Computer Architecture

Size: px
Start display at page:

Download "Computer Architecture"

Transcription

1 Lecture 2: Iakovos Mavroidis Computer Science Department University of Crete 1

2 Previous Lecture CPU Evolution What is? 2

3 Outline Measurements and metrics : Performance, Cost, Dependability, Power Guidelines and principles in the design of computers 3

4 Major Design Challenges Power CPU time Memory latency/bandwidth Storage latency/bandwidth Transactions per second Intercommunication Dependability Power Performance Communication Everything Looks a Little Different 4

5 Power Consumption Charge external capacitance Discharge external capacitance Q = C L V DD R n V DD R p current E dynamic = Q V DD = C L V DD 2 current C L 0V C L 0V V DD ½ E d thermal energy on R P ½ E d stored on C L (since E CL = ½ C L V DD2 ) ½ E dynamic stored on C L becomes thermal energy on R N P dynamic = ½ C L V DD 2 frequency 5

6 Measuring Power 6

7 Power and Energy Energy to complete operation (Joules) Corresponds approximately to battery life (Battery energy capacity actually depends on rate of discharge) Peak power dissipation (Watts = Joules/second) Affects packaging (power and ground pins, thermal design) di/dt, peak change in supply current (Amps/second) Affects power supply noise (power and ground pins, decoupling capacitors) 7

8 Peak Power versus Lower Energy Peak A Power Peak B Integrate power curve to get energy Time System A has higher peak power, but lower total energy System B has lower peak power, but higher total energy 8

9 Measuring Reliability (Dependability) 10 9 (MTBF = MTTF + MTTR) MTTF = 1,000,000 hours FIT =? 9

10 Comparing design alternatives 10

11 Benchmark Suites (SPEC = Standard Performance Evaluation Corporation) SPECrate, SPECWeb 11

12 Summarizing performance 12

13 Summarizing performance (cont.) running time of programs 13

14 Summarizing performance (cont.) Used by SPEC98, SPEC92, SPEC95,, SPEC

15 Pros and cons of geometric means 15

16 Qualitative principles of design (Spatial and temporal locality) 16

17 Qualitative principles of design (cont.) 17

18 Amdahl s Law fraction fraction Best possible: 18

19 Amdahl s Law example New CPU 10X faster I/O bound server, so 60% time waiting for I/O Speedup overall 1 1 Fraction enhanced Fraction Speedup enhanced enhanced Apparently, its human nature to be attracted by 10X faster, vs. keeping in perspective its just 1.6X faster 19

20 Computer Performance CPU Performance s s 20

21 Cycles Per Instruction (Throughput) CPU Performance Average Cycles per Instruction CPI = (CPU Time * Clock Rate) / Instruction Count = Cycles / Instruction Count CPU time Cycle Time n CPI j I j1 j CPI n CPI j1 j F j where F j I Instruction j Count Instruction Frequency 21

22 Example: Calculating CPI bottom up CPU Performance Run benchmark and collect workload characterization (simulate, machine counters, or sampling) Base Machine (Reg / Reg) Op Freq CPI i F*CPI i (% Time) ALU 50% 1.5 (33%) Load 20% 2.4 (27%) Store 10% 2.2 (13%) Branch 20% 2.4 (27%) Typical Mix of instruction types in program Design guideline: Make the common case fast MIPS 1% rule: only consider adding an instruction if it is shown to add 1% performance improvement on reasonable benchmarks

23 Processor Performance 23

24 TPM (Transactions Per Minute) TPM *$1000 / cost Price/performance What about maintenance and power? 24

25 Conclusion 25

26 WB Data Next Lecture : Pipelining Instruction Fetch Instr. Decode Reg. Fetch Execute Addr. Calc Memory Access Write Back Next PC Next SEQ PC Next SEQ PC MUX 4 Adder RS1 Zero? Address IR <= mem[pc]; PC <= PC + 4 A <= Reg[IR rs ]; B <= Reg[IR rt ] Memory IF/ID RS2 Imm Reg File Sign Extend ID/EX MUX MUX ALU EX/MEM RD RD RD Data Memory MEM/WB MUX rslt <= A op IRop B WB <= rslt Reg[IR rd ] <= WB Data stationary control local decode for each instruction phase / pipeline stage 26

PERFORMANCE METRICS. Mahdi Nazm Bojnordi. CS/ECE 6810: Computer Architecture. Assistant Professor School of Computing University of Utah

PERFORMANCE METRICS. Mahdi Nazm Bojnordi. CS/ECE 6810: Computer Architecture. Assistant Professor School of Computing University of Utah PERFORMANCE METRICS Mahdi Nazm Bojnordi Assistant Professor School of Computing University of Utah CS/ECE 6810: Computer Architecture Overview Announcement Jan. 17 th : Homework 1 release (due on Jan.

