Maxwell s Equations and Electromagnetic Waves

Size: px
Start display at page:

Download "Maxwell s Equations and Electromagnetic Waves"

Transcription

1 Phsics 36: Waves Lecure 3 /9/8 Maxwell s quaions and lecromagneic Waves Four Laws of lecromagneism. Gauss Law qenc all da ρdv Inegral From From he vecor ideni da dv Therefore, we ma wrie Gauss Law as ρ Differenial From. Farada s Law MF da dl da Therefore, we ma wrie Farada s Law as 3. Gauss Law for Magneism (no magneic monopoles da 4. Ampére s Law (modified b Maxwell dl K m J da K m D da Inegral From Differenial From Inegral From Differenial From Inegral From Page of 8

2 Phsics 36: Waves Lecure 3 /9/8 Therefore, Km J KeKm Differenial From Now, if we ake he differenial form of Farada s Law and appl he curl operaor on boh sides, hen ( Le us aemp o derive equaions conaining onl elecric fields or magneic fields. To decouple he wo from he above equaion, we will subsiue oher equaions ino he above. The righ-hand side of he equaion is he negaive ime derivaive of Ampére s Law. Hence, Now we emplo he familiar vecor ideni J ( Km KeKm If we assume ρ or is a consan in space ( A ( A A ( So, K K e m K m J In emp space, J and K e K m. liminaing he negaive sign from boh sides we arrive a Page of 8

3 Phsics 36: Waves Lecure 3 /9/8 Page 3 of 8 i.e. z x So, we have raveling elecromagneic waves where we define he speed, c, of he wave as Similarl, Finall, we have equaions ha have isolaed elecric or magneic fields. I urns ou hese equaions are wave equaions because he saisf V x And he soluions are raveling waves! Suppose we r as soluions o hese wo differenial equaions ( kz i e ω ; ( kz i e ω which are wave funcions propagaing along he z-direcion. Since, in he absence of charges we ma wrie Gauss Law Subsiuing he rial soluion ino he above equaion and aking he divergence, we arrive a c

4 Phsics 36: Waves Lecure 3 /9/8 Therefore, we conclude i( kz ω ( ike z z ; z This resul means he elecromagneic waves are ransverse! The oscillaions of he elecric and magneic fields are perpendicular o he propagaion vecor. Wha is he direcion of wih respec o? Le us begin wih linearl polarized elecric field and î kˆ. Then, e i ˆ ( kz ω i The goal now is o find he magneic field vecor,, via he equaion relaing he elecric and magneic fields, viz. The lef-hand side becomes Wih all oher erms zero. Therefore, Therefore, x ˆj z ik e ik e iω i i ( kz ω ˆ j ˆ c ( kz ω i( kz ω j e j ω where c. Since he elecric field oscillaes in he x-direcion (î and he magneic k oscillaions are in he -direcion ( ĵ, we conclude ha he elecric and magneic fields are perpendicular o each oher and he direcion of propagaion. ˆ Page 4 of 8

5 Phsics 36: Waves Lecure 3 /9/8 To summarize, i. ii. c iii. and are in phase, since he have he same ime-dependen i( kz ω form: e, wih no phase shif. Now we will show he inensi average power / uni area is I P A c Consider he volume elemen L c The volume is V Ac area, A The energ densi, u, is u energ volume Solving for he energ we ge energ volume u Ac Therefore, u energ area ime c We alread concluded ha he magniudes for he elecric and magneic fields is: c. Hence, u c c Page 5 of 8

6 Phsics 36: Waves Lecure 3 /9/8 where we have used he relaion c c c c Since, c, we wrie u c c c If, cos ( kx ω Then he ime-average becomes So, we have he final resul ha he inensi of he elecromagneic wave is I u energ c area ime c Also, he Poning vecor is defined as S I can be riviall derived, ha I S To summarize, i. Irradiance wave inensi I avg. power/uni area, and dp ii. Radian inensi, where P power and Ω solid angle dω Page 6 of 8

7 Phsics 36: Waves Lecure 3 /9/8 Polarizaion of lecromagneic Waves A. Linear or Plane Polarizaion The ±-direcion of (or sas consan in ime. Propagaion direcion Propagaion direcion ½ period, T, laer Le Generall, e ( kz ω i iˆ x ˆj ( cos( kz ω iˆ cos( kz ω ˆj ( iˆ ˆj cos( kz ω Re x x No ime dependence cos ( kz ω x cos ( kz ω x. Unpolarized Page 7 of 8

