , December 2013.

Design of A Efficient Hybrid Adder Using Qca

Design of A Efficient Hybrid Adder Using Qca International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 PP30-34 Design of A Efficient Hybrid Adder Using Qca 1, Ravi chander, 2, PMurali Krishna 1, PG Scholar,

More information

Design of Arithmetic Logic Unit (ALU) using Modified QCA Adder

Design of Arithmetic Logic Unit (ALU) using Modified QCA Adder Design of Arithmetic Logic Unit (ALU) using Modified QCA Adder M.S.Navya Deepthi M.Tech (VLSI), Department of ECE, BVC College of Engineering, Rajahmundry. Abstract: Quantum cellular automata (QCA) is

More information

Novel Bit Adder Using Arithmetic Logic Unit of QCA Technology

Novel Bit Adder Using Arithmetic Logic Unit of QCA Technology Novel Bit Adder Using Arithmetic Logic Unit of QCA Technology Uppoju Shiva Jyothi M.Tech (ES & VLSI Design), Malla Reddy Engineering College For Women, Secunderabad. Abstract: Quantum cellular automata

More information

DELAY EFFICIENT BINARY ADDERS IN QCA K. Ayyanna 1, Syed Younus Basha 2, P. Vasanthi 3, A. Sreenivasulu 4

DELAY EFFICIENT BINARY ADDERS IN QCA K. Ayyanna 1, Syed Younus Basha 2, P. Vasanthi 3, A. Sreenivasulu 4 DELAY EFFICIENT BINARY ADDERS IN QCA K. Ayyanna 1, Syed Younus Basha 2, P. Vasanthi 3, A. Sreenivasulu 4 1 Assistant Professor, Department of ECE, Brindavan Institute of Technology & Science, A.P, India

More information

Comparative analysis of QCA adders

Comparative analysis of QCA adders International Journal of Electrical Electronics Computers & Mechanical Engineering (IJEECM) ISSN: 2278-2808 Volume 5 Issue 12 ǁ December. 2017 IJEECM journal of Electronics and Communication Engineering

More information

BINARY TO GRAY CODE CONVERTER IMPLEMENTATION USING QCA

BINARY TO GRAY CODE CONVERTER IMPLEMENTATION USING QCA BINARY TO GRAY CODE CONVERTER IMPLEMENTATION USING QCA Neha Guleria Department of Electronics and Communication Uttarakhand Technical University Dehradun, India Abstract Quantum dot Cellular Automata (QCA)

More information

DESIGN OF QCA FULL ADDER CIRCUIT USING CORNER APPROACH INVERTER

DESIGN OF QCA FULL ADDER CIRCUIT USING CORNER APPROACH INVERTER Research Manuscript Title DESIGN OF QCA FULL ADDER CIRCUIT USING CORNER APPROACH INVERTER R.Rathi Devi 1, PG student/ece Department, Vivekanandha College of Engineering for Women rathidevi24@gmail.com

More information

I. INTRODUCTION. CMOS Technology: An Introduction to QCA Technology As an. T. Srinivasa Padmaja, C. M. Sri Priya

I. INTRODUCTION. CMOS Technology: An Introduction to QCA Technology As an. T. Srinivasa Padmaja, C. M. Sri Priya International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2018 IJSRCSEIT Volume 3 Issue 5 ISSN : 2456-3307 Design and Implementation of Carry Look Ahead Adder

More information

DESIGN OF AREA-DELAY EFFICIENT ADDER BASED CIRCUITS IN QUANTUM DOT CELLULAR AUTOMATA

DESIGN OF AREA-DELAY EFFICIENT ADDER BASED CIRCUITS IN QUANTUM DOT CELLULAR AUTOMATA International Journal on Intelligent Electronic System, Vol.9 No.2 July 2015 1 DESIGN OF AREA-DELAY EFFICIENT ADDER BASED CIRCUITS IN QUANTUM DOT CELLULAR AUTOMATA Aruna S 1, Senthil Kumar K 2 1 PG scholar

More information

DESİGN AND ANALYSİS OF FULL ADDER CİRCUİT USİNG NANOTECHNOLOGY BASED QUANTUM DOT CELLULAR AUTOMATA (QCA)

DESİGN AND ANALYSİS OF FULL ADDER CİRCUİT USİNG NANOTECHNOLOGY BASED QUANTUM DOT CELLULAR AUTOMATA (QCA) DESİGN AND ANALYSİS OF FULL ADDER CİRCUİT USİNG NANOTECHNOLOGY BASED QUANTUM DOT CELLULAR AUTOMATA (QCA) Rashmi Chawla 1, Priya Yadav 2 1 Assistant Professor, 2 PG Scholar, Dept of ECE, YMCA University

More information

Design of an Optimal Decimal Adder in Quantum Dot Cellular Automata

Design of an Optimal Decimal Adder in Quantum Dot Cellular Automata International Journal of Nanotechnology and Applications ISSN 0973-631X Volume 11, Number 3 (2017), pp. 197-211 Research India Publications http://www.ripublication.com Design of an Optimal Decimal Adder

More information

DESIGN OF AREA DELAY EFFICIENT BINARY ADDERS IN QUANTUM-DOT CELLULAR AUTOMATA

DESIGN OF AREA DELAY EFFICIENT BINARY ADDERS IN QUANTUM-DOT CELLULAR AUTOMATA DESIGN OF AREA DELAY EFFICIENT BINARY ADDERS IN QUANTUM-DOT CELLULAR AUTOMATA 1 Shrinidhi P D, 2 Vijay kumar K 1 M.Tech, VLSI&ES 2 Asst.prof. Department of Electronics and Communication 1,2 KVGCE Sullia,

