Development of a high precision X-ray spectrometer for diffused sources with HAPG crystals in the range 2-20 kev: the VOXES experiment O S

Size: px
Start display at page:

Download "Development of a high precision X-ray spectrometer for diffused sources with HAPG crystals in the range 2-20 kev: the VOXES experiment O S"

Transcription

1 ECT*, Trento, 26/10/2017 Development of a high precision X-ray spectrometer for diffused sources with HAPG crystals in the range 2-20 kev: the VOXES experiment X INFN-CSN5 Young Researcher Grant 2015, n /2015. E O S Alessandro Scordo Laboratori Nazionali di Frascati, INFN ASTRA: Advances and open problems in low-energy nuclear and hadronic STRAngeness physics

2 Best measurements (SIDDHARTA): Target The discrepancies between different theoretical models and approaches could be eliminated with ~ 1eV precision measurement 4 He +5 ±3 (stat.) ±4 (syst.) 14 ±8 (stat.) ± 5 (syst.) 3 He 2 ±2 (stat.) ±4 (syst.) 6 ±6 (stat.) ±7 (syst.) New measurements are needed

3 A possible application: the K - mass puzzle K - mass is a fundamental quantity in physics to reduce the electron screening effect Needs precision below 0.1 ev!

4 Project s goal High resolution (few ev) measurements of the X rays (2-20 kev) emitted in various processes is strongly demanded in: particle and nuclear physics, fundamental science, astrophysics, biology, medical and industrial applications Additionally, for some applications (like exotic atoms measurements) X-ray detector systems have to be operated in high background environment. These X-rays not always are produced by a point-like source; it is mandatory to develop detectors working with extended (diffused) sources. VOXES s goal: to develop, test and qualify the first prototype of ultra-high resolution and high efficiency X-ray spectrometer in the range of energies 2-20 kev using HAPG bent crystals able to work with extended sources High resolution von-hamos X-Ray spectrometer using HAPG for Extended Sources in a broad energy range

5 Commonly used detectors for X-rays in the range 1-20 kev are the Solid State Detectors (CCD, SDD, etc ) However The solid state detectors have intrinsic resolution (FWHM ~ 120 ev at 6 kev) given by the electronic noise and the Fano Factor Presently, to achieve ~ ev resolution, two options are available: Transition Edge Sensors (TES) Crystals and position detectors (Bragg spectrometers)

6 Transition Edge Sensors (TES). Excellent energy resolution (few ev at 6 kev) LIMITATIONS: not optimised for E < 5 kev very small active area prohibitively high costs rather laborious use (complex cryogenic system needed) T C ~ 50 mk!!!

7 High resolution can be achieved depending on the quality of the crystal and the dimensions of the detectors nl = 2dsinq B Geometry of the detector determines also the energy range of the spectrometer But. Crystals response may not be uniform (shape, impurities, ecc.) Lineshapes are difficult to be measured within few ev precision (surface scan) In accelerator environments particles may hit the detector Typical d (Si) 5.5 Å Background reduction capability is mandatory q B < 10 for E > 6 kev (forward & difficult) Limitation in efficiency

8 Mosaic crystal consist in a large number of nearly perfect small crystallites. Mosaicity makes it possible that even for a fixed incidence angle on the crystal surface, an energetic distribution of photons can be reflected Increase of efficiency (focusing) ~ 50 Loss in resolution E/ E=4100 (CuK α ) Pyrolitic Graphite mosaic crystals (d = Å): Highly Oriented Pyroliltic Graphite (HOPG, Dq 1 ) Highly Annealed Pyrolitic Graphite (HAPG, Dq 0.07 ) E/ E=3500 (CuK α ) flexible HAPG has twice higher spectral resolution, while flexible HOPG approximately twice higher reflectivity H. Legall, H. Stiel, I. Grigorieva, A. Antonov et al., FEL Proc. 2006

9 Bending does not influence resolution and intensity Mosaic spread down to 0.05 degree Integral reflectivity ~ 10 2 higher than for other crystals Variable thickness (efficiency) Excellent thermal and radiation stability

10 Von Hamos configuration r r r = 206,7 mm Cu (Ka 1 ) = 8048 ev q B = e vh /e flat ~ rθ/a g path 180 cm radius of curvature angular aperture source size PRO: Focusing Energy range given by the crystal Distance from the source (background.) Perfect (linear) Bragg spectrum CON: Absorption in air Point-like source needed (low geom. eff.)

11 Johann configuration Rowland circle (r) Curved crystal with r = 2r r = 206,7 mm Cu (Ka 1 ) = 8048 ev q B = g path 10 cm PRO: Higher efficiency (geometrical, distance from source ) No point-like source needed Less absorption in air CON: Non linear Bragg spectrum (unless using curved detectors.) Near to source (background) No vertical focusing (partially restore with spherical crystals) Energy range fixed by the target

12 Von Hamos configuration L1 r L2 r = 206,7 mm Line (ev) q L1 (mm) L2 (mm) Cu (Ka1) 8047,78 13,28 900,54 876,33 Cu (Ka2) 8027,83 13,31 898,31 874,04 Dq min = 0.03

13 Von Hamos configuration DS M S M S 2 Z d 2 S 0 = X Source S 1,2 = X Slits S M = X Mythen DS M = background X Mythen d 1 d F = point-like source Z distance d 0,1 = Slits Z distance d 2 = Mythen Z distance S 1 0 Dq bkg d 0 X Dq = signal opening angle Dq bkg = background opening angle X ray source Slits HAPG Signal photons Background photons Dq S 0 d F

14 Starting VOXES: test Setup Designed & LNF Dectris Ltd MYTHEN2 detector: 32 x 8 mm surface 640 channels 50 mm resolution 4-40 kev range room temperature