8 Phsics 36: Waves Lecure 3 /9/8 The direcion of varies randoml wih ime. C. Circular Polarizaion The - (and - field roae wih ime. We wrie he elecric field as i( kz i( kz ( iˆ ω ω ij ˆ e ( xˆ i e ˆ From uler s equaion for complex variable θ e i cosθ isinθ We will subsiue in for he exponenial on he righ-hand side o ge i( kz ω ( xˆ iˆ e ( xˆ iˆ ( cos( kz ω isin( kz ω ( ( kz xˆ i ( kz xˆ i ( kz ˆ ( kz ˆ cos ω sin ω cos ω sin ω ( cos( kz ω xˆ sin( kz ω ˆ i( sin( kz ω xˆ cos( kz ω ˆ Hence, Re ( cos( kz ω xˆ sin( kz ˆ ω We see he x- and -componens are 9º ou of phase and he magniude,, is independen of ime. To see wha is happening in his complex siuaion, le us fix z and var ime. j a a laer ime sin( ω sin( ω k i a sars wih zero value and evolves increasing o be >. Looking ino an on-coming wave, roaes aniclockwise. This is lefhanded circular polarizaion Page 8 of 8

Space-Time Electrodynamics, and Magnetic Monopoles

Space-Time Electrodynamics, and Magnetic Monopoles Gauge Insiue Journal Space-Time lecrodnamics and Magneic Monopoles vic0@comcas.ne June 203 Absrac Mawell s lecrodnamics quaions for he 3- Space Vecor Fields disallow magneic monopoles. Those equaions could

More information

Wave Motion Sections 1,2,4,5, I. Outlook II. What is wave? III.Kinematics & Examples IV. Equation of motion Wave equations V.

Wave Motion Sections 1,2,4,5, I. Outlook II. What is wave? III.Kinematics & Examples IV. Equation of motion Wave equations V. Secions 1,,4,5, I. Oulook II. Wha is wave? III.Kinemaics & Eamples IV. Equaion of moion Wave equaions V. Eamples Oulook Translaional and Roaional Moions wih Several phsics quaniies Energ (E) Momenum (p)

More information

EE243 Advanced Electromagnetic Theory Lec # 13: Waveguides and sources

EE243 Advanced Electromagnetic Theory Lec # 13: Waveguides and sources Applied M Fall 6, Neureuher Lecure #3 er /8/6 43 Advanced lecromagneic Theor Lec # 3: Waveguides and sources Source Free Region: ecor Poenials A and F Single direcion componen of A and F Give TM and T

More information

Physics 1402: Lecture 22 Today s Agenda

Physics 1402: Lecture 22 Today s Agenda Physics 142: ecure 22 Today s Agenda Announcemens: R - RV - R circuis Homework 6: due nex Wednesday Inducion / A curren Inducion Self-Inducance, R ircuis X X X X X X X X X long solenoid Energy and energy

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

Chapter 2 Solutions. ψ 1 ψ. 16 t. ( z υt ), where υ is in the negative z direction. = 2 A. Chapter 2 Solutions = 32

Chapter 2 Solutions. ψ 1 ψ. 16 t. ( z υt ), where υ is in the negative z direction. = 2 A. Chapter 2 Solutions = 32 Chaper Soluions 1 Chaper Soluions.1 υ ( z+ υ) ψ υ( z+ υ) ψ υ I s a wice differeniable funcion of ( z υ ), where υ is in he negaive z direcion.. υ ψ ( y,) ( y 4) ( y 4 ) ψ ( y 4 ) ψ 3 Thus, υ 4, υ 16, and,

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

BEng (Hons) Telecommunications. Examinations for / Semester 2

BEng (Hons) Telecommunications. Examinations for / Semester 2 BEng (Hons) Telecommunicaions Cohor: BTEL/14/FT Examinaions for 2015-2016 / Semeser 2 MODULE: ELECTROMAGNETIC THEORY MODULE CODE: ASE2103 Duraion: 2 ½ Hours Insrucions o Candidaes: 1. Answer ALL 4 (FOUR)

More information

4. Electric field lines with respect to equipotential surfaces are

4. Electric field lines with respect to equipotential surfaces are Pre-es Quasi-saic elecromagneism. The field produced by primary charge Q and by an uncharged conducing plane disanced from Q by disance d is equal o he field produced wihou conducing plane by wo following

More information

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product 11.1 APPCATON OF AMPEE S AW N SYMMETC MAGNETC FEDS - f one knows ha a magneic field has a symmery, one may calculae he magniude of by use of Ampere s law: The inegral of scalar produc Closed _ pah * d