More information

DESIGN AND IMPLEMENTATION OF REVERSIBLE BINARY COMPARATORS IN QUANTUM-DOT CELLULAR AUTOMATA IN FPGA TECHNOLOGY

DESIGN AND IMPLEMENTATION OF REVERSIBLE BINARY COMPARATORS IN QUANTUM-DOT CELLULAR AUTOMATA IN FPGA TECHNOLOGY DESIGN AND IMPLEMENTATION OF REVERSIBLE BINARY COMPARATORS IN QUANTUM-DOT CELLULAR AUTOMATA IN FPGA TECHNOLOGY GOVIND RAJESH 1 P.V.VARA PRASAD RAO 2 grajesh459@gmail.com 1 varaprasad.puli@gmail.com 2 1

More information

Analysis And Design Of Priority Encoder Circuit Using Quantum Dot Cellular Automata

Analysis And Design Of Priority Encoder Circuit Using Quantum Dot Cellular Automata Analysis And Design Of Priority Encoder Circuit Using Quantum Dot Cellular Automata P. Ilanchezhian Associate Professor, Department of IT, Sona College of Technology, Salem Dr. R. M. S. Parvathi Principal,

More information

Serial Parallel Multiplier Design in Quantum-dot Cellular Automata

Serial Parallel Multiplier Design in Quantum-dot Cellular Automata Serial Parallel Multiplier Design in Quantum-dot Cellular Automata Heumpil Cho and Earl E. Swartzlander, Jr. Application Specific Processor Group Department of Electrical and Computer Engineering The University

More information

DESIGN AND ANALYSIS OF A FULL ADDER USING VARIOUS REVERSIBLE GATES

DESIGN AND ANALYSIS OF A FULL ADDER USING VARIOUS REVERSIBLE GATES DESIGN AND ANALYSIS OF A FULL ADDER USING VARIOUS REVERSIBLE GATES Sudhir Dakey Faculty,Department of E.C.E., MVSR Engineering College Abstract The goal of VLSI has remained unchanged since many years

More information

DESIGN OF REVERSIBLE ARITHMETIC AND LOGIC UNIT USING REVERSIBLE UNIVERSAL GATE

DESIGN OF REVERSIBLE ARITHMETIC AND LOGIC UNIT USING REVERSIBLE UNIVERSAL GATE DESIGN OF REVERSIBLE ARITHMETIC AND LOGIC UNIT USING REVERSIBLE UNIVERSAL GATE R.AARTHI, K.PRASANNA* Department of Electronics and Communication Engineering, Arasu Engineering College, Kumbakonam 612501.

More information

Design of Digital Adder Using Reversible Logic

Design of Digital Adder Using Reversible Logic RESEARCH ARTICLE Design of Digital Adder Using Reversible Logic OPEN ACCESS Gowthami P*, RVS Satyanarayana ** * (Research scholar, Department of ECE, S V University College of Engineering, Tirupati, AP,

More information

Design of Efficient Mirror Adder in Quantum- Dot Cellular Automata

Design of Efficient Mirror Adder in Quantum- Dot Cellular Automata IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Design of Efficient Mirror Adder in Quantum- Dot Cellular Automata To cite this article: Prashant Kumar Mishra and Manju K. Chattopadhyay

More information

A NOVEL PRESENTATION OF PERES GATE (PG) IN QUANTUM-DOT CELLULAR AUTOMATA(QCA)

A NOVEL PRESENTATION OF PERES GATE (PG) IN QUANTUM-DOT CELLULAR AUTOMATA(QCA) A NOVEL PRESENTATION OF PERES GATE (PG) IN QUANTUM-DOT ELLULAR AUTOMATA(QA) Angona Sarker Ali Newaz Bahar Provash Kumar Biswas Monir Morshed Department of Information and ommunication Technology, Mawlana

More information

DESIGN AND IMPLEMENTATION OF EFFICIENT HIGH SPEED VEDIC MULTIPLIER USING REVERSIBLE GATES

DESIGN AND IMPLEMENTATION OF EFFICIENT HIGH SPEED VEDIC MULTIPLIER USING REVERSIBLE GATES DESIGN AND IMPLEMENTATION OF EFFICIENT HIGH SPEED VEDIC MULTIPLIER USING REVERSIBLE GATES Boddu Suresh 1, B.Venkateswara Reddy 2 1 2 PG Scholar, Associate Professor, HOD, Dept of ECE Vikas College of Engineering

More information

International Journal of Combined Research & Development (IJCRD) eissn: x;pissn: Volume: 7; Issue: 7; July -2018

International Journal of Combined Research & Development (IJCRD) eissn: x;pissn: Volume: 7; Issue: 7; July -2018 XOR Gate Design Using Reversible Logic in QCA and Verilog Code Yeshwanth GR BE Final Year Department of ECE, The Oxford College of Engineering Bommanahalli, Hosur Road, Bangalore -560068 yeshwath.g13@gmail.com

More information

High Speed Time Efficient Reversible ALU Based Logic Gate Structure on Vertex Family

High Speed Time Efficient Reversible ALU Based Logic Gate Structure on Vertex Family International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 11, Issue 04 (April 2015), PP.72-77 High Speed Time Efficient Reversible ALU Based

