# 4.5 Constant Acceleration

Size: px
Start display at page:

Transcription

1 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)), he average acceleraion, Δv / Δ, is a consan and hence is equal o he insananeous acceleraion (Figure 4.8(b)). Le s consider a body undergoing consan acceleraion for a ime inerval [0, ], where Δ =. Denoe he x -componen of he velociy a ime = 0 by v 0 v( = 0). Therefore he x -componen of he acceleraion is given by Δv v() v a() = = 0. (4.4.) Δ Thus he x -componen of he velociy is a linear funcion of ime given by 4.5. Velociy: Area Under he Acceleraion vs. Time Graph v() = v 0 + a. (4.4.) In Figure 4.8(b), he area under he acceleraion vs. ime graph, for he ime inerval Δ = 0 =, is Area(a(), ) = a. (4.4.3) From Eq. (4.4.), he area is he change in he x -componen of he velociy for he inerval [0, ]: Area(a(),) = a = v() v 0 = Δv. (4.4.4) 4.5. Displacemen: Area Under he Velociy vs. Time Graph In Figure 4.9 shows a graph of he x -componen of he velociy vs. ime for he case of consan acceleraion (Eq. (4.4.)).

2 v() v() = v0 + a A = (v() v0 ) v0 A = v0 O Figure 4.9 Graph of velociy as a funcion of ime for a consan. The region under he velociy vs. ime curve is a rapezoid, formed from a recangle wih area A = v0, and a riangle wih area A = (/ )(v() v0 ). The oal area of he rapezoid is given by Area(v(),) = A + A = v0 + (v() v0 ). (4.4.5) Subsiuing for he velociy (Eq. (4.4.)) yields Area(v(),) = v0 + a. (4.4.6) Recall ha from Example 4. (seing b = a and Δ = ), vave = v0 + a = Δx /, (4.4.7) herefore Eq. (4.4.6) can be rewrien as Area(v(),) = (v0 + a) = vave = Δx (4.4.8) The displacemen is equal o he area under he graph of he x -componen of he velociy vs. ime. The posiion as a funcion of ime can now be found by rewriing Equaion (4.4.8) as x() = x0 + v0 + a. (4.4.9) Figure 4.0 shows a graph of his equaion. Noice ha a = 0 he slope is non-zero, corresponding o he iniial velociy componen v0.

3 x() ) x0 O slope = v0 Figure 4.0 Graph of posiion vs. ime for consan acceleraion. Example 4.4 Acceleraing Car A car, saring a res a = 0, acceleraes in a sraigh line for 00 m wih an unknown consan acceleraion. I reaches a speed of 0 m s and hen coninues a his speed for anoher 0 s. (a) Wrie down he equaions for posiion and velociy of he car as a funcion of ime. (b) How long was he car acceleraing? (c) Wha was he magniude of he acceleraion? (d) Plo speed vs. ime, acceleraion vs. ime, and posiion vs. ime for he enire moion. (e) Wha was he average velociy for he enire rip? Soluions: (a) For he acceleraion a, he posiion x() and velociy v() as a funcion of ime for a car saring from res are x() = (/ ) a vx () = a. (4.4.0) b) Denoe he ime inerval during which he car acceleraed by. We know ha he posiion x( ) = 00 m and v( ) = 0 m s. Noe ha we can eliminae he acceleraion a beween he Equaions (4.4.0) o obain x() = ( / ) v(). (4.4.) We can solve his equaion for ime as a funcion of he disance and he final speed giving x() =. (4.4.) v() We can now subsiue our known values for he posiion x( ) = 00 m and v( ) = 0 m s and solve for he ime inerval ha he car has acceleraed 3