More information

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem) Week 1 Lecure Problems, 5 Wha if somehing oscillaes wih no obvious spring? Wha is ω? (problem se problem) Sar wih Try and ge o SHM form E. Full beer can in lake, oscillaing F = m & = ge rearrange: F =

More information

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k Challenge Problems DIS 03 and 0 March 6, 05 Choose one of he following problems, and work on i in your group. Your goal is o convince me ha your answer is correc. Even if your answer isn compleely correc,

More information

Review of EM and Introduction to FDTD

Review of EM and Introduction to FDTD 1/13/016 5303 lecromagneic Analsis Using Finie Difference Time Domain Lecure #4 Review of M and Inroducion o FDTD Lecure 4These noes ma conain coprighed maerial obained under fair use rules. Disribuion

More information

Lecture Outline. Introduction Transmission Line Equations Transmission Line Wave Equations 8/10/2018. EE 4347 Applied Electromagnetics.

Lecture Outline. Introduction Transmission Line Equations Transmission Line Wave Equations 8/10/2018. EE 4347 Applied Electromagnetics. 8/10/018 Course Insrucor Dr. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: rcrumpf@uep.edu EE 4347 Applied Elecromagneics Topic 4a Transmission Line Equaions Transmission These Line noes

More information

Exam I. Name. Answer: a. W B > W A if the volume of the ice cubes is greater than the volume of the water.

Exam I. Name. Answer: a. W B > W A if the volume of the ice cubes is greater than the volume of the water. Name Exam I 1) A hole is punched in a full milk caron, 10 cm below he op. Wha is he iniial veloci of ouflow? a. 1.4 m/s b. 2.0 m/s c. 2.8 m/s d. 3.9 m/s e. 2.8 m/s Answer: a 2) In a wind unnel he pressure

More information

Kinematics in two dimensions

Kinematics in two dimensions Lecure 5 Phsics I 9.18.13 Kinemaics in wo dimensions Course websie: hp://facul.uml.edu/andri_danlo/teaching/phsicsi Lecure Capure: hp://echo36.uml.edu/danlo13/phsics1fall.hml 95.141, Fall 13, Lecure 5

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

a. Show that these lines intersect by finding the point of intersection. b. Find an equation for the plane containing these lines.

a. Show that these lines intersect by finding the point of intersection. b. Find an equation for the plane containing these lines. Mah A Final Eam Problems for onsideraion. Show all work for credi. Be sure o show wha you know. Given poins A(,,, B(,,, (,, 4 and (,,, find he volume of he parallelepiped wih adjacen edges AB, A, and A.

More information

Waves are naturally found in plasmas and have to be dealt with. This includes instabilities, fluctuations, waveinduced

Waves are naturally found in plasmas and have to be dealt with. This includes instabilities, fluctuations, waveinduced Lecure 1 Inroducion Why is i imporan o sudy waves in plasma? Waves are naurally found in plasmas and have o be deal wih. This includes insabiliies, flucuaions, waveinduced ranspor... Waves can deliver

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Direc Curren Physics for Scieniss & Engineers 2 Spring Semeser 2005 Lecure 16 This week we will sudy charges in moion Elecric charge moving from one region o anoher is called elecric curren Curren is all

More information

Traveling Waves. Chapter Introduction

Traveling Waves. Chapter Introduction Chaper 4 Traveling Waves 4.1 Inroducion To dae, we have considered oscillaions, i.e., periodic, ofen harmonic, variaions of a physical characerisic of a sysem. The sysem a one ime is indisinguishable from

More information

ln 2 1 ln y x c y C x

ln 2 1 ln y x c y C x Lecure 14 Appendi B: Some sample problems from Boas Here are some soluions o he sample problems assigned for Chaper 8 8: 6 Soluion: We wan o find he soluion o he following firs order equaion using separaion

More information

and v y . The changes occur, respectively, because of the acceleration components a x and a y

and v y . The changes occur, respectively, because of the acceleration components a x and a y Week 3 Reciaion: Chaper3 : Problems: 1, 16, 9, 37, 41, 71. 1. A spacecraf is raveling wih a veloci of v0 = 5480 m/s along he + direcion. Two engines are urned on for a ime of 84 s. One engine gives he

More information

Today in Physics 218: radiation reaction

Today in Physics 218: radiation reaction Today in Physics 18: radiaion reacion Radiaion reacion The Abraham-Lorenz formula; radiaion reacion force The pah of he elecron in oday s firs example (radial decay grealy exaggeraed) 6 March 004 Physics