More information

Design of Optimized Quantum-dot Cellular Automata RS Flip Flops

Design of Optimized Quantum-dot Cellular Automata RS Flip Flops Int. J. Nanosci. Nanotechnol., Vol. 13, No. 1, March. 2017, pp. 53-58 Design of Optimized Quantum-dot Cellular Automata RS Flip Flops A. Rezaei* 1 Electrical Engineering Department, Kermanshah University

More information

FPGA Implementation of Ripple Carry and Carry Look Ahead Adders Using Reversible Logic Gates

FPGA Implementation of Ripple Carry and Carry Look Ahead Adders Using Reversible Logic Gates FPGA Implementation of Ripple Carry and Carry Look Ahead Adders Using Reversible Logic Gates K. Rajesh 1 and Prof. G. Umamaheswara Reddy 2 Department of Electronics and Communication Engineering, SVU College

More information

OPTIMAL DESIGN AND SYNTHESIS OF FAULT TOLERANT PARALLEL ADDER/SUBTRACTOR USING REVERSIBLE LOGIC GATES. India. Andhra Pradesh India,

OPTIMAL DESIGN AND SYNTHESIS OF FAULT TOLERANT PARALLEL ADDER/SUBTRACTOR USING REVERSIBLE LOGIC GATES. India. Andhra Pradesh India, OPTIMAL DESIGN AND SYNTHESIS OF FAULT TOLERANT PARALLEL ADDER/SUBTRACTOR USING REVERSIBLE LOGIC GATES S.Sushmitha 1, H.Devanna 2, K.Sudhakar 3 1 MTECH VLSI-SD, Dept of ECE, ST. Johns College of Engineering

More information

Designing Cellular Automata Structures using Quantum-dot Cellular Automata

Designing Cellular Automata Structures using Quantum-dot Cellular Automata Designing Cellular Automata Structures using Quantum-dot Cellular Automata Mayur Bubna, Subhra Mazumdar, Sudip Roy and Rajib Mall Department of Computer Sc. & Engineering Indian Institute of Technology,

More information

A Novel Design and Implementation of New Double Feynman and Six-correction logic (DFSCL) gates in Quantum-dot Cellular Automata (QCA)

A Novel Design and Implementation of New Double Feynman and Six-correction logic (DFSCL) gates in Quantum-dot Cellular Automata (QCA) A Novel Design and Implementation of New Double Feynman and Six-correction logic (DFSCL) gates in Quantum-dot Cellular Automata (QCA) Dr. Sajjad Waheed Sharmin Aktar Ali Newaz Bahar Department of Information

More information

Implementation of Quantum dot Cellular Automata based Novel Full Adder and Full Subtractor

Implementation of Quantum dot Cellular Automata based Novel Full Adder and Full Subtractor Implementation of Quantum dot Cellular Automata based Novel Full Adder and Full Subtractor Peer Zahoor Ahmad 1, Firdous Ahmad 2, b, Syed Muzaffar Ahmad 3, Dr. Rafiq Ahmad Khan 4 1 Department of Computer

More information

A Novel Design for Quantum-dot Cellular Automata Cells and Full Adders

A Novel Design for Quantum-dot Cellular Automata Cells and Full Adders A Novel Design for Quantum-dot Cellular Automata Cells and Full Adders Mostafa Rahimi Azghadi *, O. Kavehei, K. Navi Department of Electrical and Computer Engineering, Shahid Beheshti University, Tehran,

More information

Circuit for Revisable Quantum Multiplier Implementation of Adders with Reversible Logic 1 KONDADASULA VEDA NAGA SAI SRI, 2 M.

Circuit for Revisable Quantum Multiplier Implementation of Adders with Reversible Logic 1 KONDADASULA VEDA NAGA SAI SRI, 2 M. ISSN (O): 2349-7084 International Journal of Computer Engineering In Research Trends Available online at: www.ijcert.org Circuit for Revisable Quantum Multiplier Implementation of Adders with Reversible

More information

A Novel Design and Implementation of 8-3 Encoder Using Quantum-dot Cellular Automata (QCA) Technology

A Novel Design and Implementation of 8-3 Encoder Using Quantum-dot Cellular Automata (QCA) Technology A Novel Design and Implementation of 8-3 Encoder Using Quantum-dot Cellular Automata (QCA) Technology Md. Sofeoul-Al-Mamun Mohammad Badrul Alam Miah Fuyad Al Masud Department of Information and Communication

More information

Basic Logic Gate Realization using Quantum Dot Cellular Automata based Reversible Universal Gate

Basic Logic Gate Realization using Quantum Dot Cellular Automata based Reversible Universal Gate Basic Logic Gate Realization using Quantum Dot Cellular Automata based Reversible Universal Gate Saroj Kumar Chandra Department Of Computer Science & Engineering, Chouksey Engineering College, Bilaspur

More information

A Novel Ternary Content-Addressable Memory (TCAM) Design Using Reversible Logic

A Novel Ternary Content-Addressable Memory (TCAM) Design Using Reversible Logic 2015 28th International Conference 2015 on 28th VLSI International Design and Conference 2015 14th International VLSI Design Conference on Embedded Systems A Novel Ternary Content-Addressable Memory (TCAM)

More information

A NML-HDL Snake Clock Based QCA Architecture

A NML-HDL Snake Clock Based QCA Architecture International Journal of Scientific and Research Publications, Volume 4, Issue 2, February 2014 1 A NML-HDL Snake Clock Based QCA Architecture 1 Mr. M. B. Kachare, 2 Dr. P. H. Zope 1 ME I st (Dig. Electronics),

