EE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption

Size: px
Start display at page:

Download "EE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption"

Transcription

1 EE115C Winter 2017 Digital Electronic Circuits Lecture 6: Power Consumption

2 Four Key Design Metrics for Digital ICs Cost of ICs Reliability Speed Power EE115C Winter

3 Power and Energy Challenges 1 billion computers in the world 0.4 PW (PetaWatt = W) of power dissipation Equivalent to 65 nuclear plants! Data centers represent the absolute challenge 1 single server rack is between 5 and 20 kw 100 s of those racks in a single room! Power and energy management and minimization have emerged as some of the most dominant roadblocks. The best opportunity lies in a very aggressive scaling and adaptation of supply and threshold values in concert with a careful orchestration of the system activity. EE115C Winter

4 The Power Challenge: A Modern Data Center IBM RoadRunner [2008] 2.35 MW Technical specs 12,240 Cell chips 6,562 AMD Opteron chips 98 TB of memory 278 racks (5,200 square feet) 55 miles of fiber optic cable 500,000 lbs 2.35 MW 437 M calculations / W Top supercomputer (PFlop) cores PowerXCell 8i 3.2 GHz Opteron DC 1.9 GHz 1,375,776 GFlops (peak) $100M Future data centers 1000 PFlops (~2015) Climate modeling Human genome science Limited (today) to ~20 MW due to power distribution issues EE115C Winter

5 Portability: Battery Storage is the Limiting Factor Little change in basic technology store energy using a chemical reaction Battery capacity doubles every 10 years 4x in the last 10 years Energy density, size, and safe handling are limiting factors Energy density KWH/kg of material Gasoline 14 Lead-Acid 0.04 Li polymer 0.15 EE115C Winter

6 Power versus Energy Watts Power is the height of the waveform Lower power design could simply be slower Approach 1 Approach 2 time Watts Energy is the area under the waveform Two approaches require the same energy Approach 1 Approach 2 time EE115C Winter

7 Where Does Power Go in CMOS? #1: Dynamic Power Consumption Charging and discharging capacitors #2: Short Circuit Currents Short-circuit path between supply rails during switching #3: Leakage Currents Leaking diodes and transistors EE115C Winter

8 CMOS Energy & Power Equations Dynamic Short-circuit Leakage Energy C L V DD 2 t sc V DD I peak V DD I leakage / f clock Power C L V DD2 f 0 1 t sc V DD I peak f 0 1 V DD I leakage Switching frequency / activity f 0 1 = a 0 1 f clock EE115C Winter

9 #1: Dynamic Power Dissipation Vdd V in V out C L Energy/transition = C L V dd 2 Power = Energy/transition f = f C L V dd 2 Dynamic power: observations Not a function of transistor sizes! Need to reduce C L, V dd, and f to reduce power EE115C Winter

10 Example Parameters Switched capacitance: 2fF / gate Fanout 4 gates Clock frequency: 2.5 GHz Power per gate Now, with many gates Activity: M gates EE115C Winter

11 Modification for Circuits With Reduced Swing V dd V dd V dd V t C L Can exploit reduced swing for lower power (e.g., reduced bit-line swing in memory) EE115C Winter

12 General Formulas Basic formula Energy(V DD ) = Energy(heat) + Energy(C L ) Components: EE115C Winter

13 Node Transition Activity and Power Consider switching a CMOS gate for N clock cycles E N : the energy consumed for N clock cycles n(n): the number of 0 1 transitions in N clock cycles EE115C Winter

14 Lowering Dynamic Power Capacitance: Function of fan-out, wire length, transistor sizes Supply Voltage: Has been dropping with successive generations P dyn = C L V DD2 a 0 1 f clock Activity factor: How often, on average, do wires switch? Clock frequency: Increasing EE115C Winter

15 Dynamic Power as a Function of V DD Decreasing V DD decreases dynamic energy consumption (quadratically) But, increases gate delay (decreases performance) Energy (norm) V DD (V) Scaling into the subthreshold regime results in very large delays ( x) Delay (norm) EE115C Winter

16 #2: Short-Circuit Power Consumption Vin I sc Vout C L Short-circuit current Finite slope of the input signal causes a direct current path between V DD and GND for a short period of time during switching when both the NMOS and PMOS transistors are conducting Both LH and HL transitions have short-circuit current EE115C Winter