More information

k 1 k 2 x (1) x 2 = k 1 x 1 = k 2 k 1 +k 2 x (2) x k series x (3) k 2 x 2 = k 1 k 2 = k 1+k 2 = 1 k k 2 k series

k 1 k 2 x (1) x 2 = k 1 x 1 = k 2 k 1 +k 2 x (2) x k series x (3) k 2 x 2 = k 1 k 2 = k 1+k 2 = 1 k k 2 k series Final Review A Puzzle... Consider wo massless springs wih spring consans k 1 and k and he same equilibrium lengh. 1. If hese springs ac on a mass m in parallel, hey would be equivalen o a single spring

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

The expectation value of the field operator.

The expectation value of the field operator. The expecaion value of he field operaor. Dan Solomon Universiy of Illinois Chicago, IL dsolom@uic.edu June, 04 Absrac. Much of he mahemaical developmen of quanum field heory has been in suppor of deermining

More information

Problem Set #1. i z. the complex propagation constant. For the characteristic impedance:

Problem Set #1. i z. the complex propagation constant. For the characteristic impedance: Problem Se # Problem : a) Using phasor noaion, calculae he volage and curren waves on a ransmission line by solving he wave equaion Assume ha R, L,, G are all non-zero and independen of frequency From

More information

MATH 31B: MIDTERM 2 REVIEW. x 2 e x2 2x dx = 1. ue u du 2. x 2 e x2 e x2] + C 2. dx = x ln(x) 2 2. ln x dx = x ln x x + C. 2, or dx = 2u du.

MATH 31B: MIDTERM 2 REVIEW. x 2 e x2 2x dx = 1. ue u du 2. x 2 e x2 e x2] + C 2. dx = x ln(x) 2 2. ln x dx = x ln x x + C. 2, or dx = 2u du. MATH 3B: MIDTERM REVIEW JOE HUGHES. Inegraion by Pars. Evaluae 3 e. Soluion: Firs make he subsiuion u =. Then =, hence 3 e = e = ue u Now inegrae by pars o ge ue u = ue u e u + C and subsiue he definiion

More information

THE 2-BODY PROBLEM. FIGURE 1. A pair of ellipses sharing a common focus. (c,b) c+a ROBERT J. VANDERBEI

THE 2-BODY PROBLEM. FIGURE 1. A pair of ellipses sharing a common focus. (c,b) c+a ROBERT J. VANDERBEI THE 2-BODY PROBLEM ROBERT J. VANDERBEI ABSTRACT. In his shor noe, we show ha a pair of ellipses wih a common focus is a soluion o he 2-body problem. INTRODUCTION. Solving he 2-body problem from scrach

More information

4.6 One Dimensional Kinematics and Integration

4.6 One Dimensional Kinematics and Integration 4.6 One Dimensional Kinemaics and Inegraion When he acceleraion a( of an objec is a non-consan funcion of ime, we would like o deermine he ime dependence of he posiion funcion x( and he x -componen of

More information

ψ(t) = V x (0)V x (t)

ψ(t) = V x (0)V x (t) .93 Home Work Se No. (Professor Sow-Hsin Chen Spring Term 5. Due March 7, 5. This problem concerns calculaions of analyical expressions for he self-inermediae scaering funcion (ISF of he es paricle in

More information

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits Lecure 13 RC/RL Circuis, Time Dependen Op Amp Circuis RL Circuis The seps involved in solving simple circuis conaining dc sources, resisances, and one energy-sorage elemen (inducance or capaciance) are:

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page Assignmen 1 MATH 2270 SOLUTION Please wrie ou complee soluions for each of he following 6 problems (one more will sill be added). You may, of course, consul wih your classmaes, he exbook or oher resources,

More information

The Classification of Linearly Polarized Transverse Electric Waves

The Classification of Linearly Polarized Transverse Electric Waves JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 5, 31334 1997 ARTICLE NO. AY97515 The Classificaion of Linearly Polarized Transverse Elecric Waves P. R. Baldwin Deparmen of Physics, The Uniersiy of Akron,

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

( ) 2. Review Exercise 2. cos θ 2 3 = = 2 tan. cos. 2 x = = x a. Since π π, = 2. sin = = 2+ = = cotx. 2 sin θ 2+