15 Location for VOXES development semi Von Hamos configuration

16 Increasing dynamic range Von Hamos configuration r semi -Von Hamos config. r q Out Of Focusing configuration: Exact focusing is not important within the detector strip length S(q) = S(0 ) / cosq OOF- semi -Von Hamos config. r S(q) = S(0 ) / cosq q

17 semi-vh VH VH vs semi -VH configuration

18 Best spectrum with Cu Ka lines Cu Ka 1 XZ opening angle : Dq = 0.1 Point-like source (S 0 = 0) q B = (Ka 1 line = 8047,78 ev) Cu Ka 2

19 Beam angular spread dependence Source width = 500 mm

20 Source width dependence Dtgq=0.1

21 Relative (reflection) efficiency estimate

22 Reflection efficiency estimate 10.5 mm 2 < A HAPG < 35 mm 2 Mythen surface Y M spread

23 Refl. efficiency: Beam angular spread dependence Source width = 500 mm

24 Refl. efficiency: Source width dependence Dtgq=0.1

25 Alloy: Cu (58%) + Zn(40%) + Pb(2%) Zn Ka1 Zn Ka2 Cu Kb Dq min = 0.37 Line (ev) Line (A) sinq q L1 (mm) L2 (mm) Cu 8905,29 1,39 0,21 11,98 996,49 974,65 Zn 8638,86 1,44 0,21 12,35 966,68 944,16

26 Quality check PSI pm1 Line Low momentum p,m ( 100 MeV/c)

27 New setup and targets for PSI r = 103,4 mm r = 77,5 mm Line (ev) q ev/mm Range (ev) ev/mm Range (ev) Thanks to Doris SMI pc (4-3) 6428,39 16,71 29,79 953,23 39, ,78 pc (4-3) 6435,76 16,69 29,83 954,42 39, ,38 Possible calibration lines

28 HAPG technology development Medical Applications (Mammography) FAIR (exotic atoms) JPARC (K-atoms) X-ray spectroscopy (DA NE- Luce) E X O S Particle and Nuclear Physics PSI (p-atoms) DA NE (K-atoms) Industry, art and Safety: Elemental Mapping Foundations: Quantum Mechanics LNGS (PEP)

29 Next steps Measurement of the pionic atoms transitions at PSI Fast & triggerable position detectors SDD? Linearly Graded SiPM? (FBK) Parallel measurement of energy & position to improve background reduction & conclusions The VOXES project aims to investigate the possibility to use Bragg spectrometers with diffused sources and in high background environments HAPG crystals are ideal candidates for this porpouse and can be used in different geometrical configurations (Von Hamos, Johann, ecc ) Promising and improvable results have been already obtained, measuring Cu Ka lines with 10 ev resolution (FWHM) and 0.01 ev precision Such a spectrometer may have a strong impact in several fields like nuclear and fundamental physics, medical, elemental mapping, astrophysics Thank you for the attention

30 Spare

31 (6 5) kaonic nitrogen transition: 7560± 32 ev, (7 6) kaonic nitrogen transition: 4589± 37 ev. Exploratory test with DA NE Not yet performed Calculated efficiency ~ 400 times less DAFNE Un-efficient background reduction (statistics loss)

32 Angular spread and attenuation q S(q) = S(0 ) / cosq

33 Angular spread and attenuation

34 Angular spread and attenuation q S(q=78 ) = S(0 ) / cos(78 )

35 Angular spread and attenuation Protective layer 12 mm Mylar

36 Angular spread and attenuation q Incindent (VH) angle q mm thickness (optimized for 6-8 kev)

37

38

39

40

41 Direct measurement (t daq = 30 m)

42 Bragg measurement (t daq = variable) Dtgq= mm HAPG 40 mm HAPG 20 mm HAPG

43 Bragg measurement (t daq = variable) Dtgq= mm HAPG 40 mm HAPG 20 mm HAPG

44 Bragg measurement (t daq = variable) Dtgq= mm HAPG 40 mm HAPG 20 mm HAPG

45 Efficiency evaluation Dtgq= mm HAPG 40 mm HAPG 20 mm HAPG 10.5 mm 2 < A HAPG < 35 mm 2

46 Efficiency evaluation Dtgq= mm HAPG 40 mm HAPG 20 mm HAPG

47 Efficiency evaluation Dtgq= mm HAPG 40 mm HAPG 20 mm HAPG

Understanding X-rays: The electromagnetic spectrum

Understanding X-rays: The electromagnetic spectrum Understanding X-rays: The electromagnetic spectrum 1 ULa 13.61 kev 0.09 nm BeKa 0.11 kev 11.27 nm E = hn = h c l where, E : energy, h : Planck's constant, n : frequency c : speed of light in vacuum, l

More information

Understanding X-rays: The electromagnetic spectrum

Understanding X-rays: The electromagnetic spectrum Understanding X-rays: The electromagnetic spectrum 1 ULa 13.61 kev 0.09 nm BeKa 0.11 kev 11.27 nm E = hn = h c l where, E : energy, h : Planck's constant, n : frequency c : speed of light in vacuum, l

More information

X-Ray Photoelectron Spectroscopy (XPS)

X-Ray Photoelectron Spectroscopy (XPS) X-Ray Photoelectron Spectroscopy (XPS) Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Fulmer 261A Electron Spectroscopy for Chemical Analysis (ESCA) The basic principle of the photoelectric effect

More information

a K p = 1 2 (a 0 + a 1 ) (2) A similar relation applies to the case of kaonic deuterium and to the corresponding scattering length a K d:

a K p = 1 2 (a 0 + a 1 ) (2) A similar relation applies to the case of kaonic deuterium and to the corresponding scattering length a K d: SIDDHARTA M. Bazzi (Ass. Ric.), M. Bragadireanu (Bors. UE), C. Curceanu Petrascu (Resp. Naz.), A. D Uffizi (Bors.), C. Guaraldo (Art. 2222), M. Iliescu (Ass.), P. Levi Sandri, V. Lucherini, F. Lucibello