4 = x( ) v( ) = 00 m = 0s. 0 m s (4.4.3) c) We can subsiue ino eiher of he expressions in Equaion (4.4.0); he second is slighly easier o use, v( ) 0 m s (4.4.4) a= = =.0 m s. 0s d) The x -componen of acceleraion vs. ime, x -componen of he velociy vs. ime, and he posiion vs. ime are piece-wise funcions given by m s- ; 0 < 0 s, a() = 0; 0 s < < 0 s - ( m s ); 0 < 0 s, v() = - 0 m s ; 0 s 0 s (/ )( m s- ) ; 0 < 0 s. x() = - 00 m +(0 m s )( 0 s); 0 s 0 s The graphs of he x -componen of acceleraion vs. ime, x -componen of he velociy vs. ime, and he posiion vs. ime are shown in Figure 4.. (e) Afer acceleraing, he car ravels for an addiional en seconds a consan speed and during his inerval he car ravels an addiional disance Δx = v( ) 0s = 00 m (noe ha his is wice he disance raveled during he 0s of acceleraion), so he oal disance raveled is 300 m and he oal ime is 0s, for an average velociy of vave = a() 300 m =5m s. 0s (4.4.5) x() v() 00 m 0 m s- m s- 0 s 0 s 0 s 0 s 0 s 0 s Figure 4. Graphs of he x-componens of acceleraion, velociy and posiion as piecewise funcions 4

5 Example 4.5 Caching a Bus A he insan a raffic ligh urns green, a car sars from res wih a given consan acceleraion, 3.0 m s -. Jus as he ligh urns green, a bus, raveling wih a given consan velociy,.6 0 m s -, passes he car. The car speeds up and passes he bus some ime laer. How far down he road has he car raveled, when he car passes he bus? Soluion: There are wo moving objecs, bus and he car. Each objec undergoes one sage of onedimensional moion. We are given he acceleraion of he car, he velociy of he bus, and infer ha he posiion of he car and he bus are equal when he bus jus passes he car. Figure 4. shows a qualiaive skech of he posiion of he car and bus as a funcion of ime. x bus x () car x () 0 a Figure 4. Posiion vs. ime of he car and bus Choose a coordinae sysem wih he origin a he raffic ligh and he posiive x - direcion such ha car and bus are ravelling in he posiive x -direcion. Se ime = 0 as he insan he car and bus pass each oher a he origin when he ligh urns green. Figure 4.3 shows he posiion of he car and bus a ime. x () x () 0 + x Figure 4.3 Coordinae sysem for car and bus Le x () denoe he posiion funcion of he car, and x () he posiion funcion for he bus. The iniial posiion and iniial velociy of he car are boh zero, x,0 = 0 and v,0 = 0, 5

6 and he acceleraion of he car is non-zero a 0. Therefore he posiion and velociy funcions of he car are given by x () = a, v () = a. The iniial posiion of he bus is zero, x,0 = 0, he iniial velociy of he bus is non-zero, v,0 0, and he acceleraion of he bus is zero, a = 0. Therefore he velociy is consan, v () = v,0, and he posiion funcion for he bus is given by x () = v,0. Le = a correspond o he ime ha he car passes he bus. Then a ha insan, he posiion funcions of he bus and car are equal, x ( a ) = x ( a ). We can use his condiion o solve for : a v,0 ()(.6 0 m s - ) (/ )a a = v,0 a a = = - =. 0 s. (3.0m s ) Therefore he posiion of he car a a is a v,0 ()(.6 0 x m s - ( ) = a = = ) a a - ) =.7 0 m. a (3.0 m s 6

7 MIT OpenCourseWare hps://ocw.mi.edu 8.0 Classical Mechanics Fall 06 For Informaion abou ciing hese maerials or our Terms of Use, visi: hps://ocw.mi.edu/erms.

### 4.6 One Dimensional Kinematics and Integration

4.6 One Dimensional Kinemaics and Inegraion When he acceleraion a( of an objec is a non-consan funcion of ime, we would like o deermine he ime dependence of he posiion funcion x( and he x -componen of

### Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

### Physics 20 Lesson 5 Graphical Analysis Acceleration

Physics 2 Lesson 5 Graphical Analysis Acceleraion I. Insananeous Velociy From our previous work wih consan speed and consan velociy, we know ha he slope of a posiion-ime graph is equal o he velociy of

### MEI Mechanics 1 General motion. Section 1: Using calculus

Soluions o Exercise MEI Mechanics General moion Secion : Using calculus. s 4 v a 6 4 4 When =, v 4 a 6 4 6. (i) When = 0, s = -, so he iniial displacemen = - m. s v 4 When = 0, v = so he iniial velociy

### Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

### KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

### Physics 221 Fall 2008 Homework #2 Solutions Ch. 2 Due Tues, Sept 9, 2008

Physics 221 Fall 28 Homework #2 Soluions Ch. 2 Due Tues, Sep 9, 28 2.1 A paricle moving along he x-axis moves direcly from posiion x =. m a ime =. s o posiion x = 1. m by ime = 1. s, and hen moves direcly

### a 10.0 (m/s 2 ) 5.0 Name: Date: 1. The graph below describes the motion of a fly that starts out going right V(m/s)

Name: Dae: Kinemaics Review (Honors. Physics) Complee he following on a separae shee of paper o be urned in on he day of he es. ALL WORK MUST BE SHOWN TO RECEIVE CREDIT. 1. The graph below describes he

### Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

### 1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

### Displacement ( x) x x x

Kinemaics Kinemaics is he branch of mechanics ha describes he moion of objecs wihou necessarily discussing wha causes he moion. 1-Dimensional Kinemaics (or 1- Dimensional moion) refers o moion in a sraigh

### IB Physics Kinematics Worksheet

IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

### Today: Graphing. Note: I hope this joke will be funnier (or at least make you roll your eyes and say ugh ) after class. v (miles per hour ) Time

+v Today: Graphing v (miles per hour ) 9 8 7 6 5 4 - - Time Noe: I hope his joke will be funnier (or a leas make you roll your eyes and say ugh ) afer class. Do yourself a favor! Prof Sarah s fail-safe

### Chapter 2. Motion in One-Dimension I

Chaper 2. Moion in One-Dimension I Level : AP Physics Insrucor : Kim 1. Average Rae of Change and Insananeous Velociy To find he average velociy(v ) of a paricle, we need o find he paricle s displacemen

### Of all of the intellectual hurdles which the human mind has confronted and has overcome in the last fifteen hundred years, the one which seems to me

Of all of he inellecual hurdles which he human mind has confroned and has overcome in he las fifeen hundred years, he one which seems o me o have been he mos amazing in characer and he mos supendous in

### Motion along a Straight Line

chaper 2 Moion along a Sraigh Line verage speed and average velociy (Secion 2.2) 1. Velociy versus speed Cone in he ebook: fer Eample 2. Insananeous velociy and insananeous acceleraion (Secions 2.3, 2.4)

### Speed and Velocity. Overview. Velocity & Speed. Speed & Velocity. Instantaneous Velocity. Instantaneous and Average

Overview Kinemaics: Descripion of Moion Posiion and displacemen velociy»insananeous acceleraion»insananeous Speed Velociy Speed and Velociy Speed & Velociy Velociy & Speed A physics eacher walks 4 meers

### Parametrics and Vectors (BC Only)

Paramerics and Vecors (BC Only) The following relaionships should be learned and memorized. The paricle s posiion vecor is r() x(), y(). The velociy vecor is v(),. The speed is he magniude of he velociy

### INSTANTANEOUS VELOCITY

INSTANTANEOUS VELOCITY I claim ha ha if acceleraion is consan, hen he elociy is a linear funcion of ime and he posiion a quadraic funcion of ime. We wan o inesigae hose claims, and a he same ime, work

### 2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

### AP Calculus BC Chapter 10 Part 1 AP Exam Problems

AP Calculus BC Chaper Par AP Eam Problems All problems are NO CALCULATOR unless oherwise indicaed Parameric Curves and Derivaives In he y plane, he graph of he parameric equaions = 5 + and y= for, is a

### Kinematics in One Dimension

Kinemaics in One Dimension PHY 7 - d-kinemaics - J. Hedberg - 7. Inroducion. Differen Types of Moion We'll look a:. Dimensionaliy in physics 3. One dimensional kinemaics 4. Paricle model. Displacemen Vecor.