17 I VDD (ma) Calculating Short-Circuit Power Vdd V in V out C L Triangular approximation 0.15 I peak Per switching period V T V DD V T Esc = tsc VDD Ipeak P sc = t sc V DD I peak f V in (V) I peak depends on C L EE115C Winter

18 Impact of C L on P SC I sc 0 I sc I max Vin Vout Vin Vout C L C L Large capacitive load Small capacitive load Output fall time significantly larger than input rise time. Output fall time substantially smaller than the input rise time. EE115C Winter

19 I peak as a Function of C L x ps input slope C L = 20 ff C L = 100 ff x time (sec) C L = 500 ff Small C L I peak is large. Use small C in and large C L Gate delay is higher and the input rise time of the next gate (fanout gate) is higher Higher I sc in fanout gate!! Local optim. is not good Short circuit dissipation is minimized by matching the rise/fall times of the input and output signals - slope engineering. EE115C Winter

20 How to Keep Short-Circuit Currents Down? Short-circuit current goes to zero if t slope,out >> t slope,in, but can t do this for cascade logic, so... EE115C Winter

21 Minimizing Short-Circuit Power Vdd =3.3 P norm P norm Vdd = Vdd = t sin / t sout t sin /t sout Keep the input and output rise/fall times the same (<10% of total consumption) From: Veendrick, IEEE Journal of Solid-State Circuits, Aug 84 If V dd < V Tn + V Tp then short-circuit power can be eliminated! EE115C Winter

22 #3: Leakage Current Vdd Vout Drain Junction Leakage Sub-Threshold Current Sub-threshold current is one of the most compelling issues Sub-Threshold in low-energy Current circuit Dominant design! Factor EE115C Winter

23 Reverse-Biased Diode Leakage GATE p + p+ N + - V dd Reverse Leakage Current I DL = J S A J S = pa/ m J S = 1-5pA/ m 2 2 at 25 deg C for 0.25 m CMOS J for a 1.2 m CMOS technology S doubles for every 9 deg C! J s double with every 9 o C increase in temperature EE115C Winter

24 Sub-Threshold Leakage Component Leakage control is critical for low-voltage operation EE115C Winter

25 #4: Static Power Consumption V DD I stat V out V in = V DD C L Wasted energy Should be avoided in most cases, but could help reducing energy in others (e.g. sense amps) EE115C Winter

26 General Principles for Power Reduction Prime choice: Reduce voltage! Recent years have seen an acceleration in supply voltage reduction Design at very low voltages still open question ( V by 2010!) Reduce switching activity Reduce physical capacitance EE115C Winter

27 Power and Energy Figures of Merit Power consumption in Watts determines battery life in hours Peak power determines power ground wiring designs sets packaging limits impacts signal noise margin and reliability analysis Energy efficiency in Joules rate at which power is consumed over time Energy = power * delay Joules = Watts * seconds lower energy number means less power to perform a computation at the same frequency EE115C Winter

28 PDP and EDP Power-delay product (PDP) = P av * t p = (C L V DD2 )/2 PDP is the average energy consumed per switching event (Watts * sec = Joule) Lower power design could simply be a slower design Energy-delay product (EDP) EDP = PDP * t p = P av * t p 2 EDP is the average energy consumed multiplied by the computation time required Takes into account that one can trade increased delay for lower energy/op (e.g. via V DD scaling) EE115C Winter Energy-Delay (normalized) Vdd (V) energy-delay energy delay

29 CMOS Energy & Power Equations (Summary) Dynamic Short-circuit Leakage Energy C L V DD 2 t sc V DD I peak V DD I leakage / f clock Power C L V DD2 f 0 1 t sc V DD I peak f 0 1 V DD I leakage ~75% today and decreasing relatively ~5% today and decreasing absolutely ~20% today and slowly increasing Switching frequency / activity f 0 1 = a 0 1 f clock EE115C Winter

30 Simplified Model for Circuit Analysis Often we assume that switching energy is dominant Similarly to delay analysis, we can find equivalent capacitance for power analysis It is to expect that this capacitance will be higher, because it includes short-circuit power and leakage In our process, C in (power) = 2.45fF Including output parasitic C in + C par = 3.95fF (1.61 * 2.45fF) Simplified model for hand analysis: power cap delay cap! EE115C Winter

Power Dissipation. Where Does Power Go in CMOS?