More information

Cauchois Johansson x-ray spectrograph for kev energy range

Cauchois Johansson x-ray spectrograph for kev energy range REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 72, NUMBER 2 FEBRUARY 2001 Cauchois Johansson x-ray spectrograph for 1.5 400 kev energy range E. O. Baronova a) and M. M. Stepanenko RRC Kurchatov Institute, 123182,

More information

High-Resolution. Transmission. Electron Microscopy

High-Resolution. Transmission. Electron Microscopy Part 4 High-Resolution Transmission Electron Microscopy 186 Significance high-resolution transmission electron microscopy (HRTEM): resolve object details smaller than 1nm (10 9 m) image the interior of

More information

X-Ray Photoelectron Spectroscopy (XPS)

X-Ray Photoelectron Spectroscopy (XPS) X-Ray Photoelectron Spectroscopy (XPS) Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Electron Spectroscopy for Chemical Analysis (ESCA) The basic principle of the photoelectric effect was enunciated

More information

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis MT-0.6026 Electron microscopy Scanning electron microscopy and electron probe microanalysis Eero Haimi Research Manager Outline 1. Introduction Basics of scanning electron microscopy (SEM) and electron

More information

Kaonic nitrogen and hydrogen from DEAR

Kaonic nitrogen and hydrogen from DEAR Kaonic nitrogen and hydrogen from DEAR C. Curceanu (Petrascu) LNF INFN, Via. E. Fermi 40, 00044 Frascati (Roma), Italy On behalf on the DEAR Collaboration 1. DEAR scientific program DEAR (DAΦNE Exotic

More information

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 19 Chapter 12 There are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry X-ray Techniques include:

More information

Diffractometer. Geometry Optics Detectors

Diffractometer. Geometry Optics Detectors Diffractometer Geometry Optics Detectors Diffractometers Debye Scherrer Camera V.K. Pecharsky and P.Y. Zavalij Fundamentals of Powder Diffraction and Structural Characterization of Materials. Diffractometers

More information

ABSOLUTE AIR-KERMA MEASUREMENT IN A SYNCHROTRON LIGHT BEAM BY IONIZATION FREE-AIR CHAMBER

ABSOLUTE AIR-KERMA MEASUREMENT IN A SYNCHROTRON LIGHT BEAM BY IONIZATION FREE-AIR CHAMBER ABSOLUTE AIR-KERMA MEASUREMENT IN A SYNCHROTRON LIGHT BEAM BY IONIZATION FREE-AIR CHAMBER M. Bovi (1), R.F. Laitano (1), M. Pimpinella (1), M. P. Toni (1), K. Casarin(2), E. Quai(2), G. Tromba(2), A. Vascotto(2),

More information

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples)

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples) Detecting high energy photons Interactions of photons with matter Properties of detectors (with examples) Interactions of high energy photons with matter Cross section/attenution length/optical depth Photoelectric

More information

Standardless Analysis by XRF but I don t know what s in my sample!! Dr Colin Slater Applications Scientist, XRF Bruker UK Limited

Standardless Analysis by XRF but I don t know what s in my sample!! Dr Colin Slater Applications Scientist, XRF Bruker UK Limited by XRF but I don t know what s in my sample!! Dr Colin Slater Applications Scientist, XRF Bruker UK Limited XRF Standardless Analysis In this talk What is meant by standardless analysis? Fundamental Parameters

More information

Introduction to Modern Physics and to the LNF-INFN Activities

Introduction to Modern Physics and to the LNF-INFN Activities Introduction to Modern Physics and to the LNF-INFN Activities INSPYRE 2016 INternational School on modern PhYsics and Research Quantum Legacy 15-19 February 2016 Catalina Curceanu LNF-INFN Discovery

More information

Announcements. Lecture 8 Chapter. 3 Wave & Particles I. EM- Waves behaving like Particles. The Compton effect (Arthur Compton 1927) Hypothesis:

Announcements. Lecture 8 Chapter. 3 Wave & Particles I. EM- Waves behaving like Particles. The Compton effect (Arthur Compton 1927) Hypothesis: Announcements HW3: Ch.3-13, 17, 23, 25, 28, 31, 37, 38, 41, 44 HW3 due: 2/16 ** Lab manual is posted on the course web *** Course Web Page *** http://highenergy.phys.ttu.edu/~slee/2402/ Lecture Notes,

More information

Calibration of the IXPE Instrument

Calibration of the IXPE Instrument Calibration of the IXPE Instrument Fabio Muleri (INAF-IAPS) On behalf of the IXPE Italian Team 13th IACHEC Meeting 2018 Avigliano Umbro (Italy), 9-12 April 2018 IXPE MISSION IXPE will (re-)open the polarimetric

More information

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE Copyright(C)JCPDS-International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Vol.46 74 ISSN 1097-0002 LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE K. Chouffani 1, D. Wells

More information

Exercise 1 Atomic line spectra 1/9

Exercise 1 Atomic line spectra 1/9 Exercise 1 Atomic line spectra 1/9 The energy-level scheme for the hypothetical one-electron element Juliettium is shown in the figure on the left. The potential energy is taken to be zero for an electron

More information

High-Resolution Neutron Diffraction Monochromators for Neutron Diffractometry

High-Resolution Neutron Diffraction Monochromators for Neutron Diffractometry High-Resolution Neutron Diffraction Monochromators for Neutron Diffractometry Pavol Mikula, Nuclear Physics Institute ASCR 25 68 Řež near Prague, Czech Republic NMI3-Meeting, Barcelona, 21 Motivation Backscattering