### In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

### Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration

PHYS 54 Tes Pracice Soluions Spring 8 Q: [4] Knowing ha in he ne epression a is acceleraion, v is speed, is posiion and is ime, from a dimensional v poin of view, he equaion a is a) incorrec b) correc

### SPH3U1 Lesson 03 Kinematics

SPH3U1 Lesson 03 Kinemaics GRAPHICAL ANALYSIS LEARNING GOALS Sudens will Learn how o read values, find slopes and calculae areas on graphs. Learn wha hese values mean on boh posiion-ime and velociy-ime

### Kinematics Motion in 1 Dimension and Graphs

Kinemaics Moion in 1 Dimension and Graphs Lana Sheridan De Anza College Sep 27, 2017 Las ime moion in 1-dimension some kinemaic quaniies graphs Overview velociy and speed acceleraion more graphs Kinemaics

### Practicing Problem Solving and Graphing

Pracicing Problem Solving and Graphing Tes 1: Jan 30, 7pm, Ming Hsieh G20 The Bes Ways To Pracice for Tes Bes If need more, ry suggesed problems from each new opic: Suden Response Examples A pas opic ha

### Welcome Back to Physics 215!

Welcome Back o Physics 215! (General Physics I) Thurs. Jan 19 h, 2017 Lecure01-2 1 Las ime: Syllabus Unis and dimensional analysis Today: Displacemen, velociy, acceleraion graphs Nex ime: More acceleraion

### 1. Kinematics I: Position and Velocity

1. Kinemaics I: Posiion and Velociy Inroducion The purpose of his eperimen is o undersand and describe moion. We describe he moion of an objec by specifying is posiion, velociy, and acceleraion. In his

### Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3

A.P. Physics B Uni 1 Tes Reiew Physics Basics, Moemen, and Vecors Chapers 1-3 * In sudying for your es, make sure o sudy his reiew shee along wih your quizzes and homework assignmens. Muliple Choice Reiew:

### PHYSICS 149: Lecture 9

PHYSICS 149: Lecure 9 Chaper 3 3.2 Velociy and Acceleraion 3.3 Newon s Second Law of Moion 3.4 Applying Newon s Second Law 3.5 Relaive Velociy Lecure 9 Purdue Universiy, Physics 149 1 Velociy (m/s) The

### 15. Vector Valued Functions

1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

### WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

### PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections

PHYSICS 220 Lecure 02 Moion, Forces, and Newon s Laws Texbook Secions 2.2-2.4 Lecure 2 Purdue Universiy, Physics 220 1 Overview Las Lecure Unis Scienific Noaion Significan Figures Moion Displacemen: Δx

### One-Dimensional Kinematics

One-Dimensional Kinemaics One dimensional kinemaics refers o moion along a sraigh line. Een hough we lie in a 3-dimension world, moion can ofen be absraced o a single dimension. We can also describe moion

### 3.6 Derivatives as Rates of Change

3.6 Derivaives as Raes of Change Problem 1 John is walking along a sraigh pah. His posiion a he ime >0 is given by s = f(). He sars a =0from his house (f(0) = 0) and he graph of f is given below. (a) Describe

### Chapter 2. Motion along a straight line

Chaper Moion along a sraigh line Kinemaics & Dynamics Kinemaics: Descripion of Moion wihou regard o is cause. Dynamics: Sudy of principles ha relae moion o is cause. Basic physical ariables in kinemaics

### Equations of motion for constant acceleration

Lecure 3 Chaper 2 Physics I 01.29.2014 Equaions of moion for consan acceleraion Course websie: hp://faculy.uml.edu/andriy_danylo/teaching/physicsi Lecure Capure: hp://echo360.uml.edu/danylo2013/physics1spring.hml

### Mechanics Acceleration The Kinematics Equations

Mechanics Acceleraion The Kinemaics Equaions Lana Sheridan De Anza College Sep 27, 2018 Las ime kinemaic quaniies graphs of kinemaic quaniies Overview acceleraion he kinemaics equaions (consan acceleraion)

### !!"#"\$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

"#"\$%&#'()"#&'(*%)+,&',-)./)1-*) #\$%&'()*+,&',-.%,/)*+,-&1*#\$)()5*6\$+\$%*,7&*-'-&1*(,-&*6&,7.\$%\$+*&%'(*8\$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1\$&\$.\$%&'()*1\$\$.,'&',-9*(&,%)?%*,('&5