More information

Lecture 2: Metrics to Evaluate Systems

Lecture 2: Metrics to Evaluate Systems Lecture 2: Metrics to Evaluate Systems Topics: Metrics: power, reliability, cost, benchmark suites, performance equation, summarizing performance with AM, GM, HM Sign up for the class mailing list! Video

More information

CMP 338: Third Class

CMP 338: Third Class CMP 338: Third Class HW 2 solution Conversion between bases The TINY processor Abstraction and separation of concerns Circuit design big picture Moore s law and chip fabrication cost Performance What does

More information

Amdahl's Law. Execution time new = ((1 f) + f/s) Execution time. S. Then:

Amdahl's Law. Execution time new = ((1 f) + f/s) Execution time. S. Then: Amdahl's Law Useful for evaluating the impact of a change. (A general observation.) Insight: Improving a feature cannot improve performance beyond the use of the feature Suppose we introduce a particular

More information

CMP N 301 Computer Architecture. Appendix C

CMP N 301 Computer Architecture. Appendix C CMP N 301 Computer Architecture Appendix C Outline Introduction Pipelining Hazards Pipelining Implementation Exception Handling Advanced Issues (Dynamic Scheduling, Out of order Issue, Superscalar, etc)

More information

Pipelining. Traditional Execution. CS 365 Lecture 12 Prof. Yih Huang. add ld beq CS CS 365 2

Pipelining. Traditional Execution. CS 365 Lecture 12 Prof. Yih Huang. add ld beq CS CS 365 2 Pipelining CS 365 Lecture 12 Prof. Yih Huang CS 365 1 Traditional Execution 1 2 3 4 1 2 3 4 5 1 2 3 add ld beq CS 365 2 1 Pipelined Execution 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

More information

CMP 334: Seventh Class

CMP 334: Seventh Class CMP 334: Seventh Class Performance HW 5 solution Averages and weighted averages (review) Amdahl's law Ripple-carry adder circuits Binary addition Half-adder circuits Full-adder circuits Subtraction, negative

More information

Microprocessor Power Analysis by Labeled Simulation

Microprocessor Power Analysis by Labeled Simulation Microprocessor Power Analysis by Labeled Simulation Cheng-Ta Hsieh, Kevin Chen and Massoud Pedram University of Southern California Dept. of EE-Systems Los Angeles CA 989 Outline! Introduction! Problem

More information

Measurement & Performance

Measurement & Performance Measurement & Performance Timers Performance measures Time-based metrics Rate-based metrics Benchmarking Amdahl s law Topics 2 Page The Nature of Time real (i.e. wall clock) time = User Time: time spent

More information

Measurement & Performance

Measurement & Performance Measurement & Performance Topics Timers Performance measures Time-based metrics Rate-based metrics Benchmarking Amdahl s law 2 The Nature of Time real (i.e. wall clock) time = User Time: time spent executing

More information

Performance of Computers. Performance of Computers. Defining Performance. Forecast

Performance of Computers. Performance of Computers. Defining Performance. Forecast Performance of Computers Which computer is fastest? Not so simple scientific simulation - FP performance program development - Integer performance commercial work - I/O Performance of Computers Want to

More information

CS 700: Quantitative Methods & Experimental Design in Computer Science

CS 700: Quantitative Methods & Experimental Design in Computer Science CS 700: Quantitative Methods & Experimental Design in Computer Science Sanjeev Setia Dept of Computer Science George Mason University Logistics Grade: 35% project, 25% Homework assignments 20% midterm,

More information

Lecture: Pipelining Basics

Lecture: Pipelining Basics Lecture: Pipelining Basics Topics: Performance equations wrap-up, Basic pipelining implementation Video 1: What is pipelining? Video 2: Clocks and latches Video 3: An example 5-stage pipeline Video 4:

More information

Goals for Performance Lecture

Goals for Performance Lecture Goals for Performance Lecture Understand performance, speedup, throughput, latency Relationship between cycle time, cycles/instruction (CPI), number of instructions (the performance equation) Amdahl s

More information

Lecture 3, Performance

Lecture 3, Performance Repeating some definitions: Lecture 3, Performance CPI MHz MIPS MOPS Clocks Per Instruction megahertz, millions of cycles per second Millions of Instructions Per Second = MHz / CPI Millions of Operations

More information

Lecture 3, Performance

Lecture 3, Performance Lecture 3, Performance Repeating some definitions: CPI Clocks Per Instruction MHz megahertz, millions of cycles per second MIPS Millions of Instructions Per Second = MHz / CPI MOPS Millions of Operations

More information

Performance, Power & Energy. ELEC8106/ELEC6102 Spring 2010 Hayden Kwok-Hay So

Performance, Power & Energy. ELEC8106/ELEC6102 Spring 2010 Hayden Kwok-Hay So Performance, Power & Energy ELEC8106/ELEC6102 Spring 2010 Hayden Kwok-Hay So Recall: Goal of this class Performance Reconfiguration Power/ Energy H. So, Sp10 Lecture 3 - ELEC8106/6102 2 PERFORMANCE EVALUATION