More information

Online Testable Reversible Circuits using reversible gate

Online Testable Reversible Circuits using reversible gate Online Testable Reversible Circuits using reversible gate 1Pooja Rawat, 2Vishal Ramola, 1M.Tech. Student (final year), 2Assist. Prof. 1-2VLSI Design Department 1-2Faculty of Technology, University Campus,

More information

VHDL DESIGN AND IMPLEMENTATION OF C.P.U BY REVERSIBLE LOGIC GATES

VHDL DESIGN AND IMPLEMENTATION OF C.P.U BY REVERSIBLE LOGIC GATES VHDL DESIGN AND IMPLEMENTATION OF C.P.U BY REVERSIBLE LOGIC GATES 1.Devarasetty Vinod Kumar/ M.tech,2. Dr. Tata Jagannadha Swamy/Professor, Dept of Electronics and Commn. Engineering, Gokaraju Rangaraju

More information

International Journal of Advanced Research in ISSN: Engineering Technology & Science

International Journal of Advanced Research in ISSN: Engineering Technology & Science E n International Journal of Advanced Research in ISSN: 2349-2819 Engineering Technology & Science Email: editor@ijarets.org September-2016 Volume 3, Issue-9 A NOVEL RAM CELL DESIGN IN QUANTUM-DOT CELLULAR

More information

NOVEL QCA CONTROL GATE AND NEW DESIGNING OF MEMORY ON THE BASIS OF QUANTUM DOT CELLULAR AUTOMATA WITH MINIMUM QCA BLOCKS

NOVEL QCA CONTROL GATE AND NEW DESIGNING OF MEMORY ON THE BASIS OF QUANTUM DOT CELLULAR AUTOMATA WITH MINIMUM QCA BLOCKS Indian J.Sci.Res. 2(1) : 96-100, 2014 ISSN : 2250-0138 (Online) ISSN: 0976-2876(Print) NOVEL QCA CONTROL GATE AND NEW DESIGNING OF MEMORY ON THE BASIS OF QUANTUM DOT CELLULAR AUTOMATA WITH MINIMUM QCA

More information

Realization of 2:4 reversible decoder and its applications

Realization of 2:4 reversible decoder and its applications Realization of 2:4 reversible decoder and its applications Neeta Pandey n66pandey@rediffmail.com Nalin Dadhich dadhich.nalin@gmail.com Mohd. Zubair Talha zubair.talha2010@gmail.com Abstract In this paper

More information

Five-Input Complex Gate with an Inverter Using QCA

Five-Input Complex Gate with an Inverter Using QCA Five-Input Complex Gate with an Inverter Using QCA Tina Suratkar 1 Assistant Professor, Department of Electronics & Telecommunication Engineering, St.Vincent Pallotti College Of Engineering and Technology,

More information

Two Bit Arithmetic Logic Unit (ALU) in QCA Namit Gupta 1, K.K. Choudhary 2 and Sumant Katiyal 3 1

Two Bit Arithmetic Logic Unit (ALU) in QCA Namit Gupta 1, K.K. Choudhary 2 and Sumant Katiyal 3 1 Two Bit Arithmetic Logic Unit (ALU) in QCA Namit Gupta 1, K.K. Choudhary 2 and Sumant Katiyal 3 1 Department of Electronics, SVITS, Baroli, Sanwer Road, Indore, India namitg@hotmail.com 2 Department of

More information

Lecture 8: Sequential Multipliers

Lecture 8: Sequential Multipliers Lecture 8: Sequential Multipliers ECE 645 Computer Arithmetic 3/25/08 ECE 645 Computer Arithmetic Lecture Roadmap Sequential Multipliers Unsigned Signed Radix-2 Booth Recoding High-Radix Multiplication

More information

Reversible Implementation of Ternary Content Addressable Memory (TCAM) Interface with SRAM

Reversible Implementation of Ternary Content Addressable Memory (TCAM) Interface with SRAM International Journal of Electrical Electronics Computers & Mechanical Engineering (IJEECM) ISSN: 2278-2808 Volume 5 Issue 4 ǁ April. 2017 IJEECM journal of Electronics and Communication Engineering (ijeecm-jec)

More information

DESIGN OF PARITY GENERATOR AND PARITY CHECKER USING QUANTUM DOT AUTOMATA

DESIGN OF PARITY GENERATOR AND PARITY CHECKER USING QUANTUM DOT AUTOMATA Volume 118 No. 24 2018 ISSN: 1314-3395 (on-line version) url: http://www.acadpubl.eu/hub/ http://www.acadpubl.eu/hub/ DESIGN OF PARITY GENERATOR AND PARITY CHECKER USING QUANTUM DOT AUTOMATA MummadiSwathi

More information

QUANTUM-DOT cellular automata (QCA) technology

QUANTUM-DOT cellular automata (QCA) technology IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 64, NO. 5, MAY 2017 575 Design of Efficient BCD Adders in Quantum-Dot Cellular Automata G. Cocorullo, P. Corsonello, F. Frustaci, and

More information

Design of Sequential Circuits Using MV Gates in Nanotechnology

Design of Sequential Circuits Using MV Gates in Nanotechnology 2015 IJSRSET Volume 1 Issue 2 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Design of Sequential Circuits Using MV Gates in Nanotechnology Bahram Dehghan 1,