More information

Semiconductor X-Ray Detectors. Tobias Eggert Ketek GmbH

Semiconductor X-Ray Detectors. Tobias Eggert Ketek GmbH Semiconductor X-Ray Detectors Tobias Eggert Ketek GmbH Semiconductor X-Ray Detectors Part A Principles of Semiconductor Detectors 1. Basic Principles 2. Typical Applications 3. Planar Technology 4. Read-out

More information

BETA-RAY SPECTROMETER

BETA-RAY SPECTROMETER 14 Sep 07 β-ray.1 BETA-RAY SPECTROMETER In this experiment, a 180, constant-radius magnetic spectrometer consisting of an electromagnet with a Geiger-Muller detector, will be used to detect and analyze

More information

SLS Symposium on X-Ray Instrumentation

SLS Symposium on X-Ray Instrumentation SLS Symposium on X-Ray Instrumentation Tuesday, December 7, 2010 10:00 to 12:15, WBGB/019 10:00 The optics layout of the PEARL beamline P. Oberta, U. Flechsig and M. Muntwiler 10:30 Instrumentation for

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

Which of the following can be used to calculate the resistive force acting on the brick? D (Total for Question = 1 mark)

Which of the following can be used to calculate the resistive force acting on the brick? D (Total for Question = 1 mark) 1 A brick of mass 5.0 kg falls through water with an acceleration of 0.90 m s 2. Which of the following can be used to calculate the resistive force acting on the brick? A 5.0 (0.90 9.81) B 5.0 (0.90 +

More information

Undulator Commissioning Spectrometer for the European XFEL

Undulator Commissioning Spectrometer for the European XFEL Undulator Commissioning Spectrometer for the European XFEL FEL Beam Dynamics Group meeting DESY, Hamburg, Nov. 9 th 010 Wolfgang Freund, WP74 European XFEL wolfgang.freund@xfel.eu Contents Undulator commissioning

More information

Chapter 4: The Wave Nature of Matter

Chapter 4: The Wave Nature of Matter Chapter 4: The Wave Nature of Matter q We have seen in Chap. 3 that EM radiation displays both wave properties (classical description) and particle properties (quantum description) q Matter is described

More information

Investigations on warm dense plasma with PHELIX facility

Investigations on warm dense plasma with PHELIX facility 2 nd EMMI Workshop on Plasma Physics with Intense Laser and Heavy Ion Beams, May 14-15, Moscow Investigations on warm dense plasma with PHELIX facility S.A. Pikuz Jr., I.Yu. Skobelev, A.Ya. Faenov, T.A.

More information

Status of the TRACE array

Status of the TRACE array Status of the TRACE array D. Mengoni University of the West of Scotland, Paisley - U.K. INFN - Sezione di Padova, Padova - Italy SPES workshop, LNL - Italy Nov 15 th 17 th, 2010 Outline 1 Introduction

More information

X-ray Absorption Spectroscopy

X-ray Absorption Spectroscopy X-ray Absorption Spectroscopy Nikki Truss November 26, 2012 Abstract In these experiments, some aspects of x-ray absorption spectroscopy were investigated. The x-ray spectrum of molybdenum was recorded

More information

Detection of X-Rays. Solid state detectors Proportional counters Microcalorimeters Detector characteristics

Detection of X-Rays. Solid state detectors Proportional counters Microcalorimeters Detector characteristics Detection of X-Rays Solid state detectors Proportional counters Microcalorimeters Detector characteristics Solid State X-ray Detectors X-ray interacts in material to produce photoelectrons which are collected

More information

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Interaction of particles with matter - 2 Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Energy loss by ionization (by heavy particles) Interaction of electrons with

More information

Two-electron photo-excited atomic processes near inner-shell threshold studied by RIXS spectroscopy

Two-electron photo-excited atomic processes near inner-shell threshold studied by RIXS spectroscopy Two-electron photo-excited atomic processes near inner-shell threshold studied by RIXS spectroscopy Matjaž Kavčič J. Stefan Institute, Ljubljana, Slovenia K. Bučar F. Gasser M. Kavčič A. Mihelič M. Štuhec

More information

Astronomy 203 practice final examination

Astronomy 203 practice final examination Astronomy 203 practice final examination Fall 1999 If this were a real, in-class examination, you would be reminded here of the exam rules, which are as follows: You may consult only one page of formulas

More information

12 Sept, 2013 公募研究交流会 東北大理学部 TES型マイクロカロリメータを用いた K中間子原子X線精密分光 公募研究 (A02班) K中間子原子X線分光に向けた マイクロカロリメータのビーム環境下における性能評価 理研 岡田信二

12 Sept, 2013 公募研究交流会 東北大理学部 TES型マイクロカロリメータを用いた K中間子原子X線精密分光 公募研究 (A02班) K中間子原子X線分光に向けた マイクロカロリメータのビーム環境下における性能評価 理研 岡田信二 12 Sept, 2013 TES K X (A02 ) K X Collaboration TES X ASTRO-H... Strangeness nuclear physics (K-N ) Collaboration TES X ASTRO-H... Strangeness nuclear physics (K-N )... NIST ( ) Collaboration TES X ASTRO-H...

More information

Revision Guide. Chapter 7 Quantum Behaviour

Revision Guide. Chapter 7 Quantum Behaviour Revision Guide Chapter 7 Quantum Behaviour Contents CONTENTS... 2 REVISION CHECKLIST... 3 REVISION NOTES... 4 QUANTUM BEHAVIOUR... 4 Random arrival of photons... 4 Photoelectric effect... 5 PHASE AN PHASORS...