Power Dissipation. Where Does Power Go in CMOS? Power Dissipation [Adapted from Chapter 5 of Digital Integrated Circuits, 2003, J. Rabaey et al.] Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit

More information

EECS 427 Lecture 11: Power and Energy Reading: EECS 427 F09 Lecture Reminders

EECS 427 Lecture 11: Power and Energy Reading: EECS 427 F09 Lecture Reminders EECS 47 Lecture 11: Power and Energy Reading: 5.55 [Adapted from Irwin and Narayanan] 1 Reminders CAD5 is due Wednesday 10/8 You can submit it by Thursday 10/9 at noon Lecture on 11/ will be taught by

More information

Last Lecture. Power Dissipation CMOS Scaling. EECS 141 S02 Lecture 8

Last Lecture. Power Dissipation CMOS Scaling. EECS 141 S02 Lecture 8 EECS 141 S02 Lecture 8 Power Dissipation CMOS Scaling Last Lecture CMOS Inverter loading Switching Performance Evaluation Design optimization Inverter Sizing 1 Today CMOS Inverter power dissipation» Dynamic»

More information

Where Does Power Go in CMOS?

Where Does Power Go in CMOS? Power Dissipation Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit Path between Supply Rails during Switching Leakage Leaking

More information

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power - Fall 2002 Lecture 7 MOS Capacitances Inverter Delay Power Announcements Wednesday 12-3pm lab cancelled Lab 4 this week Homework 2 due today at 5pm Homework 3 posted tonight Today s lecture MOS capacitances

More information

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 8 Power Dissipation in CMOS Gates Power in CMOS gates Dynamic Power Capacitance switching Crowbar

More information

Announcements. EE141- Spring 2003 Lecture 8. Power Inverter Chain

Announcements. EE141- Spring 2003 Lecture 8. Power Inverter Chain - Spring 2003 Lecture 8 Power Inverter Chain Announcements Homework 3 due today. Homework 4 will be posted later today. Special office hours from :30-3pm at BWRC (in lieu of Tuesday) Today s lecture Power

More information

Dynamic operation 20

Dynamic operation 20 Dynamic operation 20 A simple model for the propagation delay Symmetric inverter (rise and fall delays are identical) otal capacitance is linear t p Minimum length devices R W C L t = 0.69R C = p W L 0.69

More information

Digital Integrated Circuits 2nd Inverter

Digital Integrated Circuits 2nd Inverter Digital Integrated Circuits The Inverter The CMOS Inverter V DD Analysis Inverter complex gate Cost V in V out complexity & Area Integrity and robustness C L Static behavior Performance Dynamic response

More information

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Announcements

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Announcements EE241 - Spring 2 Advanced Digital Integrated Circuits Lecture 11 Low Power-Low Energy Circuit Design Announcements Homework #2 due Friday, 3/3 by 5pm Midterm project reports due in two weeks - 3/7 by 5pm

More information

CSE493/593. Designing for Low Power

CSE493/593. Designing for Low Power CSE493/593 Designing for Low Power Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.].1 Why Power Matters Packaging costs Power supply rail design Chip and system

More information

Lecture 2: CMOS technology. Energy-aware computing

Lecture 2: CMOS technology. Energy-aware computing Energy-Aware Computing Lecture 2: CMOS technology Basic components Transistors Two types: NMOS, PMOS Wires (interconnect) Transistors as switches Gate Drain Source NMOS: When G is @ logic 1 (actually over

More information

ASIC FPGA Chip hip Design Pow Po e w r e Di ssipation ssipa Mahdi Shabany

ASIC FPGA Chip hip Design Pow Po e w r e Di ssipation ssipa Mahdi Shabany ASIC/FPGA Chip Design Power Di ssipation Mahdi Shabany Department tof Electrical ti lengineering i Sharif University of technology Outline Introduction o Dynamic Power Dissipation Static Power Dissipation

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 14 The CMOS Inverter: dynamic behavior (sizing, inverter

More information

THE INVERTER. Inverter

THE INVERTER. Inverter THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)

More information

Lecture 4: CMOS review & Dynamic Logic

Lecture 4: CMOS review & Dynamic Logic Lecture 4: CMOS review & Dynamic Logic Reading: ch5, ch6 Overview CMOS basics Power and energy in CMOS Dynamic logic 1 CMOS Properties Full rail-to-rail swing high noise margins Logic levels not dependent

