Standardless Analysis by XRF but I don t know what s in my sample!! Dr Colin Slater Applications Scientist, XRF Bruker UK Limited

Size: px
Start display at page:

Download "Standardless Analysis by XRF but I don t know what s in my sample!! Dr Colin Slater Applications Scientist, XRF Bruker UK Limited"

Transcription

1 by XRF but I don t know what s in my sample!! Dr Colin Slater Applications Scientist, XRF Bruker UK Limited

2 XRF Standardless Analysis In this talk What is meant by standardless analysis? Fundamental Parameters How can I improve my results from FP? Something a bit different analysis of multi-layered samples

3 XRF in every day life Can you just XRF this for me?? Routine analysis of samples using a matrix matched calibration Increasing demand for what s in my sample? type analysis. - Unknown materials from an industrial process - Coatings or scrapings from pipes - Filtrates from engines - etc No standards available what do you do? STANDARDLESS ANALYSIS

4 XRF is a comparative technique As a primary X-Ray photon enters a sample, it is absorbed. When a fluorescence photon is emitted, it too is affected by absorbance as it escapes the sample matrix. Other fluorescence photons being produced may have either an absorbing or enhancing effect. These effects are known collectively as MATRIX EFFECTS

5 Fundamental Parameters A theoretical approach to quantitative X-Ray spectroscopy The basis of all quantitative X-Ray spectroscopy methods is an assertion by von Hamos in the 1940s: the intensity of fluorescence radiation from an element in a material should be proportional to the concentration of that element in that material. R i = C i K i R i is the ratio of the measured intensity of element i in a sample, compared to the intensity of a sample of pure element i. C i is the concentration of element i in the sample K i a constant is a function of the sample composition, the mass absorbance coefficients of the sample constituents and the measurement geometry.

6 Fundamental Parameters A theoretical approach to quantitative X-Ray spectroscopy Sherman (1950s) derived an equation to better understand absorbance / enhancement effects in multi-element samples. After re-arrangement to account for polychromatic incident radiation, and the inclusion of alpha coefficients, this was later adopted as the fundamental parameters method. Using this method, it is theoretically possible to measure a single standard, provided the surface reflectance is similar to the unknown samples.

7 Fundamental Parameters A theoretical approach to quantitative X-Ray spectroscopy The fundamental parameters are: - Total mass absorbance coefficients For the sample - Mass photoabsorbance coefficients - Tube spectrum profile and intensity - Shell fluorescence yields - Line transition probabilities For each element in the sample - Line Energy - Concentration of element - Geometric considerations (instrument parameters) Any FP based method is only as accurate as the information it is given about the sample.

8 Sample Na 86 (AlO 2 ) 86 (SiO 2 ) 106.xH 2 O (Aldrich, Molecular Sieve 13X) Expected wt% Na Si Al Expected Si/Al Ratio 1.28 Sample Prep 5g of dried material mixed with 3g of WAX binder, pressed into a 40mm pellet.

9 Lots of O-Atoms Lots of Water Has an absorbing effect on the fluorescence signal from lighter elements. Variable water content gives rise to variable absorbance. Exchangeable Species Variable Densities

10 Element Concentration Al Ca 0.02 Cl 0.22 Fe 0.02 Ga 0.01 K 0.25 Na 7.00 P 0.03 S 0.02 Si Sample Na 86 (AlO 2 ) 86 (SiO 2 ) 106.xH 2 O Expected wt% Na Si Al Expected Si/Al Ratio 1.28 Measured Si/Al Ratio 1.41

11 Lots of O-Atoms Light elements difficult to see by XRF. Invisible elements give rise to errors when computing background correction factors. Lots of Water Chemical bonding (and mineralogy) can also affect the result. Exchangeable Species Variable Densities

12

13 Element Concentration Al Ca 0.01 Cl 0.18 Fe 0.01 K Na P 0.02 S 0.02 Si Sample Na 86 (AlO 2 ) 86 (SiO 2 ) 106.xH 2 O Expected wt% Na Si Al Expected Si/Al Ratio 1.28 Measured Si/Al Ratio 1.29

14 Lots of O-Atoms Lots of Water Variable densities give rise to variable mass attenuation coefficients for materials of similar chemical composition Exchangeable Species Variable Densities

15 Penetration Depth Information Region (Critical Depth) X-Ray Tube Detector

16 MATRIX Element Line Energy (KeV) Graphite Glass Iron Lead Cd KA Mo KA Cu KA Ni KA Fe KA * Cr KA S KA Mg KA Ni LA Fe LA * C KA * B KA = cm = mm = µm

17 Rh Kα Compton Intensity of compton peak is very sensitive to the average atomic number. As this decreases, measured intensity of compton peak (I M ) increases. Theoretical compton intensity can be calculated from sample composition (I T ) I T / I M = 1 Numbers less than 1 indicate XRF invisible species present. Compton intensity can be used to correct for very low density materials.