( ) 2. Review Exercise 2. cos θ 2 3 = = 2 tan. cos. 2 x = = x a. Since π π, = 2. sin = = 2+ = = cotx. 2 sin θ 2+ Review Eercise sin 5 cos sin an cos 5 5 an 5 9 co 0 a sinθ 6 + 4 6 + sin θ 4 6+ + 6 + 4 cos θ sin θ + 4 4 sin θ + an θ cos θ ( ) + + + + Since π π, < θ < anθ should be negaive. anθ ( + ) Pearson Educaion

More information

Parametrics and Vectors (BC Only)

Parametrics and Vectors (BC Only) Paramerics and Vecors (BC Only) The following relaionships should be learned and memorized. The paricle s posiion vecor is r() x(), y(). The velociy vecor is v(),. The speed is he magniude of he velociy

More information

4.5 Constant Acceleration

4.5 Constant Acceleration 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

More information

Chapter 5 Kinematics

Chapter 5 Kinematics Chaper 5 Kinemaics In he firs place, wha do we mean b ime and space? I urns ou ha hese deep philosophical quesions have o be analzed ver carefull in phsics, and his is no eas o do. The heor of relaivi

More information

System of Linear Differential Equations

System of Linear Differential Equations Sysem of Linear Differenial Equaions In "Ordinary Differenial Equaions" we've learned how o solve a differenial equaion for a variable, such as: y'k5$e K2$x =0 solve DE yx = K 5 2 ek2 x C_C1 2$y''C7$y

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

Roller-Coaster Coordinate System

Roller-Coaster Coordinate System Winer 200 MECH 220: Mechanics 2 Roller-Coaser Coordinae Sysem Imagine you are riding on a roller-coaer in which he rack goes up and down, wiss and urns. Your velociy and acceleraion will change (quie abruply),

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elemenar Differenial Equaions and Boundar Value Problems Boce. & DiPrima 9 h Ediion Chaper 1: Inroducion 1006003 คณ ตศาสตร ว ศวกรรม 3 สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา 1/2555 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

SINUSOIDAL WAVEFORMS

SINUSOIDAL WAVEFORMS SINUSOIDAL WAVEFORMS The sinusoidal waveform is he only waveform whose shape is no affeced by he response characerisics of R, L, and C elemens. Enzo Paerno CIRCUIT ELEMENTS R [ Ω ] Resisance: Ω: Ohms Georg

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

72 Calculus and Structures

72 Calculus and Structures 72 Calculus and Srucures CHAPTER 5 DISTANCE AND ACCUMULATED CHANGE Calculus and Srucures 73 Copyrigh Chaper 5 DISTANCE AND ACCUMULATED CHANGE 5. DISTANCE a. Consan velociy Le s ake anoher look a Mary s

More information

Math 527 Lecture 6: Hamilton-Jacobi Equation: Explicit Formulas

Math 527 Lecture 6: Hamilton-Jacobi Equation: Explicit Formulas Mah 527 Lecure 6: Hamilon-Jacobi Equaion: Explici Formulas Sep. 23, 2 Mehod of characerisics. We r o appl he mehod of characerisics o he Hamilon-Jacobi equaion: u +Hx, Du = in R n, u = g on R n =. 2 To

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

Laplace transfom: t-translation rule , Haynes Miller and Jeremy Orloff

Laplace transfom: t-translation rule , Haynes Miller and Jeremy Orloff Laplace ransfom: -ranslaion rule 8.03, Haynes Miller and Jeremy Orloff Inroducory example Consider he sysem ẋ + 3x = f(, where f is he inpu and x he response. We know is uni impulse response is 0 for

More information

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details!

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details! MAT 257, Handou 6: Ocober 7-2, 20. I. Assignmen. Finish reading Chaper 2 of Spiva, rereading earlier secions as necessary. handou and fill in some missing deails! II. Higher derivaives. Also, read his

More information

Non-uniform circular motion *

Non-uniform circular motion * OpenSax-CNX module: m14020 1 Non-uniform circular moion * Sunil Kumar Singh This work is produced by OpenSax-CNX and licensed under he Creaive Commons Aribuion License 2.0 Wha do we mean by non-uniform

More information

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit V() R L C 513 Elecrical Circuis Tools Used in Lab 13 Series Circuis Damped Vibraions: Energy Van der Pol Circui A series circui wih an inducor, resisor, and capacior can be represened by Lq + Rq + 1, a

More information

PROBLEMS FOR MATH 162 If a problem is starred, all subproblems are due. If only subproblems are starred, only those are due. SLOPES OF TANGENT LINES