More information

DESIGN OF COMPACT REVERSIBLE LOW POWER n-bit BINARY COMPARATOR USING REVERSIBLE GATES

DESIGN OF COMPACT REVERSIBLE LOW POWER n-bit BINARY COMPARATOR USING REVERSIBLE GATES DESIGN OF COMPACT REVERSIBLE LOW POWER n-bit BINARY COMPARATOR USING REVERSIBLE GATES K.R.JAI BALAJI [1], C.GANESH BABU [2], P.SAMPATH [3] [1] M.E(VLSI Design), Department of ECE, Bannari Amman Institute

More information

Realization of programmable logic array using compact reversible logic gates 1

Realization of programmable logic array using compact reversible logic gates 1 Realization of programmable logic array using compact reversible logic gates 1 E. Chandini, 2 Shankarnath, 3 Madanna, 1 PG Scholar, Dept of VLSI System Design, Geethanjali college of engineering and technology,

More information

An Area Efficient Enhanced Carry Select Adder

An Area Efficient Enhanced Carry Select Adder International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 PP.06-12 An Area Efficient Enhanced Carry Select Adder 1, Gaandla.Anusha, 2, B.ShivaKumar 1, PG

More information

Double Feynman Gate (F2G) in Quantumdot Cellular Automata (QCA)

Double Feynman Gate (F2G) in Quantumdot Cellular Automata (QCA) Double Feynman Gate (F2G) in Quantumdot Cellular Automata (QCA) Ali Newaz Bahar E-mail: bahar_mitdu@yahoo.com Sajjad Waheed E-mail: sajad302@yahoo.com Md. Ashraf Uddin Department of Computer Science and

More information

A Novel Design of Reversible Universal Shift Register

A Novel Design of Reversible Universal Shift Register Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 3, March 2014,

More information

IMPLEMENTATION OF PROGRAMMABLE LOGIC DEVICES IN QUANTUM CELLULAR AUTOMATA TECHNOLOGY

IMPLEMENTATION OF PROGRAMMABLE LOGIC DEVICES IN QUANTUM CELLULAR AUTOMATA TECHNOLOGY IMPLEMENTATION OF PROGRAMMABLE LOGIC DEVICES IN QUANTUM CELLULAR AUTOMATA TECHNOLOGY Dr.E.N.Ganesh Professor ECE Department REC Chennai, INDIA Email : enganesh50@yahoo.co.in Abstract Quantum cellular automata

More information

Design of an Ultra-Efficient Reversible Full Adder-Subtractor in Quantum-dot Cellular Automata

Design of an Ultra-Efficient Reversible Full Adder-Subtractor in Quantum-dot Cellular Automata Design of an Ultra-Efficient Reversible Full Adder-Subtractor in Quantum-dot Cellular Automata Elham Taherkhani 1, Mohammad Hossein Moaiyeri 1,2* and Shaahin Angizi 3 1 Nanotechnology and Quantum Computing

More information

Performance Enhancement of Reversible Binary to Gray Code Converter Circuit using Feynman gate

Performance Enhancement of Reversible Binary to Gray Code Converter Circuit using Feynman gate Performance Enhancement of Reversible Binary to Gray Code Converter Circuit using Feynman gate Kamal Prakash Pandey 1, Pradumn Kumar 2, Rakesh Kumar Singh 3 1, 2, 3 Department of Electronics and Communication

More information

FPGA IMPLEMENTATION OF 4-BIT AND 8-BIT SQUARE CIRCUIT USING REVERSIBLE LOGIC

FPGA IMPLEMENTATION OF 4-BIT AND 8-BIT SQUARE CIRCUIT USING REVERSIBLE LOGIC FPGA IMPLEMENTATION OF 4-BIT AND 8-BIT SQUARE CIRCUIT USING REVERSIBLE LOGIC Shwetha. S Patil 1, Mahesh Patil 2, Venkateshappa 3 Assistant Professor 1,PG Student 2, Professor 3 1,2,3 Dept. of ECE, 1 MVJ

More information

Design and Implementation of Carry Adders Using Adiabatic and Reversible Logic Gates

Design and Implementation of Carry Adders Using Adiabatic and Reversible Logic Gates Design and Implementation of Carry Adders Using Adiabatic and Reversible Logic Gates B.BharathKumar 1, ShaikAsra Tabassum 2 1 Research Scholar, Dept of ECE, Lords Institute of Engineering & Technology,

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE: EC 1354 SUB.NAME : VLSI DESIGN YEAR / SEMESTER: III / VI UNIT I MOS TRANSISTOR THEORY AND

More information

Downloaded from

Downloaded from Proceedings of The Intl. Conf. on Information, Engineering, Management and Security 2014 [ICIEMS 2014] 309 Implementation of Novel Reversible Multiplier Architecture Using Reversible 4*4 TSG Gate T. SaiBaba

More information

Reversible Circuit Using Reversible Gate

Reversible Circuit Using Reversible Gate Reversible Circuit Using Reversible Gate 1Pooja Rawat, 2Vishal Ramola, 1M.Tech. Student (final year), 2Assist. Prof. 1-2VLSI Design Department 1-2Faculty of Technology, University Campus, Uttarakhand Technical

More information

Design of a Controllable Adder-Subtractor circuit using Quantum Dot Cellular Automata

Design of a Controllable Adder-Subtractor circuit using Quantum Dot Cellular Automata IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 4 Ver. III (Jul. Aug. 2017), PP 44-59 www.iosrjournals.org Design of a Controllable