18 Element Concentration Al Ca 0.01 Cl 0.21 Fe 0.01 K Na P 0.02 S 0.02 Si Sample Na 86 (AlO 2 ) 86 (SiO 2 ) 106.xH 2 O Expected wt% Na Si Al Expected Si/Al Ratio 1.28 Measured Si/Al Ratio 1.29

19 Something a bit different Layer thickness analysis The ratio of α:β line intensities is well known (line transition probabilities). Variations in absorbance due to layers in a sample can be calculated by measuring the change to this expected ratio for a given element. Done using Fundamental Parameters: Need to know Which elements are in the layer / substrate What order the layers are in (which elements give rise to signal attenuation)

20

Quantitative XRF Analysis. algorithms and their practical use

Quantitative XRF Analysis. algorithms and their practical use Joint ICTP-IAEA School on Novel Experimental Methodologies for Synchrotron Radiation Applications in Nano-science and Environmental Monitoring Quantitative XRF Analysis algorithms and their practical use

More information

Overview of X-Ray Fluorescence Analysis

Overview of X-Ray Fluorescence Analysis Overview of X-Ray Fluorescence Analysis AMPTEK, INC., Bedford, MA 01730 Ph: +1 781 275 2242 Fax: +1 781 275 3470 sales@amptek.com 1 What is X-Ray Fluorescence (XRF)? A physical process: Emission of characteristic

More information

EDS User School. Principles of Electron Beam Microanalysis

EDS User School. Principles of Electron Beam Microanalysis EDS User School Principles of Electron Beam Microanalysis Outline 1.) Beam-specimen interactions 2.) EDS spectra: Origin of Bremsstrahlung and characteristic peaks 3.) Moseley s law 4.) Characteristic

More information

FUNDAMENTAL PARAMETER METHOD USING SCATTERING X-RAYS IN X-RAY FLUORESCENCE ANALYSIS

FUNDAMENTAL PARAMETER METHOD USING SCATTERING X-RAYS IN X-RAY FLUORESCENCE ANALYSIS FUNDAMENTAL PARAMETER METHOD USING SCATTERING X-RAYS IN X-RAY FLUORESCENCE ANALYSIS 255 Yoshiyuki Kataoka 1, Naoki Kawahara 1, Shinya Hara 1, Yasujiro Yamada 1, Takashi Matsuo 1, Michael Mantler 2 1 Rigaku

More information

X-Ray Fluorescence and Natural History

X-Ray Fluorescence and Natural History X-Ray Fluorescence and Natural History How XRF Helps XRF can be used both quantitatively (homogenous samples) and quantitatively (heterogenous samples).! Trace elements in a fossil can help identify source,

More information

FUNDAMENTAL PARAMETERS ANALYSIS OF ROHS ELEMENTS IN PLASTICS

FUNDAMENTAL PARAMETERS ANALYSIS OF ROHS ELEMENTS IN PLASTICS 45 ABSTRACT FUNDAMENTAL PARAMETERS ANALYSIS OF ROHS ELEMENTS IN PLASTICS W. T. Elam, Robert B. Shen, Bruce Scruggs, and Joseph A. Nicolosi EDAX, Inc. Mahwah, NJ 70430 European Community Directive 2002/95/EC

More information

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13 Atomic Physics Chapter 6 X ray 11/20/13 24/12/2018 Jinniu Hu 1!1 6.1 The discovery of X ray X-rays were discovered in 1895 by the German physicist Wilhelm Roentgen. He found that a beam of high-speed electrons

More information

Electron probe microanalysis - Electron microprobe analysis EPMA (EMPA) What s EPMA all about? What can you learn?

Electron probe microanalysis - Electron microprobe analysis EPMA (EMPA) What s EPMA all about? What can you learn? Electron probe microanalysis - Electron microprobe analysis EPMA (EMPA) What s EPMA all about? What can you learn? EPMA - what is it? Precise and accurate quantitative chemical analyses of micron-size

More information

1 of 5 14/10/ :21

1 of 5 14/10/ :21 X-ray absorption s, characteristic X-ray lines... 4.2.1 Home About Table of Contents Advanced Search Copyright Feedback Privacy You are here: Chapter: 4 Atomic and nuclear physics Section: 4.2 Absorption

More information

XUV 773: X-Ray Fluorescence Analysis of Gemstones

XUV 773: X-Ray Fluorescence Analysis of Gemstones Fischer Application report vr118 HELM UT FISCHER GMBH + CO. KG Institut für Elektronik und Messtechnik Industriestrasse 21-7169 Sindelfingen, Germany Tel.: (+49) 731 33- - Fax: (+49) 731 33-79 E-Mail:

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

Liquid Waste Analysis

Liquid Waste Analysis Liquid Waste Analysis Garry Smith, XRF Application Specialist SciMed XRF, a division of Scientific and Medical Products Ltd About Us SciMed represent Rigaku (RESE and ART) and Seiko (SIINT) XRF ranges

More information

LAB REPORT ON XRF OF POTTERY SAMPLES By BIJOY KRISHNA HALDER Mohammad Arif Ishtiaque Shuvo Jie Hong

LAB REPORT ON XRF OF POTTERY SAMPLES By BIJOY KRISHNA HALDER Mohammad Arif Ishtiaque Shuvo Jie Hong LAB REPORT ON XRF OF POTTERY SAMPLES By BIJOY KRISHNA HALDER Mohammad Arif Ishtiaque Shuvo Jie Hong Introduction: X-ray fluorescence (XRF) spectrometer is an x-ray instrument used for routine, relatively

