Origin of the 2DEG at the LAO/STO Interface

Size: px
Start display at page:

Download "Origin of the 2DEG at the LAO/STO Interface"

Transcription

1 Origin of the 2DEG at the LAO/STO Interface Umberto Scotti di Uccio S. Amoruso, C. Aruta, R. Bruzzese, E. Di Gennaro, A. Sambri, X. Wang and F. Miletto Granozio University FEDERICO II & CNRSPIN, Napoli (Italy) D. Maccariello, P. Perna IMDEA, Madrid (Spain) C. Cantoni, J. Gazquez, M. P. Oxley, M. Varela, A.R. Lupini, S.J. Pennycook Oak Ridge National Laboratory 1 This presentation regardsthe still open issue of the origin of the two dimensional electron gas at the LAO/STO interface. I will show some experimental data and make comments on this subject, but I d like to state that my contribution is not completely general because it is limited to epitaxial samples. I will not speak of amorphous LAO samples, that have very different fabrication procedure and structure.

2 1. Introduction 2D Electron Gas in semiconductors donors Main ingredients: Quantum well Donor states 2 2deg s are observed in several different systems, such as for instance semiconducting structures based on gallium compounds. But in any cases they share two main ingredients, that are the existence of a quantum well and of donor states that populate the well with charge carriers. In the case of STO/LAO interfaceseverybody agrees that the quantum well is formed within STO, close to the interface. So when I say origin of the 2deg I specifically refer to the nature and location of the donor states.

3 Two alternative mechanisms for crystalline STO/LAO 1. Introduction Electronic reconstruction Oxygen vacancies charge AlO 2 (1) LaO (+1) AlO 2 (1) LaO (+1) TiO 2 (0) SrO (0) TiO 2 (0) O O (Sr +2 ) (Ti +4 ) (O 2 ) 3 reduction 1 O 2 LaAlO 3 e 2 ( g) + 2 e' + VO O (g) CB e V V V VB VB STO LAO SrTiO 3 3 Grossly speaking, there are two alternative models. The first one is the electronic reconstruction model. Instead, one may consider defects as donors, such as oxygen vacancies, or some kind of cation intermixing at the interface.

4 Two alternative mechanisms for crystalline STO/LAO 1. Introduction Electronic reconstruction Oxygen vacancies/ intermixing LaAlO 3 LaAlO 3 LaAlO SrTiO 3 SrTiO SrTiO 3 Donors are on the top of LAO Donors are at the interface Donors are within STO Different local electric field expected 4 One interesting difference between the models is the location ofdonors. In the electronic reconstruction case they are on the top of LAO, in the other cases they are at the interface or within STO. And as a consequence of the different location, different local electric fields are expected.

5 An HRTEM+EELS experiment to probe local fields 1. Introduction Can we directly determine E? Not so easy. But we can measure: the injected charge σ the polarization of both layers Polar state Polar state Injected charge SrTiO 3 5 Unfortunately, the direct determination of the local electric field is not that easy. As I will show, we can instead measure the injected charge and the polarization of both layers.

6 An HRTEM+EELS experiment to probe local fields 1. Introduction Preliminary considerations: Simple electrostatics (see, e.g., M. Stengel, PRL 2011) The electric displacement D depends on the injected charge (i.e., the free charge) STO P r o + + AlO 2 LaO AlO 2 LaO TiO 2 SrO TiO 2 Highk dielectric r r r P = ε k' 1 P rst D ST O o ( ) E LAO Highk dielectric plus topological polar state r r r r P = ε k 1 E + P P LAO o ( ) o LAO O r r Po D + k 6 However, this is enough, because based on the theoretical work by Stengel we can define the microscopic electrical displacement in STO/LAO, and the displacement is directly connected to the injected charge. Then we can write electrostatics equations that directly connect displacement and polarization. The case ofsto is simple. STO is a highk dielectric and we immediately get that the displacement is approximately equal to the polarization. The epitaxial layer of LAO is different, because it possesses a builtin, topological polar state, with polarization Po. Besides, it can also react to the field, and this gives a dielectric polarization. But again it is easy to find out a relation between polarization and displacement. Now we have a theoretical framework and we can look at experiment.