PROBLEMS FOR MATH 162 If a problem is starred, all subproblems are due. If only subproblems are starred, only those are due. SLOPES OF TANGENT LINES PROBLEMS FOR MATH 6 If a problem is sarred, all subproblems are due. If onl subproblems are sarred, onl hose are due. 00. Shor answer quesions. SLOPES OF TANGENT LINES (a) A ball is hrown ino he air. Is

More information

A Note on Fractional Electrodynamics. Abstract

A Note on Fractional Electrodynamics. Abstract Commun Nonlinear Sci Numer Simula 8 (3 589 593 A Noe on Fracional lecrodynamics Hosein Nasrolahpour Absrac We invesigae he ime evoluion o he racional elecromagneic waves by using he ime racional Maxwell's

More information

Name: Total Points: Multiple choice questions [120 points]

Name: Total Points: Multiple choice questions [120 points] Name: Toal Poins: (Las) (Firs) Muliple choice quesions [1 poins] Answer all of he following quesions. Read each quesion carefully. Fill he correc bubble on your scanron shee. Each correc answer is worh

More information

2 Some Property of Exponential Map of Matrix

2 Some Property of Exponential Map of Matrix Soluion Se for Exercise Session No8 Course: Mahemaical Aspecs of Symmeries in Physics, ICFP Maser Program for M 22nd, January 205, a Room 235A Lecure by Amir-Kian Kashani-Poor email: kashani@lpensfr Exercise

More information

Giambattista, Ch 3 Problems: 9, 15, 21, 27, 35, 37, 42, 43, 47, 55, 63, 76

Giambattista, Ch 3 Problems: 9, 15, 21, 27, 35, 37, 42, 43, 47, 55, 63, 76 Giambaisa, Ch 3 Problems: 9, 15, 21, 27, 35, 37, 42, 43, 47, 55, 63, 76 9. Sraeg Le be direced along he +x-axis and le be 60.0 CCW from Find he magniude of 6.0 B 60.0 4.0 A x 15. (a) Sraeg Since he angle

More information

Basic Circuit Elements Professor J R Lucas November 2001

Basic Circuit Elements Professor J R Lucas November 2001 Basic Circui Elemens - J ucas An elecrical circui is an inerconnecion of circui elemens. These circui elemens can be caegorised ino wo ypes, namely acive and passive elemens. Some Definiions/explanaions

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

Linear Dynamic Models

Linear Dynamic Models Linear Dnamic Models and Forecasing Reference aricle: Ineracions beween he muliplier analsis and he principle of acceleraion Ouline. The sae space ssem as an approach o working wih ssems of difference

More information

MA 366 Review - Test # 1

MA 366 Review - Test # 1 MA 366 Review - Tes # 1 Fall 5 () Resuls from Calculus: differeniaion formulas, implici differeniaion, Chain Rule; inegraion formulas, inegraion b pars, parial fracions, oher inegraion echniques. (1) Order

More information

Relaxation. T1 Values. Longitudinal Relaxation. dm z dt. = " M z T 1. (1" e "t /T 1 ) M z. (t) = M 0

Relaxation. T1 Values. Longitudinal Relaxation. dm z dt. =  M z T 1. (1 e t /T 1 ) M z. (t) = M 0 Relaxaion Bioengineering 28A Principles of Biomedical Imaging Fall Quarer 21 MRI Lecure 2 An exciaion pulse roaes he magneiaion vecor away from is equilibrium sae (purely longiudinal). The resuling vecor

More information

ACCUMULATION. Section 7.5 Calculus AP/Dual, Revised /26/2018 7:27 PM 7.5A: Accumulation 1

ACCUMULATION. Section 7.5 Calculus AP/Dual, Revised /26/2018 7:27 PM 7.5A: Accumulation 1 ACCUMULATION Secion 7.5 Calculus AP/Dual, Revised 2019 vie.dang@humbleisd.ne 12/26/2018 7:27 PM 7.5A: Accumulaion 1 APPLICATION PROBLEMS A. Undersand he quesion. I is ofen no necessary o as much compuaion

More information

Second Order Linear Differential Equations

Second Order Linear Differential Equations Second Order Linear Differenial Equaions Second order linear equaions wih consan coefficiens; Fundamenal soluions; Wronskian; Exisence and Uniqueness of soluions; he characerisic equaion; soluions of homogeneous

More information

Chapter 10 INDUCTANCE Recommended Problems:

Chapter 10 INDUCTANCE Recommended Problems: Chaper 0 NDUCTANCE Recommended Problems: 3,5,7,9,5,6,7,8,9,,,3,6,7,9,3,35,47,48,5,5,69, 7,7. Self nducance Consider he circui shown in he Figure. When he swich is closed, he curren, and so he magneic field,

More information

AP Calculus BC Chapter 10 Part 1 AP Exam Problems

AP Calculus BC Chapter 10 Part 1 AP Exam Problems AP Calculus BC Chaper Par AP Eam Problems All problems are NO CALCULATOR unless oherwise indicaed Parameric Curves and Derivaives In he y plane, he graph of he parameric equaions = 5 + and y= for, is a

More information

The Quantum Theory of Atoms and Molecules: The Schrodinger equation. Hilary Term 2008 Dr Grant Ritchie

The Quantum Theory of Atoms and Molecules: The Schrodinger equation. Hilary Term 2008 Dr Grant Ritchie e Quanum eory of Aoms and Molecules: e Scrodinger equaion Hilary erm 008 Dr Gran Ricie An equaion for maer waves? De Broglie posulaed a every paricles as an associaed wave of waveleng: / p Wave naure of

More information

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9:

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9: EE65R: Reliabiliy Physics of anoelecronic Devices Lecure 9: Feaures of Time-Dependen BTI Degradaion Dae: Sep. 9, 6 Classnoe Lufe Siddique Review Animesh Daa 9. Background/Review: BTI is observed when he

More information

Kinematics in two Dimensions

Kinematics in two Dimensions Lecure 5 Chaper 4 Phsics I Kinemaics in wo Dimensions Course websie: hp://facul.uml.edu/andri_danlo/teachin/phsicsi PHYS.141 Lecure 5 Danlo Deparmen of Phsics and Applied Phsics Toda we are oin o discuss:

More information

8.022 (E&M) Lecture 16

8.022 (E&M) Lecture 16 8. (E&M) ecure 16 Topics: Inducors in circuis circuis circuis circuis as ime Our second lecure on elecromagneic inducance 3 ways of creaing emf using Faraday s law: hange area of circui S() hange angle

More information

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation Hea (iffusion) Equaion erivaion of iffusion Equaion The fundamenal mass balance equaion is I P O L A ( 1 ) where: I inpus P producion O oupus L losses A accumulaion Assume ha no chemical is produced or

More information

Circuit Variables. AP 1.1 Use a product of ratios to convert two-thirds the speed of light from meters per second to miles per second: 1 ft 12 in

Circuit Variables. AP 1.1 Use a product of ratios to convert two-thirds the speed of light from meters per second to miles per second: 1 ft 12 in Circui Variables 1 Assessmen Problems AP 1.1 Use a produc of raios o conver wo-hirds he speed of ligh from meers per second o miles per second: ( ) 2 3 1 8 m 3 1 s 1 cm 1 m 1 in 2.54 cm 1 f 12 in 1 mile

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

The complex Fourier series has an important limiting form when the period approaches infinity, i.e., T 0. 0 since it is proportional to 1/L, but

The complex Fourier series has an important limiting form when the period approaches infinity, i.e., T 0. 0 since it is proportional to 1/L, but Fourier Transforms The complex Fourier series has an imporan limiing form when he period approaches infiniy, i.e., T or L. Suppose ha in his limi () k = nπ L remains large (ranging from o ) and (2) c n

More information

Check in: 1 If m = 2(x + 1) and n = find y when. b y = 2m n 2

Check in: 1 If m = 2(x + 1) and n = find y when. b y = 2m n 2 7 Parameric equaions This chaer will show ou how o skech curves using heir arameric equaions conver arameric equaions o Caresian equaions find oins of inersecion of curves and lines using arameric equaions

More information

The Production of Polarization

The Production of Polarization Physics 36: Waves Lecue 13 3/31/211 The Poducion of Polaizaion Today we will alk abou he poducion of polaized ligh. We aleady inoduced he concep of he polaizaion of ligh, a ansvese EM wave. To biefly eview

More information

INDEX. Transient analysis 1 Initial Conditions 1

INDEX. Transient analysis 1 Initial Conditions 1 INDEX Secion Page Transien analysis 1 Iniial Condiions 1 Please inform me of your opinion of he relaive emphasis of he review maerial by simply making commens on his page and sending i o me a: Frank Mera

More information

Lecture #8 Redfield theory of NMR relaxation

Lecture #8 Redfield theory of NMR relaxation Lecure #8 Redfield heory of NMR relaxaion Topics The ineracion frame of reference Perurbaion heory The Maser Equaion Handous and Reading assignmens van de Ven, Chapers 6.2. Kowalewski, Chaper 4. Abragam