More information

Photoelectron spectroscopy Instrumentation. Nanomaterials characterization 2

Photoelectron spectroscopy Instrumentation. Nanomaterials characterization 2 Photoelectron spectroscopy Instrumentation Nanomaterials characterization 2 RNDr. Věra V Vodičkov ková,, PhD. Photoelectron Spectroscopy general scheme Impact of X-ray emitted from source to the sample

More information

OXEA - Online Elemental Analyzer

OXEA - Online Elemental Analyzer 02 25 08 OXEA - Online Elemental Analyzer OXEA (Online X-ray Elemental Analyzer) is based on the X-ray fluorescence technology (XRF) which is well known in the laboratory field. With the aid of a patented

More information

Peter L Warren, Pamela Y Shadforth ICI Technology, Wilton, Middlesbrough, U.K.

Peter L Warren, Pamela Y Shadforth ICI Technology, Wilton, Middlesbrough, U.K. 783 SCOPE AND LIMITATIONS XRF ANALYSIS FOR SEMI-QUANTITATIVE Introduction Peter L Warren, Pamela Y Shadforth ICI Technology, Wilton, Middlesbrough, U.K. Historically x-ray fluorescence spectrometry has

More information

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis MT-0.6026 Electron microscopy Scanning electron microscopy and electron probe microanalysis Eero Haimi Research Manager Outline 1. Introduction Basics of scanning electron microscopy (SEM) and electron

More information

PHYS 3650L - Modern Physics Laboratory

PHYS 3650L - Modern Physics Laboratory PHYS 3650L - Modern Physics Laboratory Laboratory Advanced Sheet Photon Attenuation 1. Objectives. The objectives of this laboratory exercise are: a. To measure the mass attenuation coefficient at a gamma

More information

Latest advances in identifying mineral composition variation by the M4 TORNADO AMICS

Latest advances in identifying mineral composition variation by the M4 TORNADO AMICS Latest advances in identifying mineral composition variation by the M4 TORNADO AMICS Bruker Nano Analytics, Berlin, Germany Webinar, June 15, 2017 Innovation with Integrity Presenters Samuel Scheller Sr.

More information

MICRO-TOMOGRAPHY AND X-RAY ANALYSIS OF GEOLOGICAL SAMPLES

MICRO-TOMOGRAPHY AND X-RAY ANALYSIS OF GEOLOGICAL SAMPLES THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 18, Number 1/2017, pp. 42 49 MICRO-TOMOGRAPHY AND X-RAY ANALYSIS OF GEOLOGICAL SAMPLES Ion GRUIA University

More information

Spectroscopy on Mars!

Spectroscopy on Mars! Spectroscopy on Mars! Pathfinder Spirit and Opportunity Real World Friday H2A The Mars Pathfinder: Geological Elemental Analysis On December 4th, 1996, the Mars Pathfinder was launched from earth to begin

More information

S8 TIGER Series 2 for ASTM D 6443

S8 TIGER Series 2 for ASTM D 6443 Lab Report XRF 139 S8 TIGER Series 2 for ASTM D 6443 Standard Test Method for Determination of Ca, Cl, Cu, Mg, P, S and Zn in Unused Lubricating Oils and Additives Introduction Lubricating oils are generally

More information

In-Situ Analysis of Traces, Minor and Major Elements in Rocks and Soils with a Portable XRF Spectrometer*

In-Situ Analysis of Traces, Minor and Major Elements in Rocks and Soils with a Portable XRF Spectrometer* In-Situ Analysis of Traces, Minor and Major Elements in Rocks and Soils with a Portable XRF Spectrometer* Anthony Thomas 1, Joachim Heckel 1, and Dirk Wissmann 1 Search and Discovery Article #41836 (2016)

More information

Advances in Field-Portable XRF

Advances in Field-Portable XRF Advances in Field-Portable XRF Volker Thomsen and Debbie Schatzlein Field-portable x-ray fluorescence (XRF) allows us to take the laboratory to the sample. The latest generation of such handheld x-ray

More information

2.3 Particle Induced X-Ray Emission PIXE

2.3 Particle Induced X-Ray Emission PIXE 2.3 Particle Induced X-Ray Emission PIXE The previous section concentrated on X-ray fluorescence. This section discusses a different X-ray production technique that can lead to the development of 2-D/3-D

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

HOW TO APPROACH SCANNING ELECTRON MICROSCOPY AND ENERGY DISPERSIVE SPECTROSCOPY ANALYSIS. SCSAM Short Course Amir Avishai

HOW TO APPROACH SCANNING ELECTRON MICROSCOPY AND ENERGY DISPERSIVE SPECTROSCOPY ANALYSIS. SCSAM Short Course Amir Avishai HOW TO APPROACH SCANNING ELECTRON MICROSCOPY AND ENERGY DISPERSIVE SPECTROSCOPY ANALYSIS SCSAM Short Course Amir Avishai RESEARCH QUESTIONS Sea Shell Cast Iron EDS+SE Fe Cr C Objective Ability to ask the

More information

Micro-XRF excitation in an SEM

Micro-XRF excitation in an SEM X-RAY SPECTROMETRY X-Ray Spectrom. 2007; 36: 254 259 Published online 8 May 2007 in Wiley InterScience (www.interscience.wiley.com).974 Micro-XRF excitation in an SEM M. Haschke, 1 F. Eggert 2 andw.t.elam

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Which of the following conclusions could not be derived from Rutherford s α -particle scattering experiement? (i) Most of the space in the atom is empty. (ii) The

More information

Particle Behavior of Light 1. Calculate the energy of a photon, mole of photons 2. Find binding energy of an electron (know KE) 3. What is a quanta?

