and v y . The changes occur, respectively, because of the acceleration components a x and a y

Size: px
Start display at page:

Download "and v y . The changes occur, respectively, because of the acceleration components a x and a y"

Transcription

1 Week 3 Reciaion: Chaper3 : Problems: 1, 16, 9, 37, 41, A spacecraf is raveling wih a veloci of v0 = 5480 m/s along he + direcion. Two engines are urned on for a ime of 84 s. One engine gives he spacecraf an acceleraion in he + direcion of a = 1.0 m/s, while he oher gives i an acceleraion in he + direcion of a = 8.40 m/s. A he end of he firing, find (a) v and (b) v. REASONING The moion in he direcion occurs independenl of he moion in he direcion. The componens of he veloci change from heir iniial values of v 0 and v 0 o heir final values of v and v. The changes occur, respecivel, because of he acceleraion componens a and a. The final values can be deermined wih he aid of Equaions 3.3a and 3.3b. SOLUTION a. According o Equaion 3.3a, he componen of he veloci is ( v = v )( ) 0 + a= 5480 m/s m/s 84 s = 6490 m/s b. According o Equaion 3.3b, he componen of he veloci is ( v )( ) = v0 + a = 0 m/s m/s 84 s = 7070 m/s 16. A puck is moving on an air hocke able. Relaive o an, coordinae ssem a ime = 0 s, he componens of he puck s iniial veloci and acceleraion are v0 = +1.0 m/s and a = +.0 m/s. The componens of he puck s iniial veloci and acceleraion are v0 = +.0 m/s and a =.0 m/s. Find he magniude and direcion of he puck s veloci a a ime of = 0.50 s. Specif he direcion relaive o he + ais REASONING The magniude v of he puck s veloci is relaed o is and veloci componens (v and v ) b he Phagorean heorem (Equaion 1.7); v = v + v. The relaion v = v0 + a (Equaion 3.3a) ma be used o find v, since v 0, a, and are known. Likewise, he relaion v = v0 + a (Equaion 3.3b) ma be emploed o deermine v, since v 0, a, and are known. Once v and v are deermined, he angle θ ha he veloci makes wih respec o he ais can be found b using he 1 θ = an v / v. inverse angen funcion (Equaion 1.6); ( )

2 SOLUTION Using Equaions 3.3a and 3.3b, we find ha 0 0 v = v + a= m/s +.0 m/s 0.50 s = +.0 m/s v = v + a= +.0 m/s +.0 m/s 0.50 s = m/s The magniude v of he puck s veloci is ( ) ( ) v = v + v =.0 m/s m/s =. m/s The angle θ ha he veloci makes wih respec o he + ais is 1 v m/s = an = an = 7 above he + ais v.0 m/s θ 9. A major-league picher can hrow a baseball in ecess of 41.0 m/s. If a ball is hrown horizonall a his speed, how much will i drop b he ime i reaches a cacher who is 17.0 m awa from he poin of release? REASONING The verical displacemen of he ball depends on he ime ha i is in he air before being caugh. These variables depend on he -direcion daa, as indicaed in he able, where he + direcion is "up." -Direcion Daa a v v 0? 9.80 m/s 0 m/s? Since onl wo variables in he direcion are known, we canno deermine a his poin. Therefore, we eamine he daa in he direcion, where + is aken o be he direcion from he picher o he cacher. -Direcion Daa a v v m 0 m/s m/s? Since his able conains hree known variables, he ime can be evaluaed b using an equaion of kinemaics. Once he ime is known, i can hen be used wih he -direcion daa, along wih he appropriae equaion of kinemaics, o find he verical displacemen.

3 SOLUTION Using he -direcion daa, Equaion 3.5a can be emploed o find he ime ha he baseball is in he air: ( ) = v + a = v 0 0 since a = 0 m/s Solving for gives m = = = s v m/s 1 0 The displacemen in he direcion can now be evaluaed b using he -direcion daa able and he value of = s. Using Equaion 3.5b, we have = v + a = + = m/s s 9.80 m/s s m 0 The disance ha he ball drops is given b he magniude of his resul, so Disance = m. *37. ssm An airplane wih a speed of 97.5 m/s is climbing upward a an angle of 50.0 wih respec o he horizonal. When he plane s aliude is 73 m, he pilo releases a package. (a) Calculae he disance along he ground, measured from a poin direcl beneah he poin of release, o where he package his he earh. (b) Relaive o he ground, deermine he angle of he veloci vecor of he package jus before impac. SSM REASONING a. The drawing shows he iniial veloci v 0 of he package when i is released. The iniial speed of he package is 97.5 m/s. The componen of is displacemen along he ground is labeled as. The daa for he direcion are indicaed in he daa able below. v Direcion Daa a v v 0? 0 m/s +(97.5 m/s) cos 50.0 = +6.7 m/s Since onl wo variables are known, i is no possible o deermine from he daa in his able. A value for a hird variable is needed. We know ha he ime of fligh is he same for boh he and moions, so le s now look a he daa in he direcion.