More information

Topic 4. The CMOS Inverter

Topic 4. The CMOS Inverter Topic 4 The CMOS Inverter Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk Topic 4-1 Noise in Digital Integrated

More information

Lecture 8-1. Low Power Design

Lecture 8-1. Low Power Design Lecture 8 Konstantinos Masselos Department of Electrical & Electronic Engineering Imperial College London URL: http://cas.ee.ic.ac.uk/~kostas E-mail: k.masselos@ic.ac.uk Lecture 8-1 Based on slides/material

More information

EE141Microelettronica. CMOS Logic

EE141Microelettronica. CMOS Logic Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit

More information

MODULE III PHYSICAL DESIGN ISSUES

MODULE III PHYSICAL DESIGN ISSUES VLSI Digital Design MODULE III PHYSICAL DESIGN ISSUES 3.2 Power-supply and clock distribution EE - VDD -P2006 3:1 3.1.1 Power dissipation in CMOS gates Power dissipation importance Package Cost. Power

More information

EE241 - Spring 2001 Advanced Digital Integrated Circuits

EE241 - Spring 2001 Advanced Digital Integrated Circuits EE241 - Spring 21 Advanced Digital Integrated Circuits Lecture 12 Low Power Design Self-Resetting Logic Signals are pulses, not levels 1 Self-Resetting Logic Sense-Amplifying Logic Matsui, JSSC 12/94 2

More information

VLSI Design I; A. Milenkovic 1

VLSI Design I; A. Milenkovic 1 Why Power Matters PE/EE 47, PE 57 VLSI Design I L5: Power and Designing for Low Power Department of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka

More information

Design for Manufacturability and Power Estimation. Physical issues verification (DSM)

Design for Manufacturability and Power Estimation. Physical issues verification (DSM) Design for Manufacturability and Power Estimation Lecture 25 Alessandra Nardi Thanks to Prof. Jan Rabaey and Prof. K. Keutzer Physical issues verification (DSM) Interconnects Signal Integrity P/G integrity

More information

Objective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components

Objective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components Objective: Power Components Outline: 1) Acknowledgements 2) Objective and Outline 1 Acknowledgement This lecture note has been obtained from similar courses all over the world. I wish to thank all the

More information

Chapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter

Chapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter Chapter 5 The Inverter V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov.12 03 Objective of This Chapter Use Inverter to know basic CMOS Circuits Operations Watch for performance Index such as Speed (Delay calculation)

More information

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1 5.0 CMOS Inverter W.Kucewicz VLSICirciuit Design 1 Properties Switching Threshold Dynamic Behaviour Capacitance Propagation Delay nmos/pmos Ratio Power Consumption Contents W.Kucewicz VLSICirciuit Design

More information

Introduction to CMOS VLSI Design (E158) Lecture 20: Low Power Design

Introduction to CMOS VLSI Design (E158) Lecture 20: Low Power Design Harris Introduction to CMOS VLSI Design (E158) Lecture 20: Low Power Design David Harris Harvey Mudd College David_Harris@hmc.edu Based on EE271 developed by Mark Horowitz, Stanford University MAH E158

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 15, 2018 Euler Paths, Energy Basics and Optimization Midterm! Midterm " Mean: 89.7 " Standard Dev: 8.12 2 Lecture Outline! Euler

More information

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 21, 2017 Transmission Gates, Euler Paths, Energy Basics Review Midterm! Midterm " Mean: 79.5 " Standard Dev: 14.5 2 Lecture Outline!

More information

Lecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010

Lecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010 EE4800 CMOS Digital IC Design & Analysis Lecture 6 Power Zhuo Feng 6.1 Outline Power and Energy Dynamic Power Static Power 6.2 Power and Energy Power is drawn from a voltage source attached to the V DD

More information

Power Consumption in CMOS CONCORDIA VLSI DESIGN LAB

Power Consumption in CMOS CONCORDIA VLSI DESIGN LAB Power Consumption in CMOS 1 Power Dissipation in CMOS Two Components contribute to the power dissipation:» Static Power Dissipation Leakage current Sub-threshold current» Dynamic Power Dissipation Short

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective igital Integrated Circuits esign Perspective esigning Combinational Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit Out State Combinational