Particle Behavior of Light 1. Calculate the energy of a photon, mole of photons 2. Find binding energy of an electron (know KE) 3. What is a quanta? Properties of Electromagnetic Radiation 1. What is spectroscopy, a continuous spectrum, a line spectrum, differences and similarities 2. Relationship of wavelength to frequency, relationship of E to λ

More information

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na Ellen Simmons 1 Contents Introduction Review of the Types of Radiation Charged Particle Radiation Detection Review of Semiconductor

More information

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 19 Chapter 12 There are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry X-ray Techniques include:

More information

Atomic Structure. 1. For a hydrogen atom which electron transition requires the largest amount of energy?

Atomic Structure. 1. For a hydrogen atom which electron transition requires the largest amount of energy? Atomic Structure 1. For a hydrogen atom which electron transition requires the largest amount of energy? A. n = 4 to n = 10 B. n = 3 to n = 2 C. n = 3 to n = 4 D. n = 1 to n = 3 E. n = 2 to n = 4 2. Which

More information

Atomic Structure Practice Questions

Atomic Structure Practice Questions Atomic Structure Practice Questions 1. Experiments performed to reveal the structure of atoms led scientists to conclude that an atom s (1) positive charge is evenly distributed throughout its volume (2)

More information

Stability Nuclear & Electronic (then ion formation/covalent bonding)

Stability Nuclear & Electronic (then ion formation/covalent bonding) Stability Nuclear & Electronic (then ion formation/covalent bonding) Most elements are not stable in their atomic form. (Exceptions to that? ) They become stable by gaining or losing e! to form ions, or

More information

Week 7: Ch. 10 Spec. w/ Scintillation Ctrs. Photomultiplier Devices

Week 7: Ch. 10 Spec. w/ Scintillation Ctrs. Photomultiplier Devices Week 7: Ch. 0 Spec. w/ Scintillation Ctrs. multiplier Devices Spectroscopy with Scint. Counters -- gamma-ray interactions, reprise -- observed spectra --- spectral components, backscatter --- summing --

More information

Very High Third-Order Nonlinear Optical Activities of Intrazeolite PbS Quantum Dots. Supporting Information

Very High Third-Order Nonlinear Optical Activities of Intrazeolite PbS Quantum Dots. Supporting Information Very High Third-Order Nonlinear Optical Activities of Intrazeolite PbS Quantum Dots Supporting Information SI-1. Preparation of Y g s The Y g s (2 2.5 cm 2 ) were prepared according to the procedure described

More information

ED(P)XRF: SCREENING ANALYSIS AND QUANTITATIVE ANALYSIS with POLARIZED

ED(P)XRF: SCREENING ANALYSIS AND QUANTITATIVE ANALYSIS with POLARIZED 384 ED(P)XRF: SCREENING ANALYSIS AND QUANTITATIVE ANALYSIS with POLARIZED X-RAYS R. Schramm, J. Heckel, K. Molt 2 Spectra Analytical Instruments, Kleve, Germany. 2Gerhard-Mercator- University Duisburg,

More information

X-ray Fluorescence Imaging Following Synchrotron Beam Excitation

X-ray Fluorescence Imaging Following Synchrotron Beam Excitation Conference on Applied Digital Imaging Techniques for Understanding the Palimpsest X-ray Fluorescence Imaging Following Synchrotron Beam Excitation Uwe Bergmann Stanford Synchrotron Radiation Laboratory

More information

Determination of the activity of radionuclides

Determination of the activity of radionuclides BUREAU NATIONAL DE MÉTROLOGIE COMMISSARIAT À L'ÉNERGIE ATOMIQUE LABORATOIRE NATIONAL HENRI BECQUEREL Note technique LNHB/04-33 Determination of the activity of radionuclides contained in volume samples

More information

X-ray Energy Spectroscopy (XES).