More information

Inelastic soft x-ray scattering, fluorescence and elastic radiation

Inelastic soft x-ray scattering, fluorescence and elastic radiation Inelastic soft x-ray scattering, fluorescence and elastic radiation What happens to the emission (or fluorescence) when the energy of the exciting photons changes? The emission spectra (can) change. One

More information

THE CERN NA62 experiment [1] aims to measure the

THE CERN NA62 experiment [1] aims to measure the 1 Studies of the Effects of Oxygen and CO 2 Contamination of the Neon Gas Radiator on the Performance of the NA62 RICH Detector Evelina Gersabeck on behalf of the NA62 RICH Working Group arxiv:1111.3332v1

More information

Semiconductor Detectors

Semiconductor Detectors Semiconductor Detectors Summary of Last Lecture Band structure in Solids: Conduction band Conduction band thermal conductivity: E g > 5 ev Valence band Insulator Charge carrier in conductor: e - Charge

More information

INTRODUCTION Strained Silicon Monochromator Magnesium Housing Windows for Monochromator Shutter and Collimator Fission Detector HOPG Monochromator

INTRODUCTION Strained Silicon Monochromator Magnesium Housing Windows for Monochromator Shutter and Collimator Fission Detector HOPG Monochromator Design for a Four-Blade Neutron Interferometer INTRODUCTION Strained Silicon Monochromator The neutron beam used for this interferometer is separated from the NIST reactor's main beam using a strained

More information

Impact of high photon densities on AGIPD requirements

Impact of high photon densities on AGIPD requirements Impact of high photon densities on AGIPD requirements Julian Becker University of Hamburg Detector Laboratory new data 1. Heating estimations 2. Confined breakdown 3. Range switching in adjacent pixels

More information

Compton Camera. Compton Camera

Compton Camera. Compton Camera Diagnostic Imaging II Student Project Compton Camera Ting-Tung Chang Introduction The Compton camera operates by exploiting the Compton Effect. It uses the kinematics of Compton scattering to contract

More information

Optical Systems Program of Studies Version 1.0 April 2012

Optical Systems Program of Studies Version 1.0 April 2012 Optical Systems Program of Studies Version 1.0 April 2012 Standard1 Essential Understand Optical experimental methodology, data analysis, interpretation, and presentation strategies Essential Understandings:

More information

Juliane Rönsch Hamburg University. Investigations of the longitudinal phase space at a photo injector for the X-FEL

Juliane Rönsch Hamburg University. Investigations of the longitudinal phase space at a photo injector for the X-FEL Juliane Rönsch Hamburg University Investigations of the longitudinal phase space at a photo injector for the X-FEL Juliane Rönsch 1/15/28 1 Contents Introduction PITZ Longitudinal phase space of a photoinjector

More information

Accelerator Physics, BAU, First Semester, (Saed Dababneh).

Accelerator Physics, BAU, First Semester, (Saed Dababneh). Accelerator Physics 501503746 Course web http://nuclear.bau.edu.jo/accelerators/ edu or http://nuclear.dababneh.com/accelerators/ com/accelerators/ 1 Grading Mid-term Exam 25% Projects 25% Final Exam 50%

More information

Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases

Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases Paolo Privitera 5th Fluorescence Workshop 7 th Air Fluorescence El Escorial Workshop - Madrid, Spain September 22-24,

More information

Application of the GD-Profiler 2 to the PV domain

Application of the GD-Profiler 2 to the PV domain Application of the GD-Profiler 2 to the PV domain GD Profiler 2 RF GDOES permits to follow the distribution of the elements as function of depth. This is an ultra fast characterisation technique capable

More information

PoS(HCP2009)042. Status of the ALICE Experiment. Werner Riegler. For the ALICE Collaboration. CERN

PoS(HCP2009)042. Status of the ALICE Experiment. Werner Riegler. For the ALICE Collaboration. CERN Status of the ALICE Experiment CERN E-mail: Werner.Riegler@cern.ch For the ALICE Collaboration ALICE is a general-purpose heavy-ion experiment designed to study the physics of strongly interacting matter

More information

X-ray diffraction geometry

X-ray diffraction geometry X-ray diffraction geometry Setting controls sample orientation in the diffraction plane. most important for single-crystal diffraction For any poly- (or nano-) crystalline specimen, we usually set: 1 X-ray

More information

Data collection Strategy. Apurva Mehta

Data collection Strategy. Apurva Mehta Data collection Strategy Apurva Mehta Outline Before.. Resolution, Aberrations and detectors During.. What is the scientific question? How will probing the structure help? Is there an alternative method?

More information

Methoden moderner Röntgenphysik I + II: Struktur und Dynamik kondensierter Materie

Methoden moderner Röntgenphysik I + II: Struktur und Dynamik kondensierter Materie I + II: Struktur und Dynamik kondensierter Materie Vorlesung zum Haupt/Masterstudiengang Physik SS 2009 G. Grübel, M. Martins, E. Weckert, W. Wurth 1 Trends in Spectroscopy 23.4. 28.4. 30.4. 5.4. Wolfgang

More information

Atomic and nuclear physics

Atomic and nuclear physics Atomic and nuclear physics X-ray physics Attenuation of x-rays LEYBOLD Physics Leaflets P6.3.2.2 Investigating the wavelength dependency of the coefficient of attenuation Objects of the experiment To measure

More information

CASSY Lab. Manual ( )

CASSY Lab. Manual ( ) CASSY Lab Manual (524 202) Moseley's law (K-line x-ray fluorescence) CASSY Lab 271 can also be carried out with Pocket-CASSY Load example Safety notes The X-ray apparatus fulfils all regulations on the

More information

ROSAT Roentgen Satellite. Chandra X-ray Observatory

ROSAT Roentgen Satellite. Chandra X-ray Observatory ROSAT Roentgen Satellite Joint facility: US, Germany, UK Operated 1990 1999 All-sky survey + pointed observations Chandra X-ray Observatory US Mission Operating 1999 present Pointed observations How do

More information

EMISSION SPECTROSCOPY

EMISSION SPECTROSCOPY IFM The Department of Physics, Chemistry and Biology LAB 57 EMISSION SPECTROSCOPY NAME PERSONAL NUMBER DATE APPROVED I. OBJECTIVES - Understand the principle of atomic emission spectra. - Know how to acquire

More information

Swanning about in Reciprocal Space. Kenneth, what is the wavevector?