More information

Design and Implementation of REA for Single Precision Floating Point Multiplier Using Reversible Logic

Design and Implementation of REA for Single Precision Floating Point Multiplier Using Reversible Logic Design and Implementation of REA for Single Precision Floating Point Multiplier Using Reversible Logic MadivalappaTalakal 1, G.Jyothi 2, K.N.Muralidhara 3, M.Z.Kurian 4 PG Student [VLSI & ES], Dept. of

More information

Department of ECE, Vignan Institute of Technology & Management,Berhampur(Odisha), India

Department of ECE, Vignan Institute of Technology & Management,Berhampur(Odisha), India IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Efficient Design Of 4-Bit Binary Adder Using Reversible Logic Gates Abinash Kumar Pala *, Jagamohan Das * Department of ECE, Vignan

More information

Power Minimization of Full Adder Using Reversible Logic

Power Minimization of Full Adder Using Reversible Logic I J C T A, 9(4), 2016, pp. 13-18 International Science Press Power Minimization of Full Adder Using Reversible Logic S. Anandhi 1, M. Janaki Rani 2, K. Manivannan 3 ABSTRACT Adders are normally used for

More information

A NEW APPROACH TO DESIGN BCD ADDER AND CARRY SKIPBCD ADDER

A NEW APPROACH TO DESIGN BCD ADDER AND CARRY SKIPBCD ADDER A NEW APPROACH TO DESIGN BCD ADDER AND CARRY SKIPBCD ADDER K.Boopathi Raja 1, LavanyaS.R 2, Mithra.V 3, Karthikeyan.N 4 1,2,3,4 Department of Electronics and communication Engineering, SNS college of technology,

More information

Reliability Modeling of Nanoelectronic Circuits

Reliability Modeling of Nanoelectronic Circuits Reliability odeling of Nanoelectronic Circuits Jie Han, Erin Taylor, Jianbo Gao and José Fortes Department of Electrical and Computer Engineering, University of Florida Gainesville, Florida 6-600, USA.

More information

Radiation Effects in Nano Inverter Gate

Radiation Effects in Nano Inverter Gate Nanoscience and Nanotechnology 2012, 2(6): 159-163 DOI: 10.5923/j.nn.20120206.02 Radiation Effects in Nano Inverter Gate Nooshin Mahdavi Sama Technical and Vocational Training College, Islamic Azad University,

More information

PERFORMANCE ANALYSIS OF CLA CIRCUITS USING SAL AND REVERSIBLE LOGIC GATES FOR ULTRA LOW POWER APPLICATIONS

PERFORMANCE ANALYSIS OF CLA CIRCUITS USING SAL AND REVERSIBLE LOGIC GATES FOR ULTRA LOW POWER APPLICATIONS PERFORMANCE ANALYSIS OF CLA CIRCUITS USING SAL AND REVERSIBLE LOGIC GATES FOR ULTRA LOW POWER APPLICATIONS K. Prasanna Kumari 1, Mrs. N. Suneetha 2 1 PG student, VLSI, Dept of ECE, Sir C R Reddy College

More information

Design and Implementation of Reversible Binary Comparator N.SATHISH 1, T.GANDA PRASAD 2

Design and Implementation of Reversible Binary Comparator N.SATHISH 1, T.GANDA PRASAD 2 www.semargroup.org, www.ijsetr.com ISSN 2319-8885 Vol.03,Issue.03, March-2014, Pages:0356-0363 Design and Implementation of Reversible Binary Comparator N.SATHISH 1, T.GANDA PRASAD 2 1 PG Scholar, Dept

More information

CHAPTER 3 QCA INTRODUCTION

CHAPTER 3 QCA INTRODUCTION 24 CHAPTER 3 QCA INTRODUCTION Quantum dot cellular automata provide a novel electronics paradigm for information processing and communication. It has been recognized as one of the revolutionary nanoscale

More information

DIAGNOSIS OF FAULT IN TESTABLE REVERSIBLE SEQUENTIAL CIRCUITS USING MULTIPLEXER CONSERVATIVE QUANTUM DOT CELLULAR AUTOMATA

DIAGNOSIS OF FAULT IN TESTABLE REVERSIBLE SEQUENTIAL CIRCUITS USING MULTIPLEXER CONSERVATIVE QUANTUM DOT CELLULAR AUTOMATA DIAGNOSIS OF FAULT IN TESTABLE REVERSIBLE SEQUENTIAL CIRCUITS USING MULTIPLEXER CONSERVATIVE QUANTUM DOT CELLULAR AUTOMATA Nikitha.S.Paulin 1, S.Abirami 2, Prabu Venkateswaran.S 3 1, 2 PG students / VLSI

More information

Literature Review on Multiplier Accumulation Unit by Using Hybrid Adder

Literature Review on Multiplier Accumulation Unit by Using Hybrid Adder Literature Review on Multiplier Accumulation Unit by Using Hybrid Adder Amiya Prakash M.E. Scholar, Department of (ECE) NITTTR Chandigarh, Punjab Dr. Kanika Sharma Assistant Prof. Department of (ECE) NITTTR

More information

BCD Adder Design using New Reversible Logic for Low Power Applications

BCD Adder Design using New Reversible Logic for Low Power Applications Indian Journal of Science and Technology, Vol 10(30), DOI: 10.17485/ijst/2017/v10i30/115514, August 2017 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 BCD Adder Design using New Reversible Logic for