X-ray Energy Spectroscopy (XES). X-ray Energy Spectroscopy (XES). X-ray fluorescence as an analytical tool for element analysis is based on 3 fundamental parameters: A. Specificity: In determining an x-ray emission energy E certainty

More information

Geant4 Monte Carlo code application in photon interaction parameter of composite materials and comparison with XCOM and experimental data

Geant4 Monte Carlo code application in photon interaction parameter of composite materials and comparison with XCOM and experimental data Indian Journal of Pure & Applied Physics Vol. 54, Februray 2016, pp. 137-143 Geant4 Monte Carlo code application in photon interaction parameter of composite materials and comparison with XCOM and experimental

More information

AXP Research group Analytical X-ray Physics

AXP Research group Analytical X-ray Physics Research group Analytical X-ray Physics X-ray Fluorescence Spectrometry Wolfgang and BLiX Team Our Current Activities 3D Micro-XRF 3D Micro-XANES High resolution X-ray emission spectroscopy Characterisation

More information

CALCULATION OF THE DETECTOR-CONTRIBUTION TO ZIRCONIUM PEAKS IN EDXRF SPECTRA OBTAINED WITH A SI-DRIFT DETECTOR

CALCULATION OF THE DETECTOR-CONTRIBUTION TO ZIRCONIUM PEAKS IN EDXRF SPECTRA OBTAINED WITH A SI-DRIFT DETECTOR CALCULATION OF THE DETECTOR-CONTRIBUTION TO ZIRCONIUM PEAKS IN EDXRF SPECTRA OBTAINED WITH A SI-DRIFT DETECTOR A. C. Neiva 1, J. N. Dron 1, L. B. Lopes 1 1 Escola Politécnica da Universidade de São Paulo

More information

X-ray Absorption Spectroscopy

X-ray Absorption Spectroscopy X-ray Absorption Spectroscopy Nikki Truss November 26, 2012 Abstract In these experiments, some aspects of x-ray absorption spectroscopy were investigated. The x-ray spectrum of molybdenum was recorded

More information

3R Phase of MoS 2 and WS 2 Outperforms Corresponding 2H Phase for Hydrogen Evolution

3R Phase of MoS 2 and WS 2 Outperforms Corresponding 2H Phase for Hydrogen Evolution Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 3R Phase of MoS 2 and WS 2 Outperforms Corresponding 2H Phase for Hydrogen Evolution Rou Jun Toh,

More information

X-Ray Photoelectron Spectroscopy (XPS) Auger Electron Spectroscopy (AES)

X-Ray Photoelectron Spectroscopy (XPS) Auger Electron Spectroscopy (AES) X-Ray Photoelectron Spectroscopy (XPS) Auger Electron Spectroscopy (AES) XPS X-ray photoelectron spectroscopy (XPS) is one of the most used techniques to chemically characterize the surface. Also known

More information

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Chapter 10: Modern Atomic Theory and the Periodic Table How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Electromagnetic (EM) radiation is a form of energy that exhibits

More information

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 2, FEBRUARY 2014 ISSN

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 2, FEBRUARY 2014 ISSN Implication Of X-Ray Path, Region Of Interest, Tube Current And Voltage In Calibration Of X- Ray Fluorescence Instrument: A Case Study Of X-Supreme 8000 Amuda, A.K., Okoh, S., Ekwuribe, S., Bashir, M.

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION USEFULNESS OF A DUAL MACRO AND MICRO ENERGY DISPERSIVE X-RAY FLUORESCENCE SPECTROMETER TO DEVELOP QUANTITATIVE METHODOLOGIES FOR HISTORIC MORTAR AND RELATED MATERIALS CHARACTERIZATION

More information

FUNDAMENTAL PARAMETER METHOD FOR THE LOW ENERGY REGION INCLUDING CASCADE EFFECT AND PHOTOELECTRON EXCITATION

FUNDAMENTAL PARAMETER METHOD FOR THE LOW ENERGY REGION INCLUDING CASCADE EFFECT AND PHOTOELECTRON EXCITATION Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 511 FUNDAMENTAL PARAMETER METHOD FOR THE LOW ENERGY REGION INCLUDING CASCADE EFFECT AND PHOTOELECTRON

More information

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu X-ray Photoelectron Spectroscopy Introduction Qualitative analysis Quantitative analysis Charging compensation Small area analysis and XPS imaging

More information

Lecture 23 X-Ray & UV Techniques

Lecture 23 X-Ray & UV Techniques Lecture 23 X-Ray & UV Techniques Schroder: Chapter 11.3 1/50 Announcements Homework 6/6: Will be online on later today. Due Wednesday June 6th at 10:00am. I will return it at the final exam (14 th June).

More information

ATTENUATION STUDIES ON DRY AND HYDRATED CROSS-LINKED HYDROPHILIC COPOLYMER MATERIALS AT 8.02 TO kev USING X-RAY FLUORESCENT SOURCES

ATTENUATION STUDIES ON DRY AND HYDRATED CROSS-LINKED HYDROPHILIC COPOLYMER MATERIALS AT 8.02 TO kev USING X-RAY FLUORESCENT SOURCES Journal of Physical Science, Vol. 18(1), 23 32, 27 23 ATTENUATION STUDIES ON DRY AND HYDRATED CROSS-LINKED HYDROPHILIC COPOLYMER MATERIALS AT 8.2 TO 28.43 kev USING X-RAY FLUORESCENT SOURCES Sabar Bauk

More information

Lithogeochemistry Using a Portable X-Ray Fluorescence (pxrf) Spectrometer and Preliminary Results From the Eagle Ford Shale

Lithogeochemistry Using a Portable X-Ray Fluorescence (pxrf) Spectrometer and Preliminary Results From the Eagle Ford Shale Lithogeochemistry Using a Portable X-Ray Fluorescence (pxrf) Spectrometer and Preliminary Results From the Eagle Ford Shale Dr. Mark T. Ford and John M. Dabney EFCREO Student Driven Research Symposium

More information

A. 24 B. 27 C. 30 D. 32 E. 33. A. It is impossible to tell from the information given. B. 294 mm C. 122 mm D. 10 mm E. 60 mm A. 1 H B. C. D. 19 F " E.