4 -Direcion Daa a v v 0 73 m 9.80 m/s +(97.5 m/s) sin 50.0 = m/s? Noe ha he displacemen of he package poins from is iniial posiion oward he ground, so is value is negaive, i.e., = 73 m. The daa in his able, along wih he appropriae equaion of kinemaics, can be used o find he ime of fligh. This value for can, in urn, be used in conjuncion wih he -direcion daa o deermine. b. The drawing a he righ shows he veloci of he package jus before impac. The angle ha he veloci makes wih respec o he ground can be found from he inverse 1 angen funcion as θ = an ( v / v ). Once he ime has been found in par (a), he values of v and v can be deermined from he daa in he ables and he appropriae equaions of kinemaics. v SOLUTION a. To deermine he ime ha he package is in he air, we 1 will use Equaion 3.5b ( = v + a 0 ) and he daa in he -direcion daa able. Solving his quadraic equaion for he ime ields v + v θ + 1 ( a ) ( )( ) 1 v ± v 4 a 0 0 = ( 74.7 m/s) ( 74.7 m/s) 4( 1 )( 9.80 m/s )( 73 m) ± = = 6.78 s and.0 s 9.80 m/s 1 ( )( ) We discard he firs soluion, since i is a negaive value and, hence, unrealisic. The displacemen can be found using =.0 s, he daa in he -direcion daa able, and Equaion 3.5a:

5 b. The angle θ ha he veloci of he package makes wih respec o he ground is 1 given b θ an ( v / v ) =. Since here is no acceleraion in he direcion (a = 0 m/s ), v is he same as v 0, so ha v = v 0 = +6.7 m/s. Equaion 3.3b can be emploed wih he -direcion daa o find v : Therefore, v = v + a= m/s m/s.0 s = 141 m/s 0 v m/s = an = an = 66.0 v m/s θ where he minus sign indicaes ha he angle is 66.0 below he horizonal. *41. mmh A soccer plaer kicks he ball oward a goal ha is 16.8 m in fron of him. The ball leaves his foo a a speed of 16.0 m/s and an angle of 8.0 above he ground. Find he speed of he ball when he goalie caches i in fron of he ne. REASONING The speed v of he soccer ball jus before he goalie caches i is given b v v v = +, where v and v are he and componens of he final veloci of he ball. The daa for his problem are (he + direcion is from he kicker o he goalie, and he + direcion is he up direcion): -Direcion Daa a v v m 0 m/s? +(16.0 m/s) cos 8.0 = m/s -Direcion Daa a v v m/s? +(16.0 m/s) sin 8.0 = m/s Since here is no acceleraion in he direcion (a = 0 m/s ), v remains he same as v 0, so v = v 0 = m/s. The ime ha he soccer ball is in he air can be found from he -direcion daa, since hree of he variables are known. Wih his value for he ime and he -direcion daa, he componen of he final veloci can be deermined.

6 SOLUTION Since a = 0 m/s, he ime can be calculaed from Equaion 3.5a as m = = = 1.19 s. The value for v v m/s can now be found b using Equaion 0 3.3b wih his value of he ime and he -direcion daa: v = v + a= m/s m/s 1.19 s = 4.15 m/s 0 The speed of he ball jus as i reaches he goalie is ( ) ( ) v = v + v = m/s m/s = 14.7 m/s 71. ssm Muliple-Concep Eample 4 provides useful background for his problem. A diver runs horizonall wih a speed of 1.0 m/s off a plaform ha is 10.0 m above he waer. Wha is his speed jus before sriking he waer? SSM REASONING Once he diver is airborne, he moves in he direcion wih consan veloci while his moion in he direcion is acceleraed (a he acceleraion due o gravi). Therefore, he magniude of he componen of his veloci remains consan a 1.0 m/s for all imes. The magniude of he componen of he diver's veloci afer he has fallen hrough a verical displacemen can be deermined from Equaion 3.6b: v = v + a. Since he diver runs off 0 he plaform horizonall, v 0 = 0 m/s. Once he and componens of he veloci are known for a paricular verical displacemen, he speed of he diver can be obained from v = v + v. SOLUTION For convenience, we will ake downward as he posiive direcion. Afer he diver has fallen 10.0 m, he componen of his veloci is, from Equaion 3.6b, v = v + a = 0 + (9.80 m / s )( m) = m / s 0 Therefore, v v + v (1.0 m / s) + ( 14.0 m / s) = 14.1 m / s

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

Chapter 3 Kinematics in Two Dimensions

Chapter 3 Kinematics in Two Dimensions Chaper 3 KINEMATICS IN TWO DIMENSIONS PREVIEW Two-dimensional moion includes objecs which are moing in wo direcions a he same ime, such as a projecile, which has boh horizonal and erical moion. These wo

More information

Giambattista, Ch 3 Problems: 9, 15, 21, 27, 35, 37, 42, 43, 47, 55, 63, 76

Giambattista, Ch 3 Problems: 9, 15, 21, 27, 35, 37, 42, 43, 47, 55, 63, 76 Giambaisa, Ch 3 Problems: 9, 15, 21, 27, 35, 37, 42, 43, 47, 55, 63, 76 9. Sraeg Le be direced along he +x-axis and le be 60.0 CCW from Find he magniude of 6.0 B 60.0 4.0 A x 15. (a) Sraeg Since he angle