More information

Project Two RISC Processor Implementation ECE 485

Project Two RISC Processor Implementation ECE 485 Project Two RISC Processor Implementation ECE 485 Chenqi Bao Peter Chinetti November 6, 2013 Instructor: Professor Borkar 1 Statement of Problem This project requires the design and test of a RISC processor

More information

Computer Engineering Department. CC 311- Computer Architecture. Chapter 4. The Processor: Datapath and Control. Single Cycle

Computer Engineering Department. CC 311- Computer Architecture. Chapter 4. The Processor: Datapath and Control. Single Cycle Computer Engineering Department CC 311- Computer Architecture Chapter 4 The Processor: Datapath and Control Single Cycle Introduction The 5 classic components of a computer Processor Input Control Memory

More information

ECE 3401 Lecture 23. Pipeline Design. State Table for 2-Cycle Instructions. Control Unit. ISA: Instruction Specifications (for reference)

ECE 3401 Lecture 23. Pipeline Design. State Table for 2-Cycle Instructions. Control Unit. ISA: Instruction Specifications (for reference) ECE 3401 Lecture 23 Pipeline Design Control State Register Combinational Control Logic New/ Modified Control Word ISA: Instruction Specifications (for reference) P C P C + 1 I N F I R M [ P C ] E X 0 PC

More information

CSE Computer Architecture I

CSE Computer Architecture I Execution Sequence Summary CSE 30321 Computer Architecture I Lecture 17 - Multi Cycle Control Michael Niemier Department of Computer Science and Engineering Step name Instruction fetch Instruction decode/register

More information

Performance Metrics & Architectural Adaptivity. ELEC8106/ELEC6102 Spring 2010 Hayden Kwok-Hay So

Performance Metrics & Architectural Adaptivity. ELEC8106/ELEC6102 Spring 2010 Hayden Kwok-Hay So Performance Metrics & Architectural Adaptivity ELEC8106/ELEC6102 Spring 2010 Hayden Kwok-Hay So What are the Options? Power Consumption Activity factor (amount of circuit switching) Load Capacitance (size

More information

3. (2) What is the difference between fixed and hybrid instructions?

3. (2) What is the difference between fixed and hybrid instructions? 1. (2 pts) What is a "balanced" pipeline? 2. (2 pts) What are the two main ways to define performance? 3. (2) What is the difference between fixed and hybrid instructions? 4. (2 pts) Clock rates have grown

More information

Processor Design & ALU Design

Processor Design & ALU Design 3/8/2 Processor Design A. Sahu CSE, IIT Guwahati Please be updated with http://jatinga.iitg.ernet.in/~asahu/c22/ Outline Components of CPU Register, Multiplexor, Decoder, / Adder, substractor, Varity of

More information

ECE290 Fall 2012 Lecture 22. Dr. Zbigniew Kalbarczyk

ECE290 Fall 2012 Lecture 22. Dr. Zbigniew Kalbarczyk ECE290 Fall 2012 Lecture 22 Dr. Zbigniew Kalbarczyk Today LC-3 Micro-sequencer (the control store) LC-3 Micro-programmed control memory LC-3 Micro-instruction format LC -3 Micro-sequencer (the circuitry)

More information

Building a Computer. Quiz #2 on 10/31, open book and notes. (This is the last lecture covered) I wonder where this goes? L16- Building a Computer 1

Building a Computer. Quiz #2 on 10/31, open book and notes. (This is the last lecture covered) I wonder where this goes? L16- Building a Computer 1 Building a Computer I wonder where this goes? B LU MIPS Kit Quiz # on /3, open book and notes (This is the last lecture covered) Comp 4 Fall 7 /4/7 L6- Building a Computer THIS IS IT! Motivating Force

More information

[2] Predicting the direction of a branch is not enough. What else is necessary?

[2] Predicting the direction of a branch is not enough. What else is necessary? [2] When we talk about the number of operands in an instruction (a 1-operand or a 2-operand instruction, for example), what do we mean? [2] What are the two main ways to define performance? [2] Predicting

More information

ICS 233 Computer Architecture & Assembly Language

ICS 233 Computer Architecture & Assembly Language ICS 233 Computer Architecture & Assembly Language Assignment 6 Solution 1. Identify all of the RAW data dependencies in the following code. Which dependencies are data hazards that will be resolved by

More information

Performance Metrics for Computer Systems. CASS 2018 Lavanya Ramapantulu

Performance Metrics for Computer Systems. CASS 2018 Lavanya Ramapantulu Performance Metrics for Computer Systems CASS 2018 Lavanya Ramapantulu Eight Great Ideas in Computer Architecture Design for Moore s Law Use abstraction to simplify design Make the common case fast Performance

More information

[2] Predicting the direction of a branch is not enough. What else is necessary?