A. 24 B. 27 C. 30 D. 32 E. 33. A. It is impossible to tell from the information given. B. 294 mm C. 122 mm D. 10 mm E. 60 mm A. 1 H B. C. D. 19 F  E. CHEMISTRY 110 EXAM 1 Sept. 24, 2012 FORM A 1. A microwave oven uses 2.45! 10 9 Hz electromagnetic waves to heat food. What is the wavelength of this radiation in mm? A. It is impossible to tell from the

More information

XRF books: Analytical Chemistry, Kellner/Mermet/Otto/etc. 3 rd year XRF Spectroscopy Dr. Alan Ryder (R222, Physical Chemistry) 2 lectures:

XRF books: Analytical Chemistry, Kellner/Mermet/Otto/etc. 3 rd year XRF Spectroscopy Dr. Alan Ryder (R222, Physical Chemistry) 2 lectures: 1 3 rd year XRF Spectroscopy Dr. Alan Ryder (R222, Physical Chemistry) 2 lectures: XRF spectroscopy 1 exam question. Notes on: www.nuigalway.ie/nanoscale/3rdspectroscopy.html XRF books: Analytical Chemistry,

More information

DRAFT BRUKER XRF SPECTROSCOPY USER GUIDE: SPECTRAL INTERPRETATION AND SOURCES OF INTERFERENCE

DRAFT BRUKER XRF SPECTROSCOPY USER GUIDE: SPECTRAL INTERPRETATION AND SOURCES OF INTERFERENCE DRAFT BRUKER XRF SPECTROSCOPY USER GUIDE: SPECTRAL INTERPRETATION AND SOURCES OF INTERFERENCE TABLE OF CONTENTS TABLE OF CONTENTS 1 ABSTRACT 3 XRF THEORY 4 INSTRUMENTATION 6 ED XRF EQUIPMENT 6 TRACER 8

More information

Collegiate Institute for Math and Science Day 57: December 9, 2016 Room 427

Collegiate Institute for Math and Science Day 57: December 9, 2016 Room 427 Unit 2: Atomic Concepts Outline Name: Period: Date: 1. The modern model of the atom has evolved over a long period of time through the work of many scientists. Dalton s Model: Elements are made of atoms

More information

- Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions).

- Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions). 170 LIGHT wavelength Diffraction frequency = wavelengths / time = - Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions). - Einstein noted that viewing light as a particle

More information

Name: Student ID Number: Section Number:

Name: Student ID Number: Section Number: Chem 6A 2011 (Sailor) QUIZ #7 Name: Student ID Number: Section Number: VERSION A KEY Some useful constants and relationships: Specific heat capacities (in J/g. K): H 2 O (l) = 4.184; Al (s) = 0.900; Cu

More information

Principles of Neutron Imaging

Principles of Neutron Imaging Wir schaffen Wissen heute für morgen Manuel Morgano Neutron Imaging & Activation Group, Paul Scherrer Institut, Switzerland Principles of Neutron Imaging PSI, 8. Oktober 2015 1. Absorption-based imaging

More information

Number of x-rays Energy (kev)

Number of x-rays Energy (kev) 2500 Number of x-rays 2000 1500 1000 500 0 0 1 2 3 4 5 6 7 8 9 10 Energy (kev) The Characteristic X-ray Wavelengths Electronic transitions within inner shells of heavier atoms are accompanied by large

More information

print first name print last name print student id grade

print first name print last name print student id grade print first name print last name print student id grade Experiment 2 X-ray fluorescence X-ray fluorescence (XRF) and X-ray diffraction (XRD) may be used to determine the constituent elements and the crystalline

More information

D) g. 2. In which pair do the particles have approximately the same mass?

D) g. 2. In which pair do the particles have approximately the same mass? 1. A student constructs a model for comparing the masses of subatomic particles. The student selects a small, metal sphere with a mass of gram to represent an electron. A sphere with which mass would be

More information

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous?

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? 2. Briefly discuss dead time in a detector. What factors are important

More information

Inelastic soft x-ray scattering, fluorescence and elastic radiation

Inelastic soft x-ray scattering, fluorescence and elastic radiation Inelastic soft x-ray scattering, fluorescence and elastic radiation What happens to the emission (or fluorescence) when the energy of the exciting photons changes? The emission spectra (can) change. One

More information

Geology 777 Monte Carlo Exercise I

Geology 777 Monte Carlo Exercise I Geology 777 Monte Carlo Exercise I Purpose The goal of this exercise is to get you to think like an electron... to start to think about where electrons from the stream of high energy electrons go when

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN 316 Effective atomic number of composite materials by Compton scattering - nondestructive evaluation method Kiran K U a, Ravindraswami K b, Eshwarappa K M a and Somashekarappa H M c* a Government Science

More information

Analysis of Cadmium (Cd) in Plastic Using X-ray Fluorescence Spectroscopy

Analysis of Cadmium (Cd) in Plastic Using X-ray Fluorescence Spectroscopy Analysis of Cadmium (Cd) in Plastic Using X-ray Fluorescence Spectroscopy Hiroshi Onodera Application & Research Center, JEOL Ltd. Introduction um, PBB and PBDE) are subject to usage restrictions in Europe.