More information

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Kinematics in two dimensions

Kinematics in two dimensions Lecure 5 Phsics I 9.18.13 Kinemaics in wo dimensions Course websie: hp://facul.uml.edu/andri_danlo/teaching/phsicsi Lecure Capure: hp://echo36.uml.edu/danlo13/phsics1fall.hml 95.141, Fall 13, Lecure 5

More information

Motion along a Straight Line

Motion along a Straight Line chaper 2 Moion along a Sraigh Line verage speed and average velociy (Secion 2.2) 1. Velociy versus speed Cone in he ebook: fer Eample 2. Insananeous velociy and insananeous acceleraion (Secions 2.3, 2.4)

More information

University Physics with Modern Physics 14th Edition Young TEST BANK

University Physics with Modern Physics 14th Edition Young TEST BANK Universi Phsics wih Modern Phsics 14h Ediion Young SOLUTIONS MANUAL Full clear download (no formaing errors) a: hps://esbankreal.com/download/universi-phsics-modern-phsics- 14h-ediion-oung-soluions-manual-/

More information

t A. 3. Which vector has the largest component in the y-direction, as defined by the axes to the right?

t A. 3. Which vector has the largest component in the y-direction, as defined by the axes to the right? Ke Name Insrucor Phsics 1210 Exam 1 Sepember 26, 2013 Please wrie direcl on he exam and aach oher shees of work if necessar. Calculaors are allowed. No noes or books ma be used. Muliple-choice problems

More information

Displacement ( x) x x x

Displacement ( x) x x x Kinemaics Kinemaics is he branch of mechanics ha describes he moion of objecs wihou necessarily discussing wha causes he moion. 1-Dimensional Kinemaics (or 1- Dimensional moion) refers o moion in a sraigh

More information

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3 A.P. Physics B Uni 1 Tes Reiew Physics Basics, Moemen, and Vecors Chapers 1-3 * In sudying for your es, make sure o sudy his reiew shee along wih your quizzes and homework assignmens. Muliple Choice Reiew:

More information

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed?

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed? 1 1 The graph relaes o he moion of a falling body. y Which is a correc descripion of he graph? y is disance and air resisance is negligible y is disance and air resisance is no negligible y is speed and

More information

x(m) t(sec ) Homework #2. Ph 231 Introductory Physics, Sp-03 Page 1 of 4

x(m) t(sec ) Homework #2. Ph 231 Introductory Physics, Sp-03 Page 1 of 4 Homework #2. Ph 231 Inroducory Physics, Sp-03 Page 1 of 4 2-1A. A person walks 2 miles Eas (E) in 40 minues and hen back 1 mile Wes (W) in 20 minues. Wha are her average speed and average velociy (in ha

More information

v x + v 0 x v y + a y + v 0 y + 2a y + v y Today: Projectile motion Soccer problem Firefighter example

v x + v 0 x v y + a y + v 0 y + 2a y + v y Today: Projectile motion Soccer problem Firefighter example Thurs Sep 10 Assign 2 Friday SI Sessions: Moron 227 Mon 8:10-9:10 PM Tues 8:10-9:10 PM Thur 7:05-8:05 PM Read Read Draw/Image lay ou coordinae sysem Wha know? Don' know? Wan o know? Physical Processes?

More information

Parametrics and Vectors (BC Only)

Parametrics and Vectors (BC Only) Paramerics and Vecors (BC Only) The following relaionships should be learned and memorized. The paricle s posiion vecor is r() x(), y(). The velociy vecor is v(),. The speed is he magniude of he velociy

More information

1. The graph below shows the variation with time t of the acceleration a of an object from t = 0 to t = T. a

1. The graph below shows the variation with time t of the acceleration a of an object from t = 0 to t = T. a Kinemaics Paper 1 1. The graph below shows he ariaion wih ime of he acceleraion a of an objec from = o = T. a T The shaded area under he graph represens change in A. displacemen. B. elociy. C. momenum.

More information

Physics 101 Fall 2006: Exam #1- PROBLEM #1

Physics 101 Fall 2006: Exam #1- PROBLEM #1 Physics 101 Fall 2006: Exam #1- PROBLEM #1 1. Problem 1. (+20 ps) (a) (+10 ps) i. +5 ps graph for x of he rain vs. ime. The graph needs o be parabolic and concave upward. ii. +3 ps graph for x of he person

More information

Physics 221 Fall 2008 Homework #2 Solutions Ch. 2 Due Tues, Sept 9, 2008

Physics 221 Fall 2008 Homework #2 Solutions Ch. 2 Due Tues, Sept 9, 2008 Physics 221 Fall 28 Homework #2 Soluions Ch. 2 Due Tues, Sep 9, 28 2.1 A paricle moving along he x-axis moves direcly from posiion x =. m a ime =. s o posiion x = 1. m by ime = 1. s, and hen moves direcly

More information

AP Calculus BC Chapter 10 Part 1 AP Exam Problems

AP Calculus BC Chapter 10 Part 1 AP Exam Problems AP Calculus BC Chaper Par AP Eam Problems All problems are NO CALCULATOR unless oherwise indicaed Parameric Curves and Derivaives In he y plane, he graph of he parameric equaions = 5 + and y= for, is a

More information

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration PHYS 54 Tes Pracice Soluions Spring 8 Q: [4] Knowing ha in he ne epression a is acceleraion, v is speed, is posiion and is ime, from a dimensional v poin of view, he equaion a is a) incorrec b) correc

More information

LAB 05 Projectile Motion

LAB 05 Projectile Motion PHYS 154 Universi Phsics Laboraor Pre-Lab Spring 18 LAB 5 Projecile Moion CONTENT: 1. Inroducion. Projecile moion A. Seup B. Various characerisics 3. Pre-lab: A. Aciviies B. Preliminar info C. Quiz 1.