More information

Computer Architectures Using Nanotechnology

Computer Architectures Using Nanotechnology Lehigh University Lehigh Preserve Theses and Dissertations 22 Computer Architectures Using Nanotechnology Yichun Sun Lehigh University Follow this and additional works at: http://preserve.lehigh.edu/etd

More information

Design and Optimization of Parity Generator and Parity Checker Based On Quantum-dot Cellular Automata Santanu Santra, Utpal Roy

Design and Optimization of Parity Generator and Parity Checker Based On Quantum-dot Cellular Automata Santanu Santra, Utpal Roy Design and Optimization of Parity Generator and Parity Checker Based On Quantum-dot Cellular Automata Santanu Santra, Utpal Roy Abstract Quantum-dot Cellular Automata (QCA) is one of the most substitute

More information

PERFORMANCE IMPROVEMENT OF REVERSIBLE LOGIC ADDER

PERFORMANCE IMPROVEMENT OF REVERSIBLE LOGIC ADDER ISSN: 2395-1680 (ONLINE) DOI: 10.21917/ijme.2016.0037 ICTACT JOURNAL ON MICROELECTRONICS, JULY 2016, VOLUME: 02, ISSUE: 02 PERFORMANCE IMPROVEMENT OF REVERSIBLE LOGIC ADDER Richa Shukla 1 and Vandana Niranjan

More information

An Optimized BCD Adder Using Reversible Logic Gates

An Optimized BCD Adder Using Reversible Logic Gates Vol.2, Issue.6, Nov-Dec. 2012 pp-4527-4531 ISSN: 2249-6645 An Optimized BCD Adder Using Reversible Logic Gates K.Rajesh 1, D A Tatajee 2 1, 2 Department of ECE, A I E T, Visakhapatnam, India, ABSTRACT:

More information

Design Exploration and Application of Reversible Circuits in Emerging Technologies

Design Exploration and Application of Reversible Circuits in Emerging Technologies University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 4-7-216 Design Exploration and Application of Reversible Circuits in Emerging Technologies Saurabh Kotiyal

More information

Wire-Crossing Technique on Quantum-Dot Cellular Automata

Wire-Crossing Technique on Quantum-Dot Cellular Automata Wire-Crossing Technique on Quantum-Dot Cellular Automata Sang-Ho Shin 1, Jun-Cheol Jeon 2 and Kee-Young Yoo * 1 School of Computer Science and Engineering, Kyungpook National University, Daegu, South Korea

More information

Implementation of Reversible Control and Full Adder Unit Using HNG Reversible Logic Gate

Implementation of Reversible Control and Full Adder Unit Using HNG Reversible Logic Gate Implementation of Reversible Control and Full Adder Unit Using HNG Reversible Logic Gate Naresh Chandra Agrawal 1, Anil Kumar 2, A. K. Jaiswal 3 1 Research scholar, 2 Assistant Professor, 3 Professor,

More information

3/10/2013. Lecture #1. How small is Nano? (A movie) What is Nanotechnology? What is Nanoelectronics? What are Emerging Devices?

3/10/2013. Lecture #1. How small is Nano? (A movie) What is Nanotechnology? What is Nanoelectronics? What are Emerging Devices? EECS 498/598: Nanocircuits and Nanoarchitectures Lecture 1: Introduction to Nanotelectronic Devices (Sept. 5) Lectures 2: ITRS Nanoelectronics Road Map (Sept 7) Lecture 3: Nanodevices; Guest Lecture by

More information

STUDY AND IMPLEMENTATION OF MUX BASED FPGA IN QCA TECHNOLOGY

STUDY AND IMPLEMENTATION OF MUX BASED FPGA IN QCA TECHNOLOGY STUDY AND IMPLEMENTATION OF MUX BASED FPGA IN QCA TECHNOLOGY E.N.Ganesh 1 / V.Krishnan 2 1. Professor, Rajalakshmi Engineering College 2. UG Student, Rajalakshmi Engineering College ABSTRACT This paper

More information

Implementation of Optimized Reversible Sequential and Combinational Circuits for VLSI Applications

Implementation of Optimized Reversible Sequential and Combinational Circuits for VLSI Applications V. G. Santhi Swaroop et al Int. Journal of Engineering Research and Applications RESEARCH ARTICLE OPEN ACCESS Implementation of Optimized Reversible Sequential and Combinational Circuits for VLSI Applications

More information

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

RAJASTHAN TECHNICAL UNIVERSITY, KOTA RAJASTHAN TECHNICAL UNIVERSITY, KOTA (Electronics & Communication) Submitted By: LAKSHIKA SOMANI E&C II yr, IV sem. Session: 2007-08 Department of Electronics & Communication Geetanjali Institute of Technical

More information

A COMBINED 16-BIT BINARY AND DUAL GALOIS FIELD MULTIPLIER. Jesus Garcia and Michael J. Schulte

A COMBINED 16-BIT BINARY AND DUAL GALOIS FIELD MULTIPLIER. Jesus Garcia and Michael J. Schulte A COMBINED 16-BIT BINARY AND DUAL GALOIS FIELD MULTIPLIER Jesus Garcia and Michael J. Schulte Lehigh University Department of Computer Science and Engineering Bethlehem, PA 15 ABSTRACT Galois field arithmetic