More information

COMP 103. Lecture 16. Dynamic Logic

COMP 103. Lecture 16. Dynamic Logic COMP 03 Lecture 6 Dynamic Logic Reading: 6.3, 6.4 [ll lecture notes are adapted from Mary Jane Irwin, Penn State, which were adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] COMP03

More information

Spiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp

Spiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp 2-7.1 Spiral 2 7 Capacitance, Delay and Sizing Mark Redekopp 2-7.2 Learning Outcomes I understand the sources of capacitance in CMOS circuits I understand how delay scales with resistance, capacitance

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Digital Integrated Circuits Design Perspective Designing Combinational Logic Circuits Fuyuzhuo School of Microelectronics,SJTU Introduction Digital IC Dynamic Logic Introduction Digital IC 2 EE141 Dynamic

More information

EECS 141: FALL 05 MIDTERM 1

EECS 141: FALL 05 MIDTERM 1 University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 11-1:3 Thursday, October 6, 6:3-8:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION

More information

EECS150 - Digital Design Lecture 22 Power Consumption in CMOS. Announcements

EECS150 - Digital Design Lecture 22 Power Consumption in CMOS. Announcements EECS150 - Digital Design Lecture 22 Power Consumption in CMOS November 22, 2011 Elad Alon Electrical Engineering and Computer Sciences University of California, Berkeley http://www-inst.eecs.berkeley.edu/~cs150

More information

Low Power CMOS Dr. Lynn Fuller Webpage:

Low Power CMOS Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Email: Lynn.Fuller@rit.edu Department

More information

EEE 421 VLSI Circuits

EEE 421 VLSI Circuits EEE 421 CMOS Properties Full rail-to-rail swing high noise margins» Logic levels not dependent upon the relative device sizes transistors can be minimum size ratioless Always a path to V dd or GND in steady

More information

MOSFET and CMOS Gate. Copy Right by Wentai Liu

MOSFET and CMOS Gate. Copy Right by Wentai Liu MOSFET and CMOS Gate CMOS Inverter DC Analysis - Voltage Transfer Curve (VTC) Find (1) (2) (3) (4) (5) (6) V OH min, V V OL min, V V IH min, V V IL min, V OHmax OLmax IHmax ILmax NM L = V ILmax V OL max

More information

EE115C Digital Electronic Circuits Homework #4

EE115C Digital Electronic Circuits Homework #4 EE115 Digital Electronic ircuits Homework #4 Problem 1 Power Dissipation Solution Vdd =1.0V onsider the source follower circuit used to drive a load L =20fF shown above. M1 and M2 are both NMOS transistors

More information

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo Digital Integrated Circuits Designing Combinational Logic Circuits Fuyuzhuo Introduction Digital IC Dynamic Logic Introduction Digital IC EE141 2 Dynamic logic outline Dynamic logic principle Dynamic logic

More information

Dynamic Combinational Circuits. Dynamic Logic

Dynamic Combinational Circuits. Dynamic Logic Dynamic Combinational Circuits Dynamic circuits Charge sharing, charge redistribution Domino logic np-cmos (zipper CMOS) Krish Chakrabarty 1 Dynamic Logic Dynamic gates use a clocked pmos pullup Two modes:

More information

EECS 141 F01 Lecture 17

EECS 141 F01 Lecture 17 EECS 4 F0 Lecture 7 With major inputs/improvements From Mary-Jane Irwin (Penn State) Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND

More information

9/18/2008 GMU, ECE 680 Physical VLSI Design

9/18/2008 GMU, ECE 680 Physical VLSI Design ECE680: Physical VLSI Design Chapter III CMOS Device, Inverter, Combinational circuit Logic and Layout Part 3 Combinational Logic Gates (textbook chapter 6) 9/18/2008 GMU, ECE 680 Physical VLSI Design

More information

EE241 - Spring 2005 Advanced Digital Integrated Circuits. Admin. Lecture 10: Power Intro

EE241 - Spring 2005 Advanced Digital Integrated Circuits. Admin. Lecture 10: Power Intro EE241 - Spring 2005 Advanced Digital Integrated Circuits Lecture 10: Power Intro Admin Project Phase 2 due Monday March 14, 5pm (by e-mail to jan@eecs.berkeley.edu and huifangq@eecs.berkeley.edu) Should