[2] Predicting the direction of a branch is not enough. What else is necessary? [2] What are the two main ways to define performance? [2] Predicting the direction of a branch is not enough. What else is necessary? [2] The power consumed by a chip has increased over time, but the clock

More information

CSCI-564 Advanced Computer Architecture

CSCI-564 Advanced Computer Architecture CSCI-564 Advanced Computer Architecture Lecture 8: Handling Exceptions and Interrupts / Superscalar Bo Wu Colorado School of Mines Branch Delay Slots (expose control hazard to software) Change the ISA

More information

4. (3) What do we mean when we say something is an N-operand machine?

4. (3) What do we mean when we say something is an N-operand machine? 1. (2) What are the two main ways to define performance? 2. (2) When dealing with control hazards, a prediction is not enough - what else is necessary in order to eliminate stalls? 3. (3) What is an "unbalanced"

More information

1. (2 )Clock rates have grown by a factor of 1000 while power consumed has only grown by a factor of 30. How was this accomplished?

1. (2 )Clock rates have grown by a factor of 1000 while power consumed has only grown by a factor of 30. How was this accomplished? 1. (2 )Clock rates have grown by a factor of 1000 while power consumed has only grown by a factor of 30. How was this accomplished? 2. (2 )What are the two main ways to define performance? 3. (2 )What

More information

EC 413 Computer Organization

EC 413 Computer Organization EC 413 Computer Organization rithmetic Logic Unit (LU) and Register File Prof. Michel. Kinsy Computing: Computer Organization The DN of Modern Computing Computer CPU Memory System LU Register File Disks

More information

CPSC 3300 Spring 2017 Exam 2

CPSC 3300 Spring 2017 Exam 2 CPSC 3300 Spring 2017 Exam 2 Name: 1. Matching. Write the correct term from the list into each blank. (2 pts. each) structural hazard EPIC forwarding precise exception hardwired load-use data hazard VLIW

More information

Enrico Nardelli Logic Circuits and Computer Architecture

Enrico Nardelli Logic Circuits and Computer Architecture Enrico Nardelli Logic Circuits and Computer Architecture Appendix B The design of VS0: a very simple CPU Rev. 1.4 (2009-10) by Enrico Nardelli B - 1 Instruction set Just 4 instructions LOAD M - Copy into

More information

Review: Single-Cycle Processor. Limits on cycle time

Review: Single-Cycle Processor. Limits on cycle time Review: Single-Cycle Processor Jump 3:26 5: MemtoReg Control Unit LUControl 2: Op Funct LUSrc RegDst PCJump PC 4 uction + PCPlus4 25:2 2:6 2:6 5: 5: 2 3 WriteReg 4: Src Src LU Zero LUResult Write + PC

More information

Simple Instruction-Pipelining. Pipelined Harvard Datapath

Simple Instruction-Pipelining. Pipelined Harvard Datapath 6.823, L8--1 Simple ruction-pipelining Updated March 6, 2000 Laboratory for Computer Science M.I.T. http://www.csg.lcs.mit.edu/6.823 Pipelined Harvard path 6.823, L8--2. fetch decode & eg-fetch execute

More information

Performance, Power & Energy

Performance, Power & Energy Recall: Goal of this class Performance, Power & Energy ELE8106/ELE6102 Performance Reconfiguration Power/ Energy Spring 2010 Hayden Kwok-Hay So H. So, Sp10 Lecture 3 - ELE8106/6102 2 What is good performance?

More information

ENEE350 Lecture Notes-Weeks 14 and 15

ENEE350 Lecture Notes-Weeks 14 and 15 Pipelining & Amdahl s Law ENEE350 Lecture Notes-Weeks 14 and 15 Pipelining is a method of processing in which a problem is divided into a number of sub problems and solved and the solu8ons of the sub problems

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption

EE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption EE115C Winter 2017 Digital Electronic Circuits Lecture 6: Power Consumption Four Key Design Metrics for Digital ICs Cost of ICs Reliability Speed Power EE115C Winter 2017 2 Power and Energy Challenges

More information

Verilog HDL:Digital Design and Modeling. Chapter 11. Additional Design Examples. Additional Figures

Verilog HDL:Digital Design and Modeling. Chapter 11. Additional Design Examples. Additional Figures Chapter Additional Design Examples Verilog HDL:Digital Design and Modeling Chapter Additional Design Examples Additional Figures Chapter Additional Design Examples 2 Page 62 a b y y 2 y 3 c d e f Figure

More information

CPU DESIGN The Single-Cycle Implementation

CPU DESIGN The Single-Cycle Implementation CSE 202 Computer Organization CPU DESIGN The Single-Cycle Implementation Shakil M. Khan (adapted from Prof. H. Roumani) Dept of CS & Eng, York University Sequential vs. Combinational Circuits Digital circuits

More information

CHAPTER log 2 64 = 6 lines/mux or decoder 9-2.* C = C 8 V = C 8 C * 9-4.* (Errata: Delete 1 after problem number) 9-5.