More information

FPGA IMPLEMENTATION OF BASIC ADDER CIRCUITS USING REVERSIBLE LOGIC GATES

FPGA IMPLEMENTATION OF BASIC ADDER CIRCUITS USING REVERSIBLE LOGIC GATES FPGA IMPLEMENTATION OF BASIC ADDER CIRCUITS USING REVERSIBLE LOGIC GATES B.Ravichandra 1, R. Kumar Aswamy 2 1,2 Assistant Professor, Dept of ECE, VITS College of Engineering, Visakhapatnam (India) ABSTRACT

More information

Power Optimization using Reversible Gates for Booth s Multiplier

Power Optimization using Reversible Gates for Booth s Multiplier International Journal for Modern Trends in Science and Technology Volume: 02, Issue No: 11, November 2016 ISSN: 2455-3778 http://www.ijmtst.com Power Optimization using Reversible Gates for Booth s Multiplier

More information

Resource Efficient Design of Quantum Circuits for Quantum Algorithms

Resource Efficient Design of Quantum Circuits for Quantum Algorithms Resource Efficient Design of Quantum Circuits for Quantum Algorithms Himanshu Thapliyal Department of Electrical and Computer Engineering University of Kentucky, Lexington, KY hthapliyal@uky.edu Quantum

More information

On the Analysis of Reversible Booth s Multiplier

On the Analysis of Reversible Booth s Multiplier 2015 28th International Conference 2015 on 28th VLSI International Design and Conference 2015 14th International VLSI Design Conference on Embedded Systems On the Analysis of Reversible Booth s Multiplier

More information

A Novel LUT Using Quaternary Logic

A Novel LUT Using Quaternary Logic A Novel LUT Using Quaternary Logic 1*GEETHA N S 2SATHYAVATHI, N S 1Department of ECE, Applied Electronics, Sri Balaji Chockalingam Engineering College, Arani,TN, India. 2Assistant Professor, Department

More information

Quantum-dot cellular automata

Quantum-dot cellular automata Quantum-dot cellular automata G. L. Snider, a) A. O. Orlov, I. Amlani, X. Zuo, G. H. Bernstein, C. S. Lent, J. L. Merz, and W. Porod Department of Electrical Engineering, University of Notre Dame, Notre

More information

An FPGA Implementation of Energy Efficient Code Converters Using Reversible Logic Gates

An FPGA Implementation of Energy Efficient Code Converters Using Reversible Logic Gates An FPGA Implementation of Energy Efficient Code Converters Using Reversible Logic Gates Rakesh Kumar Jha 1, Arjun singh yadav 2 Assistant Professor, Dept. of ECE, Corporate Institute of Science & Technology,

More information

Optimized design of BCD adder and Carry skip BCD adder using reversible logic gates

Optimized design of BCD adder and Carry skip BCD adder using reversible logic gates Optimized design of BCD adder and Carry skip BCD adder using reversible logic gates H R Bhagyalakshmi E&C Department BMS College of Engineering, Bangalore, Karnataka, India M K Venkatesha E&C Department

More information

Design of 16 Bit Adder Subtractor with PFAG and TG Gates Using Verilog HDL

Design of 16 Bit Adder Subtractor with PFAG and TG Gates Using Verilog HDL International Journal of Engineering Science and Generic Research (IJESAR) Available Online at www.ijesar.in Journal Index In ICI World of Journals - ICV 2016 68.35 Volume 4; Issue 5; September-October;

More information

Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches

Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches Presenter: Tulika Mitra Swarup Bhunia, Massood Tabib-Azar, and Daniel Saab Electrical Eng. And

More information

Design of Reversible Code Converters Using Verilog HDL

Design of Reversible Code Converters Using Verilog HDL Design of Reversible Code Converters Using Verilog HDL Vinay Kumar Gollapalli M. Tech (VLSI Design), K Koteshwarrao, M. Tech Assistant Professor, SSGN Srinivas, M. Tech Associate Professor & HoD, ABSTRACT:

More information

ISSN Vol.03, Issue.03, June-2015, Pages:

ISSN Vol.03, Issue.03, June-2015, Pages: ISSN 2322-0929 Vol.03, Issue.03, June-2015, Pages:0271-0276 www.ijvdcs.org Design of Low Power Arithmetic and Logic Unit using Reversible Logic Gates LAKSHMIKANTHA MN 1, ANURADHA MG 2 1 Dept of ECE (VLSI

More information

Design of a Novel Reversible ALU using an Enhanced Carry Look-Ahead Adder

Design of a Novel Reversible ALU using an Enhanced Carry Look-Ahead Adder Design of a Novel Reversible ALU using an Enhanced Carry Look-Ahead Adder *K.JYOTHI **Md.ASIM IQBAL *M.TECH Dept Of ECE, KAKATHIYA UNIVERSITY OF ENGINEERING AND TECHNOLOGY **Asst. prof Dept of ECE, KAKATHIYA

More information

A Novel Reversible Gate and its Applications

A Novel Reversible Gate and its Applications International Journal of Engineering and Technology Volume 2 No. 7, July, 22 Novel Reversible Gate and its pplications N.Srinivasa Rao, P.Satyanarayana 2 Department of Telecommunication Engineering, MS

More information

A novel ternary quantum-dot cell for solving majority voter gate problem

A novel ternary quantum-dot cell for solving majority voter gate problem Appl Nanosci (2014) 4:255 262 DOI 10.1007/s13204-013-0208-y ORIGINAL ARTICLE A novel ternary quantum-dot cell for solving majority voter gate problem Mohammad A. Tehrani Safura Bahrami Keivan Navi Received:

More information