7 RHEEDassisted PLD KrF Excimer laser λ = 248 nm, 1 Hz, 2 J cm 2 2. Experimental T s = 800 C Buffer Gas: P(O 2 ) = 10 3 mbar Thickness 510 u.c. LAO 7 Conducting samples were fabricated by PLD at 103 mbar oxygen pressure at Napoli. I skip the details

8 STEM + EELS 2. Experimental Electron EnergyLoss Spectroscopy with atomicscale resolution in the aberration corrected microscope 5 u.c. LAO 10 3 P(O 2 ) Conducting sample C. Cantoni, et al. ADV. MAT and analyzed by Scanning Tunneling Electron Microscopy and Electron Energy Loss Spectroscopy in an aberration corrected microscope. This slide shows the microstructure of the interface and an EELS scan across the interface to show the sample quality and the capability of EELS to determine the localchemical composition with atomic resolution.

9 2DEG DOS: free charge injection Information from EELS Ti L2,3 lines 2. Experimental Ti 3d e g Ti 3d t 2g E E ψ > CB c d E ψ> Core level a b Ti 2p 3/2 Ti 2p 1/2 Energy loss Ti 2p3d excitation Peak intensity decreases when the final state is occupied 9 EELS also allows one to determine the occupancy of the conduction band. To this aim we can investigate the Ti L2,3 lines

10 2DEG DOS: free charge injection Information from EELS Ti L2,3 lines 2. Experimental Ti 3d e g Ti 3d t 2g c d a b Energy (ev) Ti 2p 3/2 Ti 2p 1/2 LAO STO c/d decreases if the CB is occupied 10 doing that at different distance from the interface

11 2DEG DOS: free charge injection Information from EELS O K lines 2. Experimental c d O 2p + Ti 3d e g a O 2p + Ti 3d t 2g b multiple scattering a b O 1s LAO a decreases if the CB is occupied STO E decreases if the CB is occupied 11 We can also investigate the O K line

12 2DEG confinement within STO (u.c.) depth 2. Experimental ρ (e / u. c.) LAO STO Fabrication P(O2) = 10 3 mbar T s = 800 C depth of confinement: 1 nm integral: 0.3 e / square unit cell 12 and this is the summary. From the map we extract the plot of theinjected charge density vs. distance from the interface. The main results are the depth of confinement, that is about 1 nm, and the total injected charge, amounting to 0.3 electrons per unit square cell.

13 Polarization measurement 2. Experimental P i z = unit. cell j q j z j Assuming the formal charge of ions Neglecting the deformation of valence orbitals AlO 2 LaO Al AlO 2 LaO TiO 2 SrO TiO 2 Ti La Sr interface C. Cantoni, et al. ADV. MAT Let s come now to the measurement of polarization. We determine fromstem the average position of each cation and define the polarization in aclassical way, assuming the formal charge of ions and neglecting the deformation of valence orbitals.

14 STO Polarization 2. Experimental Ti Sr O STO LAO measurement 14 Here are the results for STO. We observe the rumpling of each crystal plane and a polarization close to the interface and quickly approaching to zero when moving toward the bulk.

15 LAO Polarization 2. Experimental La Al O STO LAO measurement 15 In LAO, instead, the polarization is uniform.

16 Discussion 1. The STO side depth of confinement: 1 nm integrated charge σ o 0.3 e / square u.c. P STO D electrostatics Ti 3+ fraction P STO Discussion distance (u.c.) Impossible, the polarization has the wrong sign 16 So we can now discuss the results. Let s first consider the STO side. Here we roughly see the same lengthscale for both charge and polarization. And we also see that the displacement calculated by the integrated injected charge corresponds to the measured polarization at the surface. This confirms the correctness of the approach based on classical electrostatics. There is a second consequence. We can exclude that the donors are deep within STO, because in that case we would have found a different orientation of polarization.

17 Discussion 1. The STO side After charge injection, the lattice is deformed 3. Discussion Second harmonic generation Requirement Breaking of the centrosymmetry E r Conducting LAO/STO has efficient SHG A. Rubano, et al. PRB Since we have a strong polarization, we have a strong deformation of unit cells. But if the cubic environment is distorted, also the 3d orbitals of Ti atoms are deformed. This breaking of symmetry explains why STO/LAO interfaces emit so strongly in second harmonic, as we observed for our samples.