CHAPTER log 2 64 = 6 lines/mux or decoder 9-2.* C = C 8 V = C 8 C * 9-4.* (Errata: Delete 1 after problem number) 9-5. CHPTER 9 2008 Pearson Education, Inc. 9-. log 2 64 = 6 lines/mux or decoder 9-2.* C = C 8 V = C 8 C 7 Z = F 7 + F 6 + F 5 + F 4 + F 3 + F 2 + F + F 0 N = F 7 9-3.* = S + S = S + S S S S0 C in C 0 dder

More information

Simple Instruction-Pipelining. Pipelined Harvard Datapath

Simple Instruction-Pipelining. Pipelined Harvard Datapath 6.823, L8--1 Simple ruction-pipelining Laboratory for Computer Science M.I.T. http://www.csg.lcs.mit.edu/6.823 Pipelined Harvard path 6.823, L8--2. I fetch decode & eg-fetch execute memory Clock period

More information

Computer Architecture ELEC2401 & ELEC3441

Computer Architecture ELEC2401 & ELEC3441 Last Time Pipeline Hazard Computer Architecture ELEC2401 & ELEC3441 Lecture 8 Pipelining (3) Dr. Hayden Kwok-Hay So Department of Electrical and Electronic Engineering Structural Hazard Hazard Control

More information

Lecture 13: Sequential Circuits, FSM

Lecture 13: Sequential Circuits, FSM Lecture 13: Sequential Circuits, FSM Today s topics: Sequential circuits Finite state machines 1 Clocks A microprocessor is composed of many different circuits that are operating simultaneously if each

More information

Design. Dr. A. Sahu. Indian Institute of Technology Guwahati

Design. Dr. A. Sahu. Indian Institute of Technology Guwahati CS222: Processor Design: Multi Cycle Design Dr. A. Sahu Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati Mid Semester Exam Multi Cycle design Outline Clock periods in single cycle and

More information

L07-L09 recap: Fundamental lesson(s)!

L07-L09 recap: Fundamental lesson(s)! L7-L9 recap: Fundamental lesson(s)! Over the next 3 lectures (using the IPS ISA as context) I ll explain:! How functions are treated and processed in assembly! How system calls are enabled in assembly!

More information

CMPEN 411 VLSI Digital Circuits Spring Lecture 19: Adder Design

CMPEN 411 VLSI Digital Circuits Spring Lecture 19: Adder Design CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 19: Adder Design [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11 CMPEN 411 L19

More information

Stochastic Dynamic Thermal Management: A Markovian Decision-based Approach. Hwisung Jung, Massoud Pedram

Stochastic Dynamic Thermal Management: A Markovian Decision-based Approach. Hwisung Jung, Massoud Pedram Stochastic Dynamic Thermal Management: A Markovian Decision-based Approach Hwisung Jung, Massoud Pedram Outline Introduction Background Thermal Management Framework Accuracy of Modeling Policy Representation

More information

Lecture 13: Sequential Circuits, FSM

Lecture 13: Sequential Circuits, FSM Lecture 13: Sequential Circuits, FSM Today s topics: Sequential circuits Finite state machines Reminder: midterm on Tue 2/28 will cover Chapters 1-3, App A, B if you understand all slides, assignments,

More information

Designing MIPS Processor

Designing MIPS Processor CSE 675.: Introdction to Compter Architectre Designing IPS Processor (lti-cycle) Presentation H Reading Assignment: 5.5,5.6 lti-cycle Design Principles Break p eection of each instrction into steps. The

More information

Lecture 12: Energy and Power. James C. Hoe Department of ECE Carnegie Mellon University

Lecture 12: Energy and Power. James C. Hoe Department of ECE Carnegie Mellon University 18 447 Lecture 12: Energy and Power James C. Hoe Department of ECE Carnegie Mellon University 18 447 S18 L12 S1, James C. Hoe, CMU/ECE/CALCM, 2018 Housekeeping Your goal today a working understanding of

More information

UNIVERSITY OF WISCONSIN MADISON

UNIVERSITY OF WISCONSIN MADISON CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON Prof. Gurindar Sohi TAs: Minsub Shin, Lisa Ossian, Sujith Surendran Midterm Examination 2 In Class (50 minutes) Friday,

More information

Implementing the Controller. Harvard-Style Datapath for DLX

Implementing the Controller. Harvard-Style Datapath for DLX 6.823, L6--1 Implementing the Controller Laboratory for Computer Science M.I.T. http://www.csg.lcs.mit.edu/6.823 6.823, L6--2 Harvard-Style Datapath for DLX Src1 ( j / ~j ) Src2 ( R / RInd) RegWrite MemWrite

More information

Modern Computer Architecture

Modern Computer Architecture Modern Computer Architecture Lecture1 Fundamentals of Quantitative Design and Analysis (II) Hongbin Sun 国家集成电路人才培养基地 Xi an Jiaotong University 1.4 Trends in Technology Logic: transistor density 35%/year,

More information

Digital System Clocking: High-Performance and Low-Power Aspects. Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M.