More information

Suggested Practice Problems (set #2) for the Physics Placement Test

Suggested Practice Problems (set #2) for the Physics Placement Test Deparmen of Physics College of Ars and Sciences American Universiy of Sharjah (AUS) Fall 014 Suggesed Pracice Problems (se #) for he Physics Placemen Tes This documen conains 5 suggesed problems ha are

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

MEI Mechanics 1 General motion. Section 1: Using calculus

MEI Mechanics 1 General motion. Section 1: Using calculus Soluions o Exercise MEI Mechanics General moion Secion : Using calculus. s 4 v a 6 4 4 When =, v 4 a 6 4 6. (i) When = 0, s = -, so he iniial displacemen = - m. s v 4 When = 0, v = so he iniial velociy

More information

Version 053 Midterm 1 OConnor (05141) 1

Version 053 Midterm 1 OConnor (05141) 1 Version 053 Miderm 1 OConnor (05141) 1 This prin-ou should have 36 quesions. Muliple-choice quesions ma coninue on he ne column or pae find all choices before answerin. V1:1, V:1, V3:3, V4:1, V5:4. 001

More information

3.6 Derivatives as Rates of Change

3.6 Derivatives as Rates of Change 3.6 Derivaives as Raes of Change Problem 1 John is walking along a sraigh pah. His posiion a he ime >0 is given by s = f(). He sars a =0from his house (f(0) = 0) and he graph of f is given below. (a) Describe

More information

Dynamics. Option topic: Dynamics

Dynamics. Option topic: Dynamics Dynamics 11 syllabusref Opion opic: Dynamics eferenceence In his cha chaper 11A Differeniaion and displacemen, velociy and acceleraion 11B Inerpreing graphs 11C Algebraic links beween displacemen, velociy

More information

PHYSICS 149: Lecture 9

PHYSICS 149: Lecture 9 PHYSICS 149: Lecure 9 Chaper 3 3.2 Velociy and Acceleraion 3.3 Newon s Second Law of Moion 3.4 Applying Newon s Second Law 3.5 Relaive Velociy Lecure 9 Purdue Universiy, Physics 149 1 Velociy (m/s) The

More information

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

More information

Kinematics in two Dimensions

Kinematics in two Dimensions Lecure 5 Chaper 4 Phsics I Kinemaics in wo Dimensions Course websie: hp://facul.uml.edu/andri_danlo/teachin/phsicsi PHYS.141 Lecure 5 Danlo Deparmen of Phsics and Applied Phsics Toda we are oin o discuss:

More information

SOLUTIONS TO CONCEPTS CHAPTER 3

SOLUTIONS TO CONCEPTS CHAPTER 3 SOLUTIONS TO ONEPTS HPTER 3. a) Disance ravelled = 50 + 40 + 0 = 0 m b) F = F = D = 50 0 = 30 M His displacemen is D D = F DF 30 40 50m In ED an = DE/E = 30/40 = 3/4 = an (3/4) His displacemen from his

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

4.5 Constant Acceleration

4.5 Constant Acceleration 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

More information

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole Phys 221 Fall 2014 Chaper 2 Moion in One Dimension 2014, 2005 A. Dzyubenko 2004 Brooks/Cole 1 Kinemaics Kinemaics, a par of classical mechanics: Describes moion in erms of space and ime Ignores he agen

More information

Of all of the intellectual hurdles which the human mind has confronted and has overcome in the last fifteen hundred years, the one which seems to me

Of all of the intellectual hurdles which the human mind has confronted and has overcome in the last fifteen hundred years, the one which seems to me Of all of he inellecual hurdles which he human mind has confroned and has overcome in he las fifeen hundred years, he one which seems o me o have been he mos amazing in characer and he mos supendous in

More information

Q.1 Define work and its unit?

Q.1 Define work and its unit? CHP # 6 ORK AND ENERGY Q.1 Define work and is uni? A. ORK I can be define as when we applied a force on a body and he body covers a disance in he direcion of force, hen we say ha work is done. I is a scalar

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs.