Swanning about in Reciprocal Space. Kenneth, what is the wavevector? Swanning about in Reciprocal Space or, Kenneth, what is the wavevector? Stanford Synchrotron Radiation Laboratory Principles The relationship between the reciprocal lattice vector and the wave vector is

More information

The Instrumental Function of the X-ray Imaging Crystal Spectrometer on Alcator C-Mod

The Instrumental Function of the X-ray Imaging Crystal Spectrometer on Alcator C-Mod The Instrumental Function of the X-ray Imaging Crystal Spectrometer on Alcator C-Mod M. Bitter, K. W. Hill, B. Stratton, S. Scott Princeton Plasma Physics Laboratory, Princeton, NJ, USA A. Ince-Cushman,

More information

CHAPTER I Review of Modern Physics. A. Review of Important Experiments

CHAPTER I Review of Modern Physics. A. Review of Important Experiments CHAPTER I Review of Modern Physics A. Review of Important Experiments Quantum Mechanics is analogous to Newtonian Mechanics in that it is basically a system of rules which describe what happens at the

More information

A new scintillator detector for nuclear physics experiments: the CLYC scintillator

A new scintillator detector for nuclear physics experiments: the CLYC scintillator A new scintillator detector for nuclear physics experiments: the CLYC scintillator Franco Camera 1 and Agnese Giaz 2 1 Università di Milano and INFN sezione di Milano 2 INFN sezione di Milano (current

More information

J-PARC E07 Ξ - Junya Yoshida (Advanced Science Research Center, JAEA) On behalf of J-PARC E07 Collaboration K + K - X -

J-PARC E07 Ξ - Junya Yoshida (Advanced Science Research Center, JAEA) On behalf of J-PARC E07 Collaboration K + K - X - J-PARC E07 Systematic study of double strangeness nuclei with Hybrid emulsion method LL hypernucleus K - 1.8GeV/c Target SSD X - K + nλ p p Λ n X hypernucleus n p p Ξ - n Ge detector X-ray X-ray from X

More information

X-ray spectroscopy: Experimental studies of Moseley s law (K-line x-ray fluorescence) and x-ray material s composition determination

X-ray spectroscopy: Experimental studies of Moseley s law (K-line x-ray fluorescence) and x-ray material s composition determination Uppsala University Department of Physics and Astronomy Laboratory exercise X-ray spectroscopy: Experimental studies of Moseley s law (K-line x-ray fluorescence) and x-ray material s composition determination

More information

Quantitative Assessment of Scattering Contributions in MeV-Industrial X-ray Computed Tomography

Quantitative Assessment of Scattering Contributions in MeV-Industrial X-ray Computed Tomography 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic More Info at Open Access Database www.ndt.net/?id=16530 Quantitative Assessment of Scattering

More information

Development of a cryogenic x-ray detector and an application for kaon mass measurement

Development of a cryogenic x-ray detector and an application for kaon mass measurement Development of a cryogenic x-ray detector and an application for kaon mass measurement 1 Stefan Meyer Institute for Subatomic Physics of The Austrian Academy of Sciences Boltzmanngasse 3, 1090 Vienna,

More information

Reduction procedure of long-slit optical spectra. Astrophysical observatory of Asiago

Reduction procedure of long-slit optical spectra. Astrophysical observatory of Asiago Reduction procedure of long-slit optical spectra Astrophysical observatory of Asiago Spectrograph: slit + dispersion grating + detector (CCD) It produces two-dimension data: Spatial direction (x) along

More information

The University of Hong Kong Department of Physics

The University of Hong Kong Department of Physics The University of Hong Kong Department of Physics Physics Laboratory PHYS3551 Introductory Solid State Physics Experiment No. 3551-2: Electron and Optical Diffraction Name: University No: This experiment

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN 316 Effective atomic number of composite materials by Compton scattering - nondestructive evaluation method Kiran K U a, Ravindraswami K b, Eshwarappa K M a and Somashekarappa H M c* a Government Science

More information

(a) Mono-absorber. (b) 4-segmented absorbers. (c) 64-segmented absorbers

(a) Mono-absorber. (b) 4-segmented absorbers. (c) 64-segmented absorbers Proceedings of the Ninth EGS4 Users' Meeting in Japan, KEK Proceedings 2001-22, p.37-42 EVALUATION OF ABSORPTION EFFICIENCY FOR NIS TUNNEL JUNCTION DETECTOR WITH SEGMENTED ABSORBERS R. Nouchi, I. Yamada,

More information

Characterization of low energy ionization signals from Compton scattering in a CCD Dark Matter detector

Characterization of low energy ionization signals from Compton scattering in a CCD Dark Matter detector Characterization of low energy ionization signals from Compton scattering in a CCD Dark Matter detector Karthik Ramanathan University of Chicago arxiv:1706.06053 (Accepted PRD) TeVPA 2017/08/07 1 Motivation

More information

Compressor and Chicane Radiation Studies at the ATF. Gerard Andonian, UCLA High Power Workshop January 14-16, 2009 UCLA

Compressor and Chicane Radiation Studies at the ATF. Gerard Andonian, UCLA High Power Workshop January 14-16, 2009 UCLA Compressor and Chicane Radiation Studies at the ATF Gerard Andonian, UCLA High Power Workshop January 14-16, 2009 UCLA Collaboration UCLA PBPL G. Andonian, A. Cook, M. Dunning, E. Hemsing, A. Murokh, S.