More information

CSE140L: Components and Design Techniques for Digital Systems Lab. Power Consumption in Digital Circuits. Pietro Mercati

CSE140L: Components and Design Techniques for Digital Systems Lab. Power Consumption in Digital Circuits. Pietro Mercati CSE140L: Components and Design Techniques for Digital Systems Lab Power Consumption in Digital Circuits Pietro Mercati 1 About the final Friday 09/02 at 11.30am in WLH2204 ~2hrs exam including (but not

More information

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences Elad Alon Homework #2 EECS141 Due Thursday, September 9, 5pm, box in 240 Cory PROBLEM

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 19: March 29, 2018 Memory Overview, Memory Core Cells Today! Charge Leakage/Charge Sharing " Domino Logic Design Considerations! Logic Comparisons!

More information

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 8 Lecture #5: CMOS Inverter AC Characteristics Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Acknowledgments Slides due to Rajit Manohar from ECE 547 Advanced

More information

EE5311- Digital IC Design

EE5311- Digital IC Design EE5311- Digital IC Design Module 3 - The Inverter Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai September 6, 2017 Janakiraman, IITM

More information

Dynamic Combinational Circuits. Dynamic Logic

Dynamic Combinational Circuits. Dynamic Logic Dynamic Combinational Circuits Dynamic circuits Charge sharing, charge redistribution Domino logic np-cmos (zipper CMOS) Krish Chakrabarty 1 Dynamic Logic Dynamic gates use a clocked pmos pullup Two modes:

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 17: March 26, 2019 Energy Optimization & Design Space Exploration Penn ESE 570 Spring 2019 Khanna Lecture Outline! Energy Optimization! Design

More information

Lecture 7 Circuit Delay, Area and Power

Lecture 7 Circuit Delay, Area and Power Lecture 7 Circuit Delay, Area and Power lecture notes from S. Mitra Intro VLSI System course (EE271) Introduction to VLSI Systems 1 Circuits and Delay Introduction to VLSI Systems 2 Power, Delay and Area:

More information

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view) CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN

More information

ECE321 Electronics I

ECE321 Electronics I ECE31 Electronics Lecture 1: CMOS nverter: Noise Margin & Delay Model Payman Zarkesh-Ha Office: ECE Bldg. 30B Office hours: Tuesday :00-3:00PM or by appointment E-mail: payman@ece.unm.edu Slide: 1 CMOS

More information

Digital Microelectronic Circuits ( ) The CMOS Inverter. Lecture 4: Presented by: Adam Teman

Digital Microelectronic Circuits ( ) The CMOS Inverter. Lecture 4: Presented by: Adam Teman Digital Microelectronic Circuits (361-1-301 ) Presented by: Adam Teman Lecture 4: The CMOS Inverter 1 Last Lectures Moore s Law Terminology» Static Properties» Dynamic Properties» Power The MOSFET Transistor»

More information

The Physical Structure (NMOS)

The Physical Structure (NMOS) The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 Transistor Resistance Two

More information

! Charge Leakage/Charge Sharing. " Domino Logic Design Considerations. ! Logic Comparisons. ! Memory. " Classification. " ROM Memories.

! Charge Leakage/Charge Sharing.  Domino Logic Design Considerations. ! Logic Comparisons. ! Memory.  Classification.  ROM Memories. ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 9: March 9, 8 Memory Overview, Memory Core Cells Today! Charge Leakage/ " Domino Logic Design Considerations! Logic Comparisons! Memory " Classification

More information

CMOS Inverter (static view)

CMOS Inverter (static view) Review: Design Abstraction Levels SYSTEM CMOS Inverter (static view) + MODULE GATE [Adapted from Chapter 5. 5.3 CIRCUIT of G DEVICE Rabaey s Digital Integrated Circuits,, J. Rabaey et al.] S D Review:

More information

COMBINATIONAL LOGIC. Combinational Logic

COMBINATIONAL LOGIC. Combinational Logic COMINTIONL LOGIC Overview Static CMOS Conventional Static CMOS Logic Ratioed Logic Pass Transistor/Transmission Gate Logic Dynamic CMOS Logic Domino np-cmos Combinational vs. Sequential Logic In Logic

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2018 Final Monday, Apr 0 5 Problems with point weightings shown.