### Suggested Practice Problems (set #2) for the Physics Placement Test

Deparmen of Physics College of Ars and Sciences American Universiy of Sharjah (AUS) Fall 014 Suggesed Pracice Problems (se #) for he Physics Placemen Tes This documen conains 5 suggesed problems ha are

### - Graphing: Position Velocity. Acceleration

Tes Wednesday, Jan 31 in 101 Clark Hall a 7PM Main Ideas in Class Today - Graphing: Posiion Velociy v avg = x f f x i i a avg = v f f v i i Acceleraion Pracice ess & key online. Tes over maerial up o secion

### x i v x t a dx dt t x

Physics 3A: Basic Physics I Shoup - Miderm Useful Equaions A y A sin A A A y an A y A A = A i + A y j + A z k A * B = A B cos(θ) A B = A B sin(θ) A * B = A B + A y B y + A z B z A B = (A y B z A z B y

### 72 Calculus and Structures

72 Calculus and Srucures CHAPTER 5 DISTANCE AND ACCUMULATED CHANGE Calculus and Srucures 73 Copyrigh Chaper 5 DISTANCE AND ACCUMULATED CHANGE 5. DISTANCE a. Consan velociy Le s ake anoher look a Mary s

### Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole

Phys 221 Fall 2014 Chaper 2 Moion in One Dimension 2014, 2005 A. Dzyubenko 2004 Brooks/Cole 1 Kinemaics Kinemaics, a par of classical mechanics: Describes moion in erms of space and ime Ignores he agen

### Q2.1 This is the x t graph of the motion of a particle. Of the four points P, Q, R, and S, the velocity v x is greatest (most positive) at

Q2.1 This is he x graph of he moion of a paricle. Of he four poins P, Q, R, and S, he velociy is greaes (mos posiive) a A. poin P. B. poin Q. C. poin R. D. poin S. E. no enough informaion in he graph o

### AP CALCULUS BC 2016 SCORING GUIDELINES

6 SCORING GUIDELINES Quesion A ime, he posiion of a paricle moving in he xy-plane is given by he parameric funcions ( x ( ), y ( )), where = + sin ( ). The graph of y, consising of hree line segmens, is

### 6.003 Homework 1. Problems. Due at the beginning of recitation on Wednesday, February 10, 2010.

6.003 Homework Due a he beginning of reciaion on Wednesday, February 0, 200. Problems. Independen and Dependen Variables Assume ha he heigh of a waer wave is given by g(x v) where x is disance, v is velociy,

### 6th Year Applied Maths Higher Level Kieran Mills

6h Year Applied Mahs Higher Level Kieran Mills Uniform Acceleraed Moion No par of his publicaion may be copied, reproduced or ransmied in any form or by any means, elecronic, mechanical, phoocopying, recording,

### 2. What is the displacement of the bug between t = 0.00 s and t = 20.0 s? A) cm B) 39.9 cm C) cm D) 16.1 cm E) +16.

1. For which one of he following siuaions will he pah lengh equal he magniude of he displacemen? A) A jogger is running around a circular pah. B) A ball is rolling down an inclined plane. C) A rain ravels

### Position, Velocity, and Acceleration

rev 06/2017 Posiion, Velociy, and Acceleraion Equipmen Qy Equipmen Par Number 1 Dynamic Track ME-9493 1 Car ME-9454 1 Fan Accessory ME-9491 1 Moion Sensor II CI-6742A 1 Track Barrier Purpose The purpose

### Robotics I. April 11, The kinematics of a 3R spatial robot is specified by the Denavit-Hartenberg parameters in Tab. 1.

Roboics I April 11, 017 Exercise 1 he kinemaics of a 3R spaial robo is specified by he Denavi-Harenberg parameers in ab 1 i α i d i a i θ i 1 π/ L 1 0 1 0 0 L 3 0 0 L 3 3 able 1: able of DH parameers of

### SOLUTIONS TO CONCEPTS CHAPTER 3

SOLUTIONS TO ONEPTS HPTER 3. a) Disance ravelled = 50 + 40 + 0 = 0 m b) F = F = D = 50 0 = 30 M His displacemen is D D = F DF 30 40 50m In ED an = DE/E = 30/40 = 3/4 = an (3/4) His displacemen from his

### Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs.