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs. Physics 180A Fall 2008 Tes 1-120 poins Name Provide he bes answer o he following quesions and problems. Wach your sig figs. 1) The number of meaningful digis in a number is called he number of. When numbers

More information

MOMENTUM CONSERVATION LAW

MOMENTUM CONSERVATION LAW 1 AAST/AEDT AP PHYSICS B: Impulse and Momenum Le us run an experimen: The ball is moving wih a velociy of V o and a force of F is applied on i for he ime inerval of. As he resul he ball s velociy changes

More information

Conceptual Physics Review (Chapters 2 & 3)

Conceptual Physics Review (Chapters 2 & 3) Concepual Physics Review (Chapers 2 & 3) Soluions Sample Calculaions 1. My friend and I decide o race down a sraigh srech of road. We boh ge in our cars and sar from res. I hold he seering wheel seady,

More information

Physics 20 Lesson 5 Graphical Analysis Acceleration

Physics 20 Lesson 5 Graphical Analysis Acceleration Physics 2 Lesson 5 Graphical Analysis Acceleraion I. Insananeous Velociy From our previous work wih consan speed and consan velociy, we know ha he slope of a posiion-ime graph is equal o he velociy of

More information

a 10.0 (m/s 2 ) 5.0 Name: Date: 1. The graph below describes the motion of a fly that starts out going right V(m/s)

a 10.0 (m/s 2 ) 5.0 Name: Date: 1. The graph below describes the motion of a fly that starts out going right V(m/s) Name: Dae: Kinemaics Review (Honors. Physics) Complee he following on a separae shee of paper o be urned in on he day of he es. ALL WORK MUST BE SHOWN TO RECEIVE CREDIT. 1. The graph below describes he

More information

Roller-Coaster Coordinate System

Roller-Coaster Coordinate System Winer 200 MECH 220: Mechanics 2 Roller-Coaser Coordinae Sysem Imagine you are riding on a roller-coaer in which he rack goes up and down, wiss and urns. Your velociy and acceleraion will change (quie abruply),

More information

x i v x t a dx dt t x

x i v x t a dx dt t x Physics 3A: Basic Physics I Shoup - Miderm Useful Equaions A y A sin A A A y an A y A A = A i + A y j + A z k A * B = A B cos(θ) A B = A B sin(θ) A * B = A B + A y B y + A z B z A B = (A y B z A z B y

More information

One-Dimensional Kinematics

One-Dimensional Kinematics One-Dimensional Kinemaics One dimensional kinemaics refers o moion along a sraigh line. Een hough we lie in a 3-dimension world, moion can ofen be absraced o a single dimension. We can also describe moion

More information

Equations of motion for constant acceleration

Equations of motion for constant acceleration Lecure 3 Chaper 2 Physics I 01.29.2014 Equaions of moion for consan acceleraion Course websie: hp://faculy.uml.edu/andriy_danylo/teaching/physicsi Lecure Capure: hp://echo360.uml.edu/danylo2013/physics1spring.hml

More information

Check in: 1 If m = 2(x + 1) and n = find y when. b y = 2m n 2

Check in: 1 If m = 2(x + 1) and n = find y when. b y = 2m n 2 7 Parameric equaions This chaer will show ou how o skech curves using heir arameric equaions conver arameric equaions o Caresian equaions find oins of inersecion of curves and lines using arameric equaions

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Physics Unit Workbook Two Dimensional Kinematics

Physics Unit Workbook Two Dimensional Kinematics Name: Per: L o s A l o s H i g h S c h o o l Phsics Uni Workbook Two Dimensional Kinemaics Mr. Randall 1968 - Presen adam.randall@mla.ne www.laphsics.com a o 1 a o o ) ( o o a o o ) ( 1 1 a o g o 1 g o

More information

SPH3U: Projectiles. Recorder: Manager: Speaker:

SPH3U: Projectiles. Recorder: Manager: Speaker: SPH3U: Projeciles Now i s ime o use our new skills o analyze he moion of a golf ball ha was ossed hrough he air. Le s find ou wha is special abou he moion of a projecile. Recorder: Manager: Speaker: 0

More information

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension Brock Uniersiy Physics 1P21/1P91 Fall 2013 Dr. D Agosino Soluions for Tuorial 3: Chaper 2, Moion in One Dimension The goals of his uorial are: undersand posiion-ime graphs, elociy-ime graphs, and heir

More information

Lab #2: Kinematics in 1-Dimension

Lab #2: Kinematics in 1-Dimension Reading Assignmen: Chaper 2, Secions 2-1 hrough 2-8 Lab #2: Kinemaics in 1-Dimension Inroducion: The sudy of moion is broken ino wo main areas of sudy kinemaics and dynamics. Kinemaics is he descripion

More information

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections PHYSICS 220 Lecure 02 Moion, Forces, and Newon s Laws Texbook Secions 2.2-2.4 Lecure 2 Purdue Universiy, Physics 220 1 Overview Las Lecure Unis Scienific Noaion Significan Figures Moion Displacemen: Δx

More information

Chapter 5 Kinematics

Chapter 5 Kinematics Chaper 5 Kinemaics In he firs place, wha do we mean b ime and space? I urns ou ha hese deep philosophical quesions have o be analzed ver carefull in phsics, and his is no eas o do. The heor of relaivi

More information

Solutions from Chapter 9.1 and 9.2

Solutions from Chapter 9.1 and 9.2 Soluions from Chaper 9 and 92 Secion 9 Problem # This basically boils down o an exercise in he chain rule from calculus We are looking for soluions of he form: u( x) = f( k x c) where k x R 3 and k is

More information

AP CALCULUS BC 2016 SCORING GUIDELINES

AP CALCULUS BC 2016 SCORING GUIDELINES 6 SCORING GUIDELINES Quesion A ime, he posiion of a paricle moving in he xy-plane is given by he parameric funcions ( x ( ), y ( )), where = + sin ( ). The graph of y, consising of hree line segmens, is

More information

Chapter 12: Velocity, acceleration, and forces

Chapter 12: Velocity, acceleration, and forces To Feel a Force Chaper Spring, Chaper : A. Saes of moion For moion on or near he surface of he earh, i is naural o measure moion wih respec o objecs fixed o he earh. The 4 hr. roaion of he earh has a measurable

More information

Integration of the equation of motion with respect to time rather than displacement leads to the equations of impulse and momentum.