Digital System Clocking: High-Performance and Low-Power Aspects. Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Digital System Clocking: High-Performance and Low-Power Aspects Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Nedovic Wiley-Interscience and IEEE Press, January 2003 Nov. 14,

More information

CS 52 Computer rchitecture and Engineering Lecture 4 - Pipelining Krste sanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste! http://inst.eecs.berkeley.edu/~cs52!

More information

COVER SHEET: Problem#: Points

COVER SHEET: Problem#: Points EEL 4712 Midterm 3 Spring 2017 VERSION 1 Name: UFID: Sign here to give permission for your test to be returned in class, where others might see your score: IMPORTANT: Please be neat and write (or draw)

More information

A glance on the analytical model of power-performance performance trade-off in VLSI microprocessor design. Sapienza University of Rome

A glance on the analytical model of power-performance performance trade-off in VLSI microprocessor design. Sapienza University of Rome A glance on the analytical model of power-performance performance trade-off in VLSI microprocessor design Sapienza University of Rome Introductive ideas clock clock clock clock Reg. V dd = 3.3 V T CK =

More information

NCU EE -- DSP VLSI Design. Tsung-Han Tsai 1

NCU EE -- DSP VLSI Design. Tsung-Han Tsai 1 NCU EE -- DSP VLSI Design. Tsung-Han Tsai 1 Multi-processor vs. Multi-computer architecture µp vs. DSP RISC vs. DSP RISC Reduced-instruction-set Register-to-register operation Higher throughput by using

More information

A Second Datapath Example YH16

A Second Datapath Example YH16 A Second Datapath Example YH16 Lecture 09 Prof. Yih Huang S365 1 A 16-Bit Architecture: YH16 A word is 16 bit wide 32 general purpose registers, 16 bits each Like MIPS, 0 is hardwired zero. 16 bit P 16

More information

Computer Architecture. ECE 361 Lecture 5: The Design Process & ALU Design. 361 design.1

Computer Architecture. ECE 361 Lecture 5: The Design Process & ALU Design. 361 design.1 Computer Architecture ECE 361 Lecture 5: The Design Process & Design 361 design.1 Quick Review of Last Lecture 361 design.2 MIPS ISA Design Objectives and Implications Support general OS and C- style language

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Simple Processor CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Digital

More information

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Announcements

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Announcements EE241 - Spring 2 Advanced Digital Integrated Circuits Lecture 11 Low Power-Low Energy Circuit Design Announcements Homework #2 due Friday, 3/3 by 5pm Midterm project reports due in two weeks - 3/7 by 5pm

More information

INF2270 Spring Philipp Häfliger. Lecture 8: Superscalar CPUs, Course Summary/Repetition (1/2)

INF2270 Spring Philipp Häfliger. Lecture 8: Superscalar CPUs, Course Summary/Repetition (1/2) INF2270 Spring 2010 Philipp Häfliger Summary/Repetition (1/2) content From Scalar to Superscalar Lecture Summary and Brief Repetition Binary numbers Boolean Algebra Combinational Logic Circuits Encoder/Decoder

More information

Summarizing Measured Data

Summarizing Measured Data Summarizing Measured Data 12-1 Overview Basic Probability and Statistics Concepts: CDF, PDF, PMF, Mean, Variance, CoV, Normal Distribution Summarizing Data by a Single Number: Mean, Median, and Mode, Arithmetic,

More information

Lecture 2: CMOS technology. Energy-aware computing

Lecture 2: CMOS technology. Energy-aware computing Energy-Aware Computing Lecture 2: CMOS technology Basic components Transistors Two types: NMOS, PMOS Wires (interconnect) Transistors as switches Gate Drain Source NMOS: When G is @ logic 1 (actually over

More information

ALU A functional unit

ALU A functional unit ALU A functional unit that performs arithmetic operations such as ADD, SUB, MPY logical operations such as AND, OR, XOR, NOT on given data types: 8-,16-,32-, or 64-bit values A n-1 A n-2... A 1 A 0 B n-1

More information

Introduction to CMOS VLSI Design Lecture 1: Introduction

Introduction to CMOS VLSI Design Lecture 1: Introduction Introduction to CMOS VLSI Design Lecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Introduction Integrated circuits: many transistors

More information

Administrivia. Course Objectives. Overview. Lecture Notes Week markem/cs333/ 2. Staff. 3. Prerequisites. 4. Grading. 1. Theory and application

Administrivia. Course Objectives. Overview. Lecture Notes Week markem/cs333/ 2. Staff. 3. Prerequisites. 4. Grading. 1. Theory and application Administrivia 1. markem/cs333/ 2. Staff 3. Prerequisites 4. Grading Course Objectives 1. Theory and application 2. Benefits 3. Labs TAs Overview 1. What is a computer system? CPU PC ALU System bus Memory

More information

EXAMPLES 4/12/2018. The MIPS Pipeline. Hazard Summary. Show the pipeline diagram. Show the pipeline diagram. Pipeline Datapath and Control