Physics 180A Fall 2008 Tes 1-120 poins Name Provide he bes answer o he following quesions and problems. Wach your sig figs. 1) The number of meaningful digis in a number is called he number of. When numbers

### t = x v = 18.4m 44.4m/s =0.414 s.

1 Assuming he horizonal velociy of he ball is consan, he horizonal displacemen is x = v where x is he horizonal disance raveled, is he ime, and v is he (horizonal) velociy Convering v o meers per second,

### Uniform Accelerated Motion. 6 th Year. Applied Maths Higher Level Kieran Mills

6 h Year Applied Mahs Higher Level Kieran Mills Uniform Acceleraed Moion No par of his publicaion may be copied, reproduced or ransmied in any form or by any means, elecronic, mechanical, phoocopying,

### x(m) t(sec ) Homework #2. Ph 231 Introductory Physics, Sp-03 Page 1 of 4

Homework #2. Ph 231 Inroducory Physics, Sp-03 Page 1 of 4 2-1A. A person walks 2 miles Eas (E) in 40 minues and hen back 1 mile Wes (W) in 20 minues. Wha are her average speed and average velociy (in ha

Answers o Homework. x + and y x 5 y To eliminae he parameer, solve for x. Subsiue ino y s equaion o ge y x.. x and y, x y x To eliminae he parameer, solve for. Subsiue ino y s equaion o ge x y, x. (Noe:

### Traveling Waves. Chapter Introduction

Chaper 4 Traveling Waves 4.1 Inroducion To dae, we have considered oscillaions, i.e., periodic, ofen harmonic, variaions of a physical characerisic of a sysem. The sysem a one ime is indisinguishable from

### t A. 3. Which vector has the largest component in the y-direction, as defined by the axes to the right?

Ke Name Insrucor Phsics 1210 Exam 1 Sepember 26, 2013 Please wrie direcl on he exam and aach oher shees of work if necessar. Calculaors are allowed. No noes or books ma be used. Muliple-choice problems

### Dynamics. Option topic: Dynamics

Dynamics 11 syllabusref Opion opic: Dynamics eferenceence In his cha chaper 11A Differeniaion and displacemen, velociy and acceleraion 11B Inerpreing graphs 11C Algebraic links beween displacemen, velociy

### UCLA: Math 3B Problem set 3 (solutions) Fall, 2018

UCLA: Mah 3B Problem se 3 (soluions) Fall, 28 This problem se concenraes on pracice wih aniderivaives. You will ge los of pracice finding simple aniderivaives as well as finding aniderivaives graphically

### Physics for Scientists and Engineers I

Physics for Scieniss and Engineers I PHY 48, Secion 4 Dr. Beariz Roldán Cuenya Universiy of Cenral Florida, Physics Deparmen, Orlando, FL Chaper - Inroducion I. General II. Inernaional Sysem of Unis III.

### 02. MOTION. Questions and Answers

CLASS-09 02. MOTION Quesions and Answers PHYSICAL SCIENCE 1. Se moves a a consan speed in a consan direcion.. Reprase e same senence in fewer words using conceps relaed o moion. Se moves wi uniform velociy.

### Non-uniform circular motion *

OpenSax-CNX module: m14020 1 Non-uniform circular moion * Sunil Kumar Singh This work is produced by OpenSax-CNX and licensed under he Creaive Commons Aribuion License 2.0 Wha do we mean by non-uniform

### Physics 101 Fall 2006: Exam #1- PROBLEM #1

Physics 101 Fall 2006: Exam #1- PROBLEM #1 1. Problem 1. (+20 ps) (a) (+10 ps) i. +5 ps graph for x of he rain vs. ime. The graph needs o be parabolic and concave upward. ii. +3 ps graph for x of he person

### Physics 3A: Basic Physics I Shoup Sample Midterm. Useful Equations. x f. x i v x. a x. x i. v xi v xf. 2a x f x i. y f. a r.