More information

Learning Enhancement Team

Learning Enhancement Team Learning Enhancemen Team Model answers: Exponenial Funcions Exponenial Funcions sudy guide 1 i) The base rae of growh b is equal o 3 You can see his by noicing ha 1b 36 in his sysem, dividing boh sides

More information

Math Wednesday March 3, , 4.3: First order systems of Differential Equations Why you should expect existence and uniqueness for the IVP

Math Wednesday March 3, , 4.3: First order systems of Differential Equations Why you should expect existence and uniqueness for the IVP Mah 2280 Wednesda March 3, 200 4., 4.3: Firs order ssems of Differenial Equaions Wh ou should epec eisence and uniqueness for he IVP Eample: Consider he iniial value problem relaed o page 4 of his eserda

More information

The Maxwell Equations, the Lorentz Field and the Electromagnetic Nanofield with Regard to the Question of Relativity

The Maxwell Equations, the Lorentz Field and the Electromagnetic Nanofield with Regard to the Question of Relativity The Maxwell Equaions, he Lorenz Field and he Elecromagneic Nanofield wih Regard o he Quesion of Relaiviy Daniele Sasso * Absrac We discuss he Elecromagneic Theory in some main respecs and specifically

More information

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004 ODEs II, Lecure : Homogeneous Linear Sysems - I Mike Raugh March 8, 4 Inroducion. In he firs lecure we discussed a sysem of linear ODEs for modeling he excreion of lead from he human body, saw how o ransform

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Represenaion of Signals in Terms of Frequency Componens Chaper 4 The Fourier Series and Fourier Transform Consider he CT signal defined by x () = Acos( ω + θ ), = The frequencies `presen in he signal are

More information

2. The following diagram shows a circular loop of wire in a uniform magnetic field that points out of the page.

2. The following diagram shows a circular loop of wire in a uniform magnetic field that points out of the page. 1. Two elecromagneic waves ravel hrough emp space. Wave A as a wavelengh of 700 nm (red ligh), while Wave B has a wavelengh of 400 nm (blue ligh). Which saemen is rue? A) Wave A ravels faser because i

More information

III. Direct evolution of the density: The Liouville Operator

III. Direct evolution of the density: The Liouville Operator Cem 564 Lecure 8 3mar From Noes 8 003,005,007, 009 TIME IN QUANTUM MECANICS. I Ouline I. Te ime dependen Scroedinger equaion; ime dependence of energy eigensaes II.. Sae vecor (wave funcion) ime evoluion

More information

Chapters 6 & 7: Trigonometric Functions of Angles and Real Numbers. Divide both Sides by 180

Chapters 6 & 7: Trigonometric Functions of Angles and Real Numbers. Divide both Sides by 180 Algebra Chapers & : Trigonomeric Funcions of Angles and Real Numbers Chapers & : Trigonomeric Funcions of Angles and Real Numbers - Angle Measures Radians: - a uni (rad o measure he size of an angle. rad

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predaor - Prey Model Trajecories and he nonlinear conservaion law James K. Peerson Deparmen of Biological Sciences and Deparmen of Mahemaical Sciences Clemson Universiy Ocober 28, 213 Ouline Drawing Trajecories

More information

k B 2 Radiofrequency pulses and hardware

k B 2 Radiofrequency pulses and hardware 1 Exra MR Problems DC Medical Imaging course April, 214 he problems below are harder, more ime-consuming, and inended for hose wih a more mahemaical background. hey are enirely opional, bu hopefully will

More information

( ) = 0.43 kj = 430 J. Solutions 9 1. Solutions to Miscellaneous Exercise 9 1. Let W = work done then 0.

( ) = 0.43 kj = 430 J. Solutions 9 1. Solutions to Miscellaneous Exercise 9 1. Let W = work done then 0. Soluions 9 Soluions o Miscellaneous Exercise 9. Le W work done hen.9 W PdV Using Simpson's rule (9.) we have. W { 96 + [ 58 + 6 + 77 + 5 ] + [ + 99 + 6 ]+ }. kj. Using Simpson's rule (9.) again: W.5.6

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

A Bayesian Approach to Spectral Analysis

A Bayesian Approach to Spectral Analysis Chirped Signals A Bayesian Approach o Specral Analysis Chirped signals are oscillaing signals wih ime variable frequencies, usually wih a linear variaion of frequency wih ime. E.g. f() = A cos(ω + α 2

More information