EXAMPLES 4/12/2018. The MIPS Pipeline. Hazard Summary. Show the pipeline diagram. Show the pipeline diagram. Pipeline Datapath and Control The MIPS Pipeline CSCI206 - Computer Organization & Programming Pipeline Datapath and Control zybook: 11.6 Developed and maintained by the Bucknell University Computer Science Department - 2017 Hazard

More information

CS61C : Machine Structures

CS61C : Machine Structures CS 61C L15 Blocks (1) inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #15: Combinational Logic Blocks Outline CL Blocks Latches & Flip Flops A Closer Look 2005-07-14 Andy Carle CS

More information

Chapter 8. Low-Power VLSI Design Methodology

Chapter 8. Low-Power VLSI Design Methodology VLSI Design hapter 8 Low-Power VLSI Design Methodology Jin-Fu Li hapter 8 Low-Power VLSI Design Methodology Introduction Low-Power Gate-Level Design Low-Power Architecture-Level Design Algorithmic-Level

More information

Figure 4.9 MARIE s Datapath

Figure 4.9 MARIE s Datapath Term Control Word Microoperation Hardwired Control Microprogrammed Control Discussion A set of signals that executes a microoperation. A register transfer or other operation that the CPU can execute in

More information

Lecture 34: Portable Systems Technology Background Professor Randy H. Katz Computer Science 252 Fall 1995

Lecture 34: Portable Systems Technology Background Professor Randy H. Katz Computer Science 252 Fall 1995 Lecture 34: Portable Systems Technology Background Professor Randy H. Katz Computer Science 252 Fall 1995 RHK.F95 1 Technology Trends: Microprocessor Capacity 100000000 10000000 Pentium Transistors 1000000

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #15: Combinational Logic Blocks 2005-07-14 CS 61C L15 Blocks (1) Andy Carle Outline CL Blocks Latches & Flip Flops A Closer Look CS

More information

Summarizing Measured Data

Summarizing Measured Data Summarizing Measured Data Dr. John Mellor-Crummey Department of Computer Science Rice University johnmc@cs.rice.edu COMP 528 Lecture 7 3 February 2005 Goals for Today Finish discussion of Normal Distribution

More information

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Arithmetic Circuits January, 2003 1 A Generic Digital Processor MEMORY INPUT-OUTPUT CONTROL DATAPATH

More information

LECTURE 28. Analyzing digital computation at a very low level! The Latch Pipelined Datapath Control Signals Concept of State

LECTURE 28. Analyzing digital computation at a very low level! The Latch Pipelined Datapath Control Signals Concept of State Today LECTURE 28 Analyzing digital computation at a very low level! The Latch Pipelined Datapath Control Signals Concept of State Time permitting, RC circuits (where we intentionally put in resistance

More information

2

2 Computer System AA rc hh ii tec ture( 55 ) 2 INTRODUCTION ( d i f f e r e n t r e g i s t e r s, b u s e s, m i c r o o p e r a t i o n s, m a c h i n e i n s t r u c t i o n s, e t c P i p e l i n e E

More information

Practice Homework Solution for Module 4

Practice Homework Solution for Module 4 Practice Homework Solution for Module 4 1. Tired of writing the names of those you want kicked off the island on cards, you wish to modernize the voting scheme used on Digital Survivor. Specifically, you

More information

Implications on the Design

Implications on the Design Implications on the Design Ramon Canal NCD Master MIRI NCD Master MIRI 1 VLSI Basics Resistance: Capacity: Agenda Energy Consumption Static Dynamic Thermal maps Voltage Scaling Metrics NCD Master MIRI

More information

TEST 1 REVIEW. Lectures 1-5

TEST 1 REVIEW. Lectures 1-5 TEST 1 REVIEW Lectures 1-5 REVIEW Test 1 will cover lectures 1-5. There are 10 questions in total with the last being a bonus question. The questions take the form of short answers (where you are expected

More information

EECS 427 Lecture 11: Power and Energy Reading: EECS 427 F09 Lecture Reminders

EECS 427 Lecture 11: Power and Energy Reading: EECS 427 F09 Lecture Reminders EECS 47 Lecture 11: Power and Energy Reading: 5.55 [Adapted from Irwin and Narayanan] 1 Reminders CAD5 is due Wednesday 10/8 You can submit it by Thursday 10/9 at noon Lecture on 11/ will be taught by

More information

CMOS Digital Integrated Circuits Lec 13 Semiconductor Memories

CMOS Digital Integrated Circuits Lec 13 Semiconductor Memories Lec 13 Semiconductor Memories 1 Semiconductor Memory Types Semiconductor Memories Read/Write (R/W) Memory or Random Access Memory (RAM) Read-Only Memory (ROM) Dynamic RAM (DRAM) Static RAM (SRAM) 1. Mask

More information

Basic Computer Organization and Design Part 3/3

Basic Computer Organization and Design Part 3/3 Basic Computer Organization and Design Part 3/3 Adapted by Dr. Adel Ammar Computer Organization Interrupt Initiated Input/Output Open communication only when some data has to be passed --> interrupt. The