Physics 3A: Basic Physics I Shoup Sample Miderm Useful Equaions A y Asin A A x A y an A y A x A = A x i + A y j + A z k A * B = A B cos(θ) A x B = A B sin(θ) A * B = A x B x + A y B y + A z B z A x B =

### Constant Acceleration

Objecive Consan Acceleraion To deermine he acceleraion of objecs moving along a sraigh line wih consan acceleraion. Inroducion The posiion y of a paricle moving along a sraigh line wih a consan acceleraion

### Some Basic Information about M-S-D Systems

Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

### The Contradiction within Equations of Motion with Constant Acceleration

The Conradicion wihin Equaions of Moion wih Consan Acceleraion Louai Hassan Elzein Basheir (Daed: July 7, 0 This paper is prepared o demonsrae he violaion of rules of mahemaics in he algebraic derivaion

### 0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed?

1 1 The graph relaes o he moion of a falling body. y Which is a correc descripion of he graph? y is disance and air resisance is negligible y is disance and air resisance is no negligible y is speed and

### SPH3U: Projectiles. Recorder: Manager: Speaker:

SPH3U: Projeciles Now i s ime o use our new skills o analyze he moion of a golf ball ha was ossed hrough he air. Le s find ou wha is special abou he moion of a projecile. Recorder: Manager: Speaker: 0

### Chapter 15 Oscillatory Motion I

Chaper 15 Oscillaory Moion I Level : AP Physics Insrucor : Kim Inroducion A very special kind of moion occurs when he force acing on a body is proporional o he displacemen of he body from some equilibrium

### Lab #2: Kinematics in 1-Dimension

Reading Assignmen: Chaper 2, Secions 2-1 hrough 2-8 Lab #2: Kinemaics in 1-Dimension Inroducion: The sudy of moion is broken ino wo main areas of sudy kinemaics and dynamics. Kinemaics is he descripion

### Linear Motion I Physics

Linear Moion I Physics Objecives Describe he ifference beween isplacemen an isance Unersan he relaionship beween isance, velociy, an ime Describe he ifference beween velociy an spee Be able o inerpre a

### Physics for Scientists and Engineers. Chapter 2 Kinematics in One Dimension

Physics for Scieniss and Engineers Chaper Kinemaics in One Dimension Spring, 8 Ho Jung Paik Kinemaics Describes moion while ignoring he agens (forces) ha caused he moion For now, will consider moion in

### Unit 1 - Descriptive Models for Linear Motion

Uni 1 - Descripive Models for Linear Moion A workbook and noebook for sudens aking Physics wih Mr. Lonon. Version 3. 212 1 Aciviy 1 - Umm, which way did he go? Designing an invesigaion for our buggy. You

### AP CALCULUS AB 2003 SCORING GUIDELINES (Form B)

SCING GUIDELINES (Form B) Quesion 4 A paricle moves along he x-axis wih velociy a ime given by v( ) = 1 + e1. (a) Find he acceleraion of he paricle a ime =. (b) Is he speed of he paricle increasing a ime

### Guest Lecturer Friday! Symbolic reasoning. Symbolic reasoning. Practice Problem day A. 2 B. 3 C. 4 D. 8 E. 16 Q25. Will Armentrout.

Pracice Problem day Gues Lecurer Friday! Will Armenrou. He d welcome your feedback! Anonymously: wrie somehing and pu i in my mailbox a 111 Whie Hall. Email me: sarah.spolaor@mail.wvu.edu Symbolic reasoning

### Section 7.4 Modeling Changing Amplitude and Midline

488 Chaper 7 Secion 7.4 Modeling Changing Ampliude and Midline While sinusoidal funcions can model a variey of behaviors, i is ofen necessary o combine sinusoidal funcions wih linear and exponenial curves

### and v y . The changes occur, respectively, because of the acceleration components a x and a y

Week 3 Reciaion: Chaper3 : Problems: 1, 16, 9, 37, 41, 71. 1. A spacecraf is raveling wih a veloci of v0 = 5480 m/s along he + direcion. Two engines are urned on for a ime of 84 s. One engine gives he

### k 1 k 2 x (1) x 2 = k 1 x 1 = k 2 k 1 +k 2 x (2) x k series x (3) k 2 x 2 = k 1 k 2 = k 1+k 2 = 1 k k 2 k series

Final Review A Puzzle... Consider wo massless springs wih spring consans k 1 and k and he same equilibrium lengh. 1. If hese springs ac on a mass m in parallel, hey would be equivalen o a single spring

### MEI STRUCTURED MATHEMATICS 4758

OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary General Cerificae of Educaion Advanced General Cerificae of Educaion MEI STRUCTURED MATHEMATICS 4758 Differenial Equaions Thursday 5 JUNE 006 Afernoon

### Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems.