More information

Sensitivity of CNGS muon

Sensitivity of CNGS muon Sensitivity of CNGS muon detectors to beam-line misalignments q OUTLINE: Requirements for CNGS muon detectors Beam Loss Monitors as muon detectors Effects of beam-line alignment errors Sensitivity reach

More information

AMADEUS: Status of hardware and analysis of K - He data

AMADEUS: Status of hardware and analysis of K - He data AMADEUS: Status of hardware and analysis of K - He data 37th LNF Scientific Committee December 1, 2008 Summary AMADEUS: status of hardware Introduction Setup Target Trigger System: SiPM+ scintilliating

More information

arxiv: v2 [physics.ins-det] 7 May 2013

arxiv: v2 [physics.ins-det] 7 May 2013 Preprint typeset in JINST style - HYPER VERSION Characterization of a scintillating fibers read by MPPC detectors trigger prototype for the AMADEUS experiment arxiv:1301.7268v2 [physics.ins-det] 7 May

More information

Study of semiconductors with positrons. Outlook:

Study of semiconductors with positrons. Outlook: Study of semiconductors with positrons V. Bondarenko, R. Krause-Rehberg Martin-Luther-University Halle-Wittenberg, Halle, Germany Introduction Positron trapping into defects Methods of positron annihilation

More information

Channeling Experiments with Electrons at the Mainz Microtron MAMI

Channeling Experiments with Electrons at the Mainz Microtron MAMI Channeling Experiments with Electrons at the Mainz Microtron MAMI 1. Motivation 2. Channeling Experiments with Positrons @BTF Frascati 3. Channeling Experiments with Electrons @MAMI Mainz 4. Measurements

More information

Detector R&D at KIPAC. Hiro Tajima Kavli InStitute of Particle Astrophysics and Cosmology

Detector R&D at KIPAC. Hiro Tajima Kavli InStitute of Particle Astrophysics and Cosmology Detector R&D at KIPAC Hiro Tajima Kavli InStitute of Particle Astrophysics and Cosmology Detector R&D Overview Si detector ASIC Integration GLAST GeV Gamma-ray Observatory ASIC DAQ Next generation X-ray

More information

Energy Spectroscopy. Ex.: Fe/MgO

Energy Spectroscopy. Ex.: Fe/MgO Energy Spectroscopy Spectroscopy gives access to the electronic properties (and thus chemistry, magnetism,..) of the investigated system with thickness dependence Ex.: Fe/MgO Fe O Mg Control of the oxidation

More information

Searches for the Violation of Pauli Exclusion Principle at LNGS

Searches for the Violation of Pauli Exclusion Principle at LNGS Searches for the Violation of Pauli Exclusion Principle at LNGS Hexi Shi Laboratori di Nazionali di Frascati, INFN On behalf of the VIP-2 collaboration 09th, Sep., 2015 TAUP2015, Torino Overview Experimental

More information

X-ray polarimetry and new prospects in high-energy astrophysics

X-ray polarimetry and new prospects in high-energy astrophysics X-ray polarimetry and new prospects in high-energy astrophysics Carmelo Sgrò INFN Pisa carmelo.sgro@pi.infn.it Frascati, March 31, 2016 A new exploration window: X-Ray polarimetry Spectroscopy, imaging

More information

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source C. Blome, K. Sokolowski-Tinten *, C. Dietrich, A. Tarasevitch, D. von der Linde Inst. for Laser- and

More information

PoS(ECPD2015)042. Hardened x-ray crystal spectrometer. Speaker. C. Reverdin 1, L. Lecherbourg, V. Dervieux, D. Gontier, B. Loupias. S.

PoS(ECPD2015)042. Hardened x-ray crystal spectrometer. Speaker. C. Reverdin 1, L. Lecherbourg, V. Dervieux, D. Gontier, B. Loupias. S. C. Reverdin 1, L. Lecherbourg, V. Dervieux, D. Gontier, B. Loupias CEA, DAM, DIF Bruyéres le Chatel F-91297, France E-mail: charles.reverdin@cea.fr S. Baton LULI, Ecole polytechnique Palaiseau, F-91128,

More information

X-ray Spectroscopy. Danny Bennett and Maeve Madigan. October 12, 2015

X-ray Spectroscopy. Danny Bennett and Maeve Madigan. October 12, 2015 X-ray Spectroscopy Danny Bennett and Maeve Madigan October 12, 2015 Abstract Various X-ray spectra were obtained, and their properties were investigated. The characteristic peaks were identified for a

More information

Feasibility Studies for the EXL Project at FAIR *

Feasibility Studies for the EXL Project at FAIR * * a,b,, S. Bagchi c, S. Diebold d, C. Dimopoulou a, P. Egelhof a, V. Eremin e, S. Ilieva a, N. Kalantar-Nayestanaki c, O. Kiselev a,f, T. Kröll f, Y.A. Litvinov a,g, M. Mutterer a, M.A. Najafi c, N. Petridis

More information

Bohr s Correspondence Principle

Bohr s Correspondence Principle Bohr s Correspondence Principle In limit that n, quantum mechanics must agree with classical physics E photon = 13.6 ev 1 n f n 1 i = hf photon In this limit, n i n f, and then f photon electron s frequency

More information

Impact of high photon densities on AGIPD requirements

Impact of high photon densities on AGIPD requirements Impact of high photon densities on AGIPD requirements Julian Becker University of Hamburg Detector Laboratory 1. Si-type influence on charge collection time 2. Measurements on charge collection time 3.