More information

COMP9334: Capacity Planning of Computer Systems and Networks

COMP9334: Capacity Planning of Computer Systems and Networks COMP9334: Capacity Planning of Computer Systems and Networks Week 2: Operational analysis Lecturer: Prof. Sanjay Jha NETWORKS RESEARCH GROUP, CSE, UNSW Operational analysis Operational: Collect performance

More information

Topics: A multiple cycle implementation. Distributed Notes

Topics: A multiple cycle implementation. Distributed Notes COSC 22: Compter Organization Instrctor: Dr. Amir Asif Department of Compter Science York University Handot # lticycle Implementation of a IPS Processor Topics: A mltiple cycle implementation Distribted

More information

CPS 104 Computer Organization and Programming Lecture 11: Gates, Buses, Latches. Robert Wagner

CPS 104 Computer Organization and Programming Lecture 11: Gates, Buses, Latches. Robert Wagner CPS 4 Computer Organization and Programming Lecture : Gates, Buses, Latches. Robert Wagner CPS4 GBL. RW Fall 2 Overview of Today s Lecture: The MIPS ALU Shifter The Tristate driver Bus Interconnections

More information

CSE140L: Components and Design Techniques for Digital Systems Lab. FSMs. Instructor: Mohsen Imani. Slides from Tajana Simunic Rosing

CSE140L: Components and Design Techniques for Digital Systems Lab. FSMs. Instructor: Mohsen Imani. Slides from Tajana Simunic Rosing CSE140L: Components and Design Techniques for Digital Systems Lab FSMs Instructor: Mohsen Imani Slides from Tajana Simunic Rosing Source: Vahid, Katz 1 FSM design example Moore vs. Mealy Remove one 1 from

More information

Control. Control. the ALU. ALU control signals 11/4/14. Next: control. We built the instrument. Now we read music and play it...

Control. Control. the ALU. ALU control signals 11/4/14. Next: control. We built the instrument. Now we read music and play it... // CS 2, Fall 2! CS 2, Fall 2! We built the instrument. Now we read music and play it... A simple implementa/on uc/on uct r r 2 Write r Src Src Extend 6 Mem Next: path 7-2 CS 2, Fall 2! signals CS 2, Fall

More information

CSE140L: Components and Design Techniques for Digital Systems Lab. Power Consumption in Digital Circuits. Pietro Mercati

CSE140L: Components and Design Techniques for Digital Systems Lab. Power Consumption in Digital Circuits. Pietro Mercati CSE140L: Components and Design Techniques for Digital Systems Lab Power Consumption in Digital Circuits Pietro Mercati 1 About the final Friday 09/02 at 11.30am in WLH2204 ~2hrs exam including (but not

More information

Department of Electrical and Computer Engineering The University of Texas at Austin

Department of Electrical and Computer Engineering The University of Texas at Austin Department of Electrical and Computer Engineering The University of Texas at Austin EE 360N, Fall 2004 Yale Patt, Instructor Aater Suleman, Huzefa Sanjeliwala, Dam Sunwoo, TAs Exam 1, October 6, 2004 Name:

More information

EECS150 - Digital Design Lecture 11 - Shifters & Counters. Register Summary

EECS150 - Digital Design Lecture 11 - Shifters & Counters. Register Summary EECS50 - Digital Design Lecture - Shifters & Counters February 24, 2003 John Wawrzynek Spring 2005 EECS50 - Lec-counters Page Register Summary All registers (this semester) based on Flip-flops: q 3 q 2

More information

Unit 6: Branch Prediction

Unit 6: Branch Prediction CIS 501: Computer Architecture Unit 6: Branch Prediction Slides developed by Joe Devie/, Milo Mar4n & Amir Roth at Upenn with sources that included University of Wisconsin slides by Mark Hill, Guri Sohi,

More information

L16: Power Dissipation in Digital Systems. L16: Spring 2007 Introductory Digital Systems Laboratory

L16: Power Dissipation in Digital Systems. L16: Spring 2007 Introductory Digital Systems Laboratory L16: Power Dissipation in Digital Systems 1 Problem #1: Power Dissipation/Heat Power (Watts) 100000 10000 1000 100 10 1 0.1 4004 80088080 8085 808686 386 486 Pentium proc 18KW 5KW 1.5KW 500W 1971 1974

More information

From Sequential Circuits to Real Computers

From Sequential Circuits to Real Computers 1 / 36 From Sequential Circuits to Real Computers Lecturer: Guillaume Beslon Original Author: Lionel Morel Computer Science and Information Technologies - INSA Lyon Fall 2017 2 / 36 Introduction What we

More information

CIS 371 Computer Organization and Design

CIS 371 Computer Organization and Design CIS 371 Computer Organization and Design Unit 13: Power & Energy Slides developed by Milo Mar0n & Amir Roth at the University of Pennsylvania with sources that included University of Wisconsin slides by

More information