More information

Full file at

Full file at Chapter 2 1. Which statement is incorrect? A. According to the atomic theory, all matter is composed of atoms. B. Protons, neutrons, and electrons are subatomic particles. C. Electrons are larger than

More information

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis MT-0.6026 Electron microscopy Scanning electron microscopy and electron probe microanalysis Eero Haimi Research Manager Outline 1. Introduction Basics of scanning electron microscopy (SEM) and electron

More information

Radiation interaction with matter and energy dispersive x-ray fluorescence analysis (EDXRF)

Radiation interaction with matter and energy dispersive x-ray fluorescence analysis (EDXRF) Radiation interaction with matter and energy dispersive x-ray fluorescence analysis (EDXRF) Giancarlo Pepponi Fondazione Bruno Kessler MNF Micro Nano Facility pepponi@fbk.eu MAUD school 2017 Caen, France

More information

1 Electrons and Chemical Bonding

1 Electrons and Chemical Bonding CHAPTER 13 1 Electrons and Chemical Bonding SECTION Chemical Bonding BEFORE YOU READ After you read this section, you should be able to answer these questions: What is chemical bonding? What are valence

More information

XRF Microscopy and Micro-Spectroscopy

XRF Microscopy and Micro-Spectroscopy Asst. Prof. Hudson W.P. Carvalho hudson@cena.usp.br Group of Applied X-ray Spectroscopy CENA-USP Campinas 22/08/2016 Overview Micro-speciation, what for? Sample preparation strategies PCA and LC Hands

More information

X-ray fluorescence analysis - calibration of the X-ray energy detector

X-ray fluorescence analysis - calibration of the X-ray energy detector X-ray fluorescence analysis - TEP Related topics Bremsstrahlung, characteristic X-radiation, energy levels, fluorescence radiation, conduction processes in semiconductors, doping of semiconductors, pin-diodes,

More information

Downhole XRF-Logging:

Downhole XRF-Logging: Downhole XRF-Logging: A new tool to explore borehole rock composition Bachmann, C. 1, Bachmann, J. 1, Harms, U. 2 and Hawke, P.³ 1 J&C Bachmann GmbH, Bad Wildbad, Germany 2 GFZ - German Research Centre

More information

X-ray Spectroscopy. c David-Alexander Robinson & Pádraig Ó Conbhuí. 14th March 2011

X-ray Spectroscopy. c David-Alexander Robinson & Pádraig Ó Conbhuí. 14th March 2011 X-ray Spectroscopy David-Alexander Robinson; Pádraig Ó Conbhuí; 08332461 14th March 2011 Contents 1 Abstract 2 2 Introduction & Theory 2 2.1 The X-ray Spectrum............................ 2 2.2 X-Ray Absorption

More information

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

ORBITAL DIAGRAM - A graphical representation of the quantum number map of electrons around an atom. 178 (MAGNETIC) SPIN QUANTUM NUMBER: "spin down" or "spin up" - An ORBITAL (region with fixed "n", "l" and "ml" values) can hold TWO electrons. ORBITAL DIAGRAM - A graphical representation of the quantum

More information

CHEM 103: Chemistry in Context

CHEM 103: Chemistry in Context CHEM 103: Chemistry in Context Unit 4.2 Atmospheric Chemistry: the chemistry of global climate change Reading: Chapter 3 Unit 4.2: Chemistry Behind Global Climate Change Solar energy balance Earth s surface

More information

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of?

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? Nuclear Physics Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas?

How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas? 146 EXAMPLE PROBLEM: How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas? 1 - Convert 2545 grams of chlorine gas to moles. Use formula weight. 2 - Convert moles

More information

X-ray spectroscopy: Experimental studies of Moseley s law (K-line x-ray fluorescence) and x-ray material s composition determination

X-ray spectroscopy: Experimental studies of Moseley s law (K-line x-ray fluorescence) and x-ray material s composition determination Uppsala University Department of Physics and Astronomy Laboratory exercise X-ray spectroscopy: Experimental studies of Moseley s law (K-line x-ray fluorescence) and x-ray material s composition determination

More information

Supporting Information:

Supporting Information: Supporting Information: In Situ Synthesis of Magnetically Recyclable Graphene Supported Pd@Co Core-Shell Nanoparticles as Efficient Catalysts for Hydrolytic Dehydrogenation of Ammonia Borane Jun Wang,

More information

Biophysics Collaborative Access Team Basic Techniques for EXAFS Revision date 6/25/94 G.Bunker. Optimizing X-ray Filters

Biophysics Collaborative Access Team Basic Techniques for EXAFS Revision date 6/25/94 G.Bunker. Optimizing X-ray Filters Biophysics Collaborative Access Team Basic Techniques for EXAFS Revision date 6/25/94 G.Bunker Optimizing X-ray Filters X-ray filters are an essential, but often neglected, part of the apparatus for fluorescence