Integration of the equation of motion with respect to time rather than displacement leads to the equations of impulse and momentum. Inegraion of he equaion of moion wih respec o ime raher han displacemen leads o he equaions of impulse and momenum. These equaions greal faciliae he soluion of man problems in which he applied forces ac

More information

Answers to 1 Homework

Answers to 1 Homework Answers o Homework. x + and y x 5 y To eliminae he parameer, solve for x. Subsiue ino y s equaion o ge y x.. x and y, x y x To eliminae he parameer, solve for. Subsiue ino y s equaion o ge x y, x. (Noe:

More information

Physics Notes - Ch. 2 Motion in One Dimension

Physics Notes - Ch. 2 Motion in One Dimension Physics Noes - Ch. Moion in One Dimension I. The naure o physical quaniies: scalars and ecors A. Scalar quaniy ha describes only magniude (how much), NOT including direcion; e. mass, emperaure, ime, olume,

More information

Physics for Scientists and Engineers I

Physics for Scientists and Engineers I Physics for Scieniss and Engineers I PHY 48, Secion 4 Dr. Beariz Roldán Cuenya Universiy of Cenral Florida, Physics Deparmen, Orlando, FL Chaper - Inroducion I. General II. Inernaional Sysem of Unis III.

More information

t = x v = 18.4m 44.4m/s =0.414 s.

t = x v = 18.4m 44.4m/s =0.414 s. 1 Assuming he horizonal velociy of he ball is consan, he horizonal displacemen is x = v where x is he horizonal disance raveled, is he ime, and v is he (horizonal) velociy Convering v o meers per second,

More information

9702/1/O/N/02. are set up a vertical distance h apart. M 1 M 2. , it is found that the ball takes time t 1. to reach M 2 ) 2

9702/1/O/N/02. are set up a vertical distance h apart. M 1 M 2. , it is found that the ball takes time t 1. to reach M 2 ) 2 PhysicsndMahsTuor.com 7 car is ravelling wih uniform acceleraion along a sraigh road. The road has marker poss every 1 m. When he car passes one pos, i has a speed of 1 m s 1 and, when i passes he nex

More information

x y θ = 31.8 = 48.0 N. a 3.00 m/s

x y θ = 31.8 = 48.0 N. a 3.00 m/s 4.5.IDENTIY: Vecor addiion. SET UP: Use a coordinae sse where he dog A. The forces are skeched in igure 4.5. EXECUTE: + -ais is in he direcion of, A he force applied b =+ 70 N, = 0 A B B A = cos60.0 =

More information

Physics 30: Chapter 2 Exam Momentum & Impulse

Physics 30: Chapter 2 Exam Momentum & Impulse Physics 30: Chaper 2 Exam Momenum & Impulse Name: Dae: Mark: /29 Numeric Response. Place your answers o he numeric response quesions, wih unis, in he blanks a he side of he page. (1 mark each) 1. A golfer

More information

SPH3U1 Lesson 03 Kinematics

SPH3U1 Lesson 03 Kinematics SPH3U1 Lesson 03 Kinemaics GRAPHICAL ANALYSIS LEARNING GOALS Sudens will Learn how o read values, find slopes and calculae areas on graphs. Learn wha hese values mean on boh posiion-ime and velociy-ime

More information

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B) SCORING GUIDELINES (Form B) Quesion A blood vessel is 6 millimeers (mm) long Disance wih circular cross secions of varying diameer. x (mm) 6 8 4 6 Diameer The able above gives he measuremens of he B(x)

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

Position, Velocity, and Acceleration

Position, Velocity, and Acceleration rev 06/2017 Posiion, Velociy, and Acceleraion Equipmen Qy Equipmen Par Number 1 Dynamic Track ME-9493 1 Car ME-9454 1 Fan Accessory ME-9491 1 Moion Sensor II CI-6742A 1 Track Barrier Purpose The purpose

More information

Chapters 6 & 7: Trigonometric Functions of Angles and Real Numbers. Divide both Sides by 180

Chapters 6 & 7: Trigonometric Functions of Angles and Real Numbers. Divide both Sides by 180 Algebra Chapers & : Trigonomeric Funcions of Angles and Real Numbers Chapers & : Trigonomeric Funcions of Angles and Real Numbers - Angle Measures Radians: - a uni (rad o measure he size of an angle. rad

More information

Constant Acceleration

Constant Acceleration Objecive Consan Acceleraion To deermine he acceleraion of objecs moving along a sraigh line wih consan acceleraion. Inroducion The posiion y of a paricle moving along a sraigh line wih a consan acceleraion