More information

Atomic and nuclear physics

Atomic and nuclear physics Atomic and nuclear physics X-ray physics Physics of the atomic shell LEYBOLD Physics Leaflets Moseley s law and determination of the Rydberg constant P6.3.3.6 Objects of the experiment Measuring the K-absorption

More information

Determining Protein Structure BIBC 100

Determining Protein Structure BIBC 100 Determining Protein Structure BIBC 100 Determining Protein Structure X-Ray Diffraction Interactions of x-rays with electrons in molecules in a crystal NMR- Nuclear Magnetic Resonance Interactions of magnetic

More information

Status Report: Charge Cloud Explosion

Status Report: Charge Cloud Explosion Status Report: Charge Cloud Explosion J. Becker, D. Eckstein, R. Klanner, G. Steinbrück University of Hamburg Detector laboratory 1. Introduction and Motivation. Set-up available for measurement 3. Measurements

More information

Efficiency and Attenuation in CdTe Detectors

Efficiency and Attenuation in CdTe Detectors Efficiency and Attenuation in CdTe Detectors Amptek Inc. Bob Redus, May 5, 00 Amptek s XR-00T-CdTe is a high performance x-ray and gamma ray detector system. Like Amptek s other XR00 products, a detector

More information

Waves Part III Electromagnetic waves

Waves Part III Electromagnetic waves Waves Part III Electromagnetic waves Electromagnetic (light) waves Transverse waves Transport energy (and momentum) Can travel through vacuum (!) and certain solids, liquids and gases Do not transport

More information

Application of a Laser-Wakefield Driven Monochromatic Photon Source to Nuclear Resonance Fluorescence

Application of a Laser-Wakefield Driven Monochromatic Photon Source to Nuclear Resonance Fluorescence 2009 IEEE Nuclear Science Symposium Conference Record N04-4 Application of a Laser-Wakefield Driven Monochromatic Photon Source to Nuclear Resonance Fluorescence W.J. Walsh, S.D. Clarke, S.A. Pozzi, IEEE

More information

X-ray Fluorescence Imaging Following Synchrotron Beam Excitation

X-ray Fluorescence Imaging Following Synchrotron Beam Excitation Conference on Applied Digital Imaging Techniques for Understanding the Palimpsest X-ray Fluorescence Imaging Following Synchrotron Beam Excitation Uwe Bergmann Stanford Synchrotron Radiation Laboratory

More information

Chapter 37 Early Quantum Theory and Models of the Atom

Chapter 37 Early Quantum Theory and Models of the Atom Chapter 37 Early Quantum Theory and Models of the Atom Units of Chapter 37 37-7 Wave Nature of Matter 37-8 Electron Microscopes 37-9 Early Models of the Atom 37-10 Atomic Spectra: Key to the Structure

More information

Measurement of the transverse diffusion coefficient of charge in liquid xenon

Measurement of the transverse diffusion coefficient of charge in liquid xenon Measurement of the transverse diffusion coefficient of charge in liquid xenon W.-T. Chen a, H. Carduner b, J.-P. Cussonneau c, J. Donnard d, S. Duval e, A.-F. Mohamad-Hadi f, J. Lamblin g, O. Lemaire h,

More information

Development of a Dosimetric System using Spectrometric Technique suitable for Operational Radiation Dose Measurements and Evaluation

Development of a Dosimetric System using Spectrometric Technique suitable for Operational Radiation Dose Measurements and Evaluation Development of a Dosimetric System using Spectrometric Technique suitable for Operational Radiation Dose Measurements and Evaluation S. Moriuchi, M.Tsutsumi2 and K. Saito2 Nuclear safety technology Center,

More information

X-ray absorption. 4. Prove that / = f(z 3.12 ) applies.

X-ray absorption. 4. Prove that / = f(z 3.12 ) applies. Related topics Bremsstrahlung, characteristic radiation, Bragg scattering, law of absorption, mass absorption coefficient, absorption edge, half-value thickness, photoelectric effect, Compton scattering,

More information

APEX CARE INSTITUTE FOR PG - TRB, SLET AND NET IN PHYSICS

APEX CARE INSTITUTE FOR PG - TRB, SLET AND NET IN PHYSICS Page 1 1. Within the nucleus, the charge distribution A) Is constant, but falls to zero sharply at the nuclear radius B) Increases linearly from the centre, but falls off exponentially at the surface C)

More information

Basics of Synchrotron Radiation Beamlines and Detectors. Basics of synchrotron radiation X-ray optics as they apply to EXAFS experiments Detectors

Basics of Synchrotron Radiation Beamlines and Detectors. Basics of synchrotron radiation X-ray optics as they apply to EXAFS experiments Detectors Basics of Synchrotron Radiation Beamlines and Detectors Basics of synchrotron radiation X-ray optics as they apply to EXAFS experiments Detectors Important properties of Synchrotron Radiation Tunability

More information

Ground Calibration of X-ray CCD Detectors with Charge Injection for the X-ray Imaging Spectrometer on Astro-E2

Ground Calibration of X-ray CCD Detectors with Charge Injection for the X-ray Imaging Spectrometer on Astro-E2 Ground Calibration of X-ray CCD Detectors with Charge Injection for the X-ray Imaging Spectrometer on Astro-E2 Beverly LaMarr a, Mark Bautz a, Steve Kissel a, Gregory Prigozhin a Kiyoshi Hayashida b Takeshi

More information

NIST designed cryostat

NIST designed cryostat NIST designed cryostat Pulse tube (60K, 3K), 16 hours 300K 3K Adiabatic Demagnetization Refrigerator (ADR) double-stage salt pills: GGG 1K, FAA 50mK Snout: 240-pixel TES (Mo-Cu bilayer + 4μ Bi absorber)

More information

High resolution spectroscopy of hypernuclei with γ-ray detectors

High resolution spectroscopy of hypernuclei with γ-ray detectors High resolution spectroscopy of hypernuclei with γ-ray detectors multi- hypernuclei H-particle Alessandro Feliciello I.N.F.N. - Sezione di Torino Contents 2 Discovery potential of the strangeness nuclear

More information