Mah 2250-004 Week 4 April 6-20 secions 7.-7.3 firs order sysems of linear differenial equaions; 7.4 mass-spring sysems. Mon Apr 6 7.-7.2 Sysems of differenial equaions (7.), and he vecor Calculus we need

### AP CALCULUS AB 2017 SCORING GUIDELINES

AP CALCULUS AB 17 SCORING GUIDELINES 16 SCORING GUIDELINES Quesion For, a paricle moves along he x-axis. The velociy of he paricle a ime is given by v ( ) = 1 + sin. The paricle is a posiion x = a ime.

### PROBLEMS FOR MATH 162 If a problem is starred, all subproblems are due. If only subproblems are starred, only those are due. SLOPES OF TANGENT LINES

PROBLEMS FOR MATH 6 If a problem is sarred, all subproblems are due. If onl subproblems are sarred, onl hose are due. 00. Shor answer quesions. SLOPES OF TANGENT LINES (a) A ball is hrown ino he air. Is

### Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

### Variable acceleration, Mixed Exercise 11

Variable acceleraion, Mixed Exercise 11 1 a v 1 P is a res when v 0. 0 1 b s 0 0 v d (1 ) 1 0 1 0 7. The disance ravelled by P is 7. m. 1 a v 6+ a d v 6 + When, a 6+ 0 The acceleraion of P when is 0 m

### CHAPTER 2. Answer to Checkpoint Questions

CHAPTER MOTION ALONG A STRAIGHT LINE CHAPTER Answer o Checkpoin Quesions. (b) and (c). zero 3. (a) () and (4); (b) () and (3); (c) (3) 4. (a) plus; (b) minus; (c) minus; (d) plus 5. () and (4) 6. (a) plus;

### Section A: Forces and Motion

I is very useful o be able o make predicions abou he way moving objecs behave. In his chaper you will learn abou some equaions of moion ha can be used o calculae he speed and acceleraion of objecs, and

### 2001 November 15 Exam III Physics 191

1 November 15 Eam III Physics 191 Physical Consans: Earh s free-fall acceleraion = g = 9.8 m/s 2 Circle he leer of he single bes answer. quesion is worh 1 poin Each 3. Four differen objecs wih masses:

### Q2.4 Average velocity equals instantaneous velocity when the speed is constant and motion is in a straight line.

CHAPTER MOTION ALONG A STRAIGHT LINE Discussion Quesions Q. The speedomeer measures he magniude of he insananeous eloci, he speed. I does no measure eloci because i does no measure direcion. Q. Graph (d).

### Roller-Coaster Coordinate System

Winer 200 MECH 220: Mechanics 2 Roller-Coaser Coordinae Sysem Imagine you are riding on a roller-coaer in which he rack goes up and down, wiss and urns. Your velociy and acceleraion will change (quie abruply),

### Physics Notes - Ch. 2 Motion in One Dimension

Physics Noes - Ch. Moion in One Dimension I. The naure o physical quaniies: scalars and ecors A. Scalar quaniy ha describes only magniude (how much), NOT including direcion; e. mass, emperaure, ime, olume,

### Effects of Coordinate Curvature on Integration

Effecs of Coordinae Curvaure on Inegraion Chrisopher A. Lafore clafore@gmail.com Absrac In his paper, he inegraion of a funcion over a curved manifold is examined in he case where he curvaure of he manifold

### 2-1 MOTION ALONG A STRAIGHT LINE. 2-2 Motion. 2-3 Position and Displacement WHAT IS PHYSICS? CHAPTER

hall-isv_c_3-37hr.qxd 6--9 :7 Page 3 - WHAT IS PHYSICS? move, for example, and how far hey move in a given amoun of ime. NASCAR engineers are fanaical abou his aspec of physics as hey deermine he performance