More information

Second-Order Differential Equations

Second-Order Differential Equations WWW Problems and Soluions 3.1 Chaper 3 Second-Order Differenial Equaions Secion 3.1 Springs: Linear and Nonlinear Models www m Problem 3. (NonlinearSprings). A bod of mass m is aached o a wall b means

More information

MA Study Guide #1

MA Study Guide #1 MA 66 Su Guide #1 (1) Special Tpes of Firs Order Equaions I. Firs Order Linear Equaion (FOL): + p() = g() Soluion : = 1 µ() [ ] µ()g() + C, where µ() = e p() II. Separable Equaion (SEP): dx = h(x) g()

More information

Physics 3A: Basic Physics I Shoup Sample Midterm. Useful Equations. x f. x i v x. a x. x i. v xi v xf. 2a x f x i. y f. a r.

Physics 3A: Basic Physics I Shoup Sample Midterm. Useful Equations. x f. x i v x. a x. x i. v xi v xf. 2a x f x i. y f. a r. Physics 3A: Basic Physics I Shoup Sample Miderm Useful Equaions A y Asin A A x A y an A y A x A = A x i + A y j + A z k A * B = A B cos(θ) A x B = A B sin(θ) A * B = A x B x + A y B y + A z B z A x B =

More information

A man pushes a 500 kg block along the x axis by a constant force. Find the power required to maintain a speed of 5.00 m/s.

A man pushes a 500 kg block along the x axis by a constant force. Find the power required to maintain a speed of 5.00 m/s. Coordinaor: Dr. F. hiari Wednesday, July 16, 2014 Page: 1 Q1. The uniform solid block in Figure 1 has mass 0.172 kg and edge lenghs a = 3.5 cm, b = 8.4 cm, and c = 1.4 cm. Calculae is roaional ineria abou

More information

Practicing Problem Solving and Graphing

Practicing Problem Solving and Graphing Pracicing Problem Solving and Graphing Tes 1: Jan 30, 7pm, Ming Hsieh G20 The Bes Ways To Pracice for Tes Bes If need more, ry suggesed problems from each new opic: Suden Response Examples A pas opic ha

More information

Math Wednesday March 3, , 4.3: First order systems of Differential Equations Why you should expect existence and uniqueness for the IVP

Math Wednesday March 3, , 4.3: First order systems of Differential Equations Why you should expect existence and uniqueness for the IVP Mah 2280 Wednesda March 3, 200 4., 4.3: Firs order ssems of Differenial Equaions Wh ou should epec eisence and uniqueness for he IVP Eample: Consider he iniial value problem relaed o page 4 of his eserda

More information

Speed and Velocity. Overview. Velocity & Speed. Speed & Velocity. Instantaneous Velocity. Instantaneous and Average

Speed and Velocity. Overview. Velocity & Speed. Speed & Velocity. Instantaneous Velocity. Instantaneous and Average Overview Kinemaics: Descripion of Moion Posiion and displacemen velociy»insananeous acceleraion»insananeous Speed Velociy Speed and Velociy Speed & Velociy Velociy & Speed A physics eacher walks 4 meers

More information

Review Equations. Announcements 9/8/09. Table Tennis

Review Equations. Announcements 9/8/09. Table Tennis Announcemens 9/8/09 1. Course homepage ia: phsics.bu.edu Class web pages Phsics 105 (Colon J). (Class-wide email sen) Iclicker problem from las ime scores didn ge recorded. Clicker quizzes from lecures

More information

k 1 k 2 x (1) x 2 = k 1 x 1 = k 2 k 1 +k 2 x (2) x k series x (3) k 2 x 2 = k 1 k 2 = k 1+k 2 = 1 k k 2 k series

k 1 k 2 x (1) x 2 = k 1 x 1 = k 2 k 1 +k 2 x (2) x k series x (3) k 2 x 2 = k 1 k 2 = k 1+k 2 = 1 k k 2 k series Final Review A Puzzle... Consider wo massless springs wih spring consans k 1 and k and he same equilibrium lengh. 1. If hese springs ac on a mass m in parallel, hey would be equivalen o a single spring

More information

Best test practice: Take the past test on the class website

Best test practice: Take the past test on the class website Bes es pracice: Take he pas es on he class websie hp://communiy.wvu.edu/~miholcomb/phys11.hml I have posed he key o he WebAssign pracice es. Newon Previous Tes is Online. Forma will be idenical. You migh

More information

Non-uniform circular motion *

Non-uniform circular motion * OpenSax-CNX module: m14020 1 Non-uniform circular moion * Sunil Kumar Singh This work is produced by OpenSax-CNX and licensed under he Creaive Commons Aribuion License 2.0 Wha do we mean by non-uniform

More information

Physics 101: Lecture 03 Kinematics Today s lecture will cover Textbook Sections (and some Ch. 4)

Physics 101: Lecture 03 Kinematics Today s lecture will cover Textbook Sections (and some Ch. 4) Physics 101: Lecure 03 Kinemaics Today s lecure will coer Texbook Secions 3.1-3.3 (and some Ch. 4) Physics 101: Lecure 3, Pg 1 A Refresher: Deermine he force exered by he hand o suspend he 45 kg mass as