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 18: March 27, 2018 Dynamic Logic, Charge Injection Lecture Outline! Sequential MOS Logic " D-Latch " Timing Constraints! Dynamic Logic " Domino

More information

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 9 Propagation delay Power and delay Tradeoffs Follow board notes Propagation Delay Switching Time

More information

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B) 1 Introduction to Transistor-Level Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed

More information

EE5311- Digital IC Design

EE5311- Digital IC Design EE5311- Digital IC Design Module 3 - The Inverter Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai September 3, 2018 Janakiraman, IITM

More information

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering 007 Fall: Electronic Circuits CHAPTER 10 Digital CMOS Logic Circuits Deog-Kyoon Jeong dkjeong@snu.ac.kr k School of Electrical Engineering Seoul lnational luniversity it Introduction In this chapter, we

More information

CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic

CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic [dapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey,. Chandrakasan,. Nikolic] Sp11 CMPEN 411

More information

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] Miscellaneous Lecture topics Mary Jane Irwin [dapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] MOS Switches MOS transistors can be viewed as simple switches. In an N-Switch, the

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 017 Final Wednesday, May 3 4 Problems with point weightings shown.

More information

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002 CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 18-322 DIGITAL INTEGRATED CIRCUITS FALL 2002 Final Examination, Monday Dec. 16, 2002 NAME: SECTION: Time: 180 minutes Closed

More information

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut Topics Dynamic CMOS Sequential Design Memory and Control Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND or V DD via a low resistance

More information

B.Supmonchai July 5th, q Quantification of Design Metrics of an inverter. q Optimization of an inverter design. B.Supmonchai Why CMOS Inverter?

B.Supmonchai July 5th, q Quantification of Design Metrics of an inverter. q Optimization of an inverter design. B.Supmonchai Why CMOS Inverter? July 5th, 4 Goals of This Chapter Quantification of Design Metrics of an inverter Static (or Steady-State) Behavior Chapter 5 CMOS Inverter Boonchuay Supmonchai Integrated Design Application Research (IDAR)

More information

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #6: CMOS Logic Rajeevan mirtharajah University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW 3 due this

More information

Lecture 5: DC & Transient Response

Lecture 5: DC & Transient Response Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor

More information

ECE 342 Solid State Devices & Circuits 4. CMOS

ECE 342 Solid State Devices & Circuits 4. CMOS ECE 34 Solid State Devices & Circuits 4. CMOS Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input

More information

Pass-Transistor Logic

Pass-Transistor Logic -all 26 Digital tegrated ircuits nnouncements No new homework this week roject phase one due on Monday Midterm 2 next Thursday Review session on Tuesday Lecture 8 Logic Dynamic Logic EE4 EE4 2 lass Material

More information

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.

More information

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation EEC 116 Lecture #5: CMOS Logic Rajeevan mirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW

More information

CMOS Logic Gates. University of Connecticut 181

CMOS Logic Gates. University of Connecticut 181 CMOS Logic Gates University of Connecticut 181 Basic CMOS Inverter Operation V IN P O N O p-channel enhancementtype MOSFET; V T < 0 n-channel enhancementtype MOSFET; V T > 0 If V IN 0, N O is cut off and

More information

EE 434 Lecture 33. Logic Design

EE 434 Lecture 33. Logic Design EE 434 Lecture 33 Logic Design Review from last time: Ask the inverter how it will interpret logic levels V IN V OUT V H =? V L =? V LARGE V H V L V H Review from last time: The two-inverter loop X Y X

More information

Chapter 11. Inverter. DC AC, Switching. Layout. Sizing PASS GATES (CHPT 10) Other Inverters. Baker Ch. 11 The Inverter. Introduction to VLSI

Chapter 11. Inverter. DC AC, Switching. Layout. Sizing PASS GATES (CHPT 10) Other Inverters. Baker Ch. 11 The Inverter. Introduction to VLSI Chapter 11 Inverter DC AC, Switching Ring Oscillator Dynamic Power Dissipation Layout LATCHUP Sizing PASS GATES (CHPT 10) Other Inverters Joseph A. Elias, Ph.D. Adjunct Professor, University of Kentucky;

More information

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1 Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis

More information

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003 6.12 - Microelectronic Devices and Circuits - Spring 23 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 23 Contents: 1. Complementary MOS (CMOS) inverter: introduction 2. CMOS inverter:

More information

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018 ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018 ΔΙΑΛΕΞΗ 11: Dynamic CMOS Circuits ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ (ttheocharides@ucy.ac.cy) (ack: Prof. Mary Jane Irwin and Vijay Narayanan) [Προσαρμογή από

More information

Lecture 6: DC & Transient Response

Lecture 6: DC & Transient Response Lecture 6: DC & Transient Response Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline Pass Transistors DC Response Logic Levels and Noise Margins

More information

CMPEN 411 VLSI Digital Circuits Spring Lecture 14: Designing for Low Power

CMPEN 411 VLSI Digital Circuits Spring Lecture 14: Designing for Low Power CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 14: Designing for Low Power [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp12 CMPEN

More information

Design of System Elements. Basics of VLSI

Design of System Elements. Basics of VLSI Design of System Elements Basics of VLSI A Generic Digital Machine MEMORY INPUT-OUT PUT CONTROL DATAPATH Jamadagni H S ITC/V1/2004 2of 50 Building Blocks for Digital Architectures Arithmetic unit Data

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 16 CMOS Combinational Circuits - 2 guntzel@inf.ufsc.br

More information

Lecture 4: DC & Transient Response

Lecture 4: DC & Transient Response Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response David Harris Harvey Mudd College Spring 004 Outline DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Slide

More information

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS CHAPTER 5 CMOS DIGITAL LOGIC CIRCUITS Chapter Outline 5. CMOS Logic Gate Circuits 5. Digital Logic Inverters 5.3 The CMOS Inverter 5.4 Dynamic Operation of the CMOS Inverter 5.5 Transistor Sizing 5.6 Power

More information

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view) ENGR89 Digital VLSI Design Fall 5 Lecture 4: CMOS Inverter (static view) [Adapted from Chapter 5 of Digital Integrated Circuits, 3, J. Rabaey et al.] [Also borrowed from Vijay Narayanan and Mary Jane Irwin]

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Semiconductor Memories Adapted from Chapter 12 of Digital Integrated Circuits A Design Perspective Jan M. Rabaey et al. Copyright 2003 Prentice Hall/Pearson Outline Memory Classification Memory Architectures

More information

Digital Integrated Circuits

Digital Integrated Circuits Chapter 6 The CMOS Inverter 1 Contents Introduction (MOST models) 0, 1 st, 2 nd order The CMOS inverter : The static behavior: o DC transfer characteristics, o Short-circuit current The CMOS inverter :

More information

CMOS logic gates. João Canas Ferreira. March University of Porto Faculty of Engineering

CMOS logic gates. João Canas Ferreira. March University of Porto Faculty of Engineering CMOS logic gates João Canas Ferreira University of Porto Faculty of Engineering March 2016 Topics 1 General structure 2 General properties 3 Cell layout João Canas Ferreira (FEUP) CMOS logic gates March

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 10: February 15, 2018 MOS Inverter: Dynamic Characteristics Penn ESE 570 Spring 2018 Khanna Lecture Outline! Inverter Power! Dynamic Characteristics

More information

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Restore Output. Pass Transistor Logic. How compare.

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Restore Output. Pass Transistor Logic. How compare. ESE 570: igital Integrated ircuits and VLSI undamentals Lec 16: March 19, 2019 Euler Paths and Energy asics & Optimization Lecture Outline! Pass Transistor Logic! Logic omparison! Transmission Gates! Euler

More information

EE241 - Spring 2003 Advanced Digital Integrated Circuits

EE241 - Spring 2003 Advanced Digital Integrated Circuits EE241 - Spring 2003 Advanced Digital Integrated Circuits Lecture 16 Energy-Recovery Circuits SOI Technology and Circuits Optimal EDP Contours 1 Leakage and Switching ELk 2 = ESw Opt L ln d K tech α avg

More information

Semiconductor Memories

Semiconductor Memories Semiconductor References: Adapted from: Digital Integrated Circuits: A Design Perspective, J. Rabaey UCB Principles of CMOS VLSI Design: A Systems Perspective, 2nd Ed., N. H. E. Weste and K. Eshraghian

More information

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories Digital Integrated Circuits A Design Perspective Semiconductor Chapter Overview Memory Classification Memory Architectures The Memory Core Periphery Reliability Case Studies Semiconductor Memory Classification

More information