More information

Electron and electromagnetic radiation

Electron and electromagnetic radiation Electron and electromagnetic radiation Generation and interactions with matter Stimuli Interaction with sample Response Stimuli Waves and energy The energy is propotional to 1/λ and 1/λ 2 λ λ 1 Electromagnetic

More information

Shell Atomic Model and Energy Levels

Shell Atomic Model and Energy Levels Shell Atomic Model and Energy Levels (higher energy, deeper excitation) - Radio waves: Not absorbed and pass through tissue un-attenuated - Microwaves : Energies of Photos enough to cause molecular rotation

More information

Data report for elemental analysis of IMPROVE samples collected during April, May, June 2009 UC Davis Submitted June 18, 2010 SUMMARY

Data report for elemental analysis of IMPROVE samples collected during April, May, June 2009 UC Davis Submitted June 18, 2010 SUMMARY Data report for elemental analysis of IMPROVE samples collected during April, May, June 2009 UC Davis Submitted June 8, 200 SUMMARY This report summarizes the quality assurance performed during elemental

More information

Unit 3: Electron configuration and periodicity

Unit 3: Electron configuration and periodicity Unit 3: Electron configuration and periodicity Group 1 BOHR MODELS Group 18 H Group 2 Group 13 Group 14 Group 15 Group 16 Group 17 He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca His theory couldn t

More information

Exploiting the Speed of the Silicon Drift Detector to Open New Measurement Opportunities in Particle Analysis. Dale E. Newbury

Exploiting the Speed of the Silicon Drift Detector to Open New Measurement Opportunities in Particle Analysis. Dale E. Newbury Exploiting the Speed of the Silicon Drift Detector to Open New Measurement Opportunities in Particle Analysis Dale E. Newbury National Institute of Standards and Technology Gaithersburg, MD 20899-8370

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 Q1. When a clean metal surface in a vacuum is irradiated with ultraviolet radiation of a certain frequency, electrons are emitted from the metal. (a) Explain why the kinetic energy of the emitted electrons

More information

A fluorescent tube is filled with mercury vapour at low pressure. After mercury atoms have been excited they emit photons.

A fluorescent tube is filled with mercury vapour at low pressure. After mercury atoms have been excited they emit photons. Q1.(a) A fluorescent tube is filled with mercury vapour at low pressure. After mercury atoms have been excited they emit photons. In which part of the electromagnetic spectrum are these photons? What is

More information

1. This man said that matter was made of atoms and that all atoms of the same element were identical.

1. This man said that matter was made of atoms and that all atoms of the same element were identical. The Atomic Structure retest READ ALL QUESTIONS CAREFULLY!! and Answer Correctly! 1. This man said that matter was made of atoms and that all atoms of the same element were identical. 2. This man said that

More information

Instantaneous reduction of graphene oxide at room temperature

Instantaneous reduction of graphene oxide at room temperature Instantaneous reduction of graphene oxide at room temperature Barun Kuma Burman, Pitamber Mahanandia and Karuna Kar Nanda Materials Research Centre, Indian Institute of Science, Bangalore-560012, India

More information

Multi Channel Analyzer (MCA) Analyzing a Gamma spectrum

Multi Channel Analyzer (MCA) Analyzing a Gamma spectrum Multi Channel Analyzer (MCA) Analyzing a Gamma spectrum Objective: Using the MCA to acquire spectrums for different gamma sources and to identify an unknown source from its spectrum, furthermore to investigate

More information

NJCTL.org 2015 AP Physics 2 Nuclear Physics

NJCTL.org 2015 AP Physics 2 Nuclear Physics AP Physics 2 Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Measurements of K- shell production cross-section and fluorescence yield for Y element

Measurements of K- shell production cross-section and fluorescence yield for Y element American Journal of Physics and Applications 2015; 3(1): 1-5 Published online January 29, 2015 (http://www.sciencepublishinggroup.com/j/ajpa) doi: 10.11648/j.ajpa.20150301.11 ISSN: 2330-4286 (Print); ISSN:

More information

Interaction X-rays - Matter

Interaction X-rays - Matter Interaction X-rays - Matter Pair production hν > M ev Photoelectric absorption hν MATTER hν Transmission X-rays hν' < hν Scattering hν Decay processes hν f Compton Thomson Fluorescence Auger electrons

More information

Altitude influence of elemental distribution in grass from Rila mountain. Dr. E. Nikolova, Dr. A. Artinyan, S. Nikolova INRNE - BAS XRF Laboratory

Altitude influence of elemental distribution in grass from Rila mountain. Dr. E. Nikolova, Dr. A. Artinyan, S. Nikolova INRNE - BAS XRF Laboratory Altitude influence of elemental distribution in grass from Rila mountain Dr. E. Nikolova, Dr. A. Artinyan, S. Nikolova INRNE - BAS XRF Laboratory I. Introduction The application of modern instrumental

More information

Supporting Information s for

Supporting Information s for Supporting Information s for # Self-assembling of DNA-templated Au Nanoparticles into Nanowires and their enhanced SERS and Catalytic Applications Subrata Kundu* and M. Jayachandran Electrochemical Materials

More information