More information

1.6. Slopes of Tangents and Instantaneous Rate of Change

1.6. Slopes of Tangents and Instantaneous Rate of Change 1.6 Slopes of Tangens and Insananeous Rae of Change When you hi or kick a ball, he heigh, h, in meres, of he ball can be modelled by he equaion h() 4.9 2 v c. In his equaion, is he ime, in seconds; c represens

More information

2. What is the displacement of the bug between t = 0.00 s and t = 20.0 s? A) cm B) 39.9 cm C) cm D) 16.1 cm E) +16.

2. What is the displacement of the bug between t = 0.00 s and t = 20.0 s? A) cm B) 39.9 cm C) cm D) 16.1 cm E) +16. 1. For which one of he following siuaions will he pah lengh equal he magniude of he displacemen? A) A jogger is running around a circular pah. B) A ball is rolling down an inclined plane. C) A rain ravels

More information

INSTANTANEOUS VELOCITY

INSTANTANEOUS VELOCITY INSTANTANEOUS VELOCITY I claim ha ha if acceleraion is consan, hen he elociy is a linear funcion of ime and he posiion a quadraic funcion of ime. We wan o inesigae hose claims, and a he same ime, work

More information

CH.7. PLANE LINEAR ELASTICITY. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

CH.7. PLANE LINEAR ELASTICITY. Continuum Mechanics Course (MMC) - ETSECCPB - UPC CH.7. PLANE LINEAR ELASTICITY Coninuum Mechanics Course (MMC) - ETSECCPB - UPC Overview Plane Linear Elasici Theor Plane Sress Simplifing Hpohesis Srain Field Consiuive Equaion Displacemen Field The Linear

More information

Q2.4 Average velocity equals instantaneous velocity when the speed is constant and motion is in a straight line.

Q2.4 Average velocity equals instantaneous velocity when the speed is constant and motion is in a straight line. CHAPTER MOTION ALONG A STRAIGHT LINE Discussion Quesions Q. The speedomeer measures he magniude of he insananeous eloci, he speed. I does no measure eloci because i does no measure direcion. Q. Graph (d).

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Physics 5A Review 1. Eric Reichwein Department of Physics University of California, Santa Cruz. October 31, 2012

Physics 5A Review 1. Eric Reichwein Department of Physics University of California, Santa Cruz. October 31, 2012 Physics 5A Review 1 Eric Reichwein Deparmen of Physics Universiy of California, Sana Cruz Ocober 31, 2012 Conens 1 Error, Sig Figs, and Dimensional Analysis 1 2 Vecor Review 2 2.1 Adding/Subracing Vecors.............................

More information

Physics for Scientists and Engineers. Chapter 2 Kinematics in One Dimension

Physics for Scientists and Engineers. Chapter 2 Kinematics in One Dimension Physics for Scieniss and Engineers Chaper Kinemaics in One Dimension Spring, 8 Ho Jung Paik Kinemaics Describes moion while ignoring he agens (forces) ha caused he moion For now, will consider moion in

More information

Physics 2A HW #3 Solutions

Physics 2A HW #3 Solutions Chper 3 Focus on Conceps: 3, 4, 6, 9 Problems: 9, 9, 3, 41, 66, 7, 75, 77 Phsics A HW #3 Soluions Focus On Conceps 3-3 (c) The ccelerion due o grvi is he sme for boh blls, despie he fc h he hve differen

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

(B) F t=mv (C) v 2 =a x F (D) v = m t (E) all of the above

(B) F t=mv (C) v 2 =a x F (D) v = m t (E) all of the above Each exam usually consiss of 10 Muliple choice quesions which are concepual in naure. They are ofen based upon he assigned hough quesions from he homework. There are also 4 problems in each exam, based

More information

Exam I. Name. Answer: a. W B > W A if the volume of the ice cubes is greater than the volume of the water.

Exam I. Name. Answer: a. W B > W A if the volume of the ice cubes is greater than the volume of the water. Name Exam I 1) A hole is punched in a full milk caron, 10 cm below he op. Wha is he iniial veloci of ouflow? a. 1.4 m/s b. 2.0 m/s c. 2.8 m/s d. 3.9 m/s e. 2.8 m/s Answer: a 2) In a wind unnel he pressure

More information

4.6 One Dimensional Kinematics and Integration

4.6 One Dimensional Kinematics and Integration 4.6 One Dimensional Kinemaics and Inegraion When he acceleraion a( of an objec is a non-consan funcion of ime, we would like o deermine he ime dependence of he posiion funcion x( and he x -componen of

More information

CHEAPEST PMT ONLINE TEST SERIES AIIMS/NEET TOPPER PREPARE QUESTIONS

CHEAPEST PMT ONLINE TEST SERIES AIIMS/NEET TOPPER PREPARE QUESTIONS CHEAPEST PMT ONLINE TEST SERIES AIIMS/NEET TOPPER PREPARE QUESTIONS For more deails see las page or conac @aimaiims.in Physics Mock Tes Paper AIIMS/NEET 07 Physics 06 Saurday Augus 0 Uni es : Moion in

More information