18 Discussion 2. The LAO side r P LAO r D + 3. Discussion r P o k No electric displacement the dielectric response almost conceals the topological polarization P o r P LA O r P r o << Po k Add electric displacement the dielectric response decreases r r r Po PLAO D + k 18 Now let s come to the LAO side. Let s start from the characteristic equation in the green square. If we have no electric displacement, the equation foresees a strong suppression of the topological polarization, due to the dielectric polarization. But if we have electric displacement, the dielectric polarization decreases and the net polarization increases.

19 Discussion 2. The LAO side 3. Discussion but we do observe a large polarization! So, there is a finite displacement Add electric displacement the dielectric response decreases r r r Po PLAO D + k 19 In fact, we do observe a large net polarization. Then we conclude that there is a displacement in LAO

20 Discussion 2. The LAO side 3. Discussion but we do observe a large polarization! So, there is a finite displacement Consistent explanation of LAO state D 0.3 e /u.c. k 20 P o 0.5 e/u.c. P 0.32 e/u.c. P LAO 0.35 e/u.c. 20 and based on a few simple assumptions we deduce that it is about0.3 electronic charges per square unit cell.

21 Discussion 3. Where are the donors? 3. Discussion Experiment + simple electrostatics The electric displacement is continuous at the interface Most donors are on the top of LAO Consistent explanation of LAO state D 0.3 e /u.c. k 20 P o 0.5 e/u.c. P 0.32 e/u.c. P LAO 0.35 e/u.c. 21 So, the estimated displacement in LAO is the same as in STO. In other terms, D is continuous. This brings us back to the question: Where the donors are? Well, they can t accumulate at the interface, or we would not observe the displacement continuity. They must be on the top of LAO. This is consistent with the electronic reconstruction. Can we exclude at all that some donors are at the interface? Well we can t, the experimental errors are large enough to allow for a fraction of donors to be there. But most of them must be far away in LAO.

22 Conclusions 1. LAO/STO Interfaces with a lot of V(O) do conduct 2. LAO/STO Interfaces with negligible V(O) content do conduct 3. Different types of donors bring to essentially the same 2DEG a) In amorphous samples, V(O) are the donor states b) In samples with negligible V(O), the polarization state of LAO is compatible with the electronic reconstruction 22

23 Conclusions 1. LAO/STO Interfaces with a lot of V(O) do conduct 2. LAO/STO Interfaces with negligible V(O) content do conduct 3. Different types of donors bring to essentially the same 2DEG a) In amorphous samples, V(O) are the donor states b) In samples with negligible V(O), the polarization state of LAO is compatible with the electronic reconstruction Thank you for your attention! 23

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface Pramod Verma Indian Institute of Science, Bangalore 560012 July 24, 2014 Pramod Verma

More information

La superficie di film e cristalli di SrTiO 3

La superficie di film e cristalli di SrTiO 3 U. Scotti di Uccio La superficie di film e cristalli di SrTiO 3 Coherentia-CNR-INFM Napoli, Italy Prof. R. Vaglio F. Miletto Granozio, N. Lampis, P. Perna, M. Radovic, A. Sambri M. Salluzzo, G. De Luca,

More information

Keywords: oxide interfaces, thin films, epitaxy, charge transport, Structure property relationships.

Keywords: oxide interfaces, thin films, epitaxy, charge transport, Structure property relationships. DOI: 10.1002/adma.201200667 Electron transfer and ionic displacements at the origin of the 2D electron gas at the LAO/STO interface: Direct measurements with atomic-column spatial resolution. By C. Cantoni*,

More information

Electrostatic charging and redox effects in oxide heterostructures

Electrostatic charging and redox effects in oxide heterostructures Electrostatic charging and redox effects in oxide heterostructures Peter Littlewood 1,2,3 Nick Bristowe 3 & Emilio Artacho 3,6 Miguel Pruneda 4 and Massimiliano Stengel 5 1 Argonne National Laboratory

More information

Effect of Sr-doping of LaMnO3 spacer on modulation-doped two-dimensional electron gases at oxide interfaces

Effect of Sr-doping of LaMnO3 spacer on modulation-doped two-dimensional electron gases at oxide interfaces Effect of Sr-doping of LaMnO3 spacer on modulation-doped two-dimensional electron gases at oxide interfaces Y. Z. Chen *, Y. L. Gan, D. V. Christensen, Y. Zhang, and N. Pryds Department of Energy Conversion

More information

Aberration-corrected TEM studies on interface of multilayered-perovskite systems

Aberration-corrected TEM studies on interface of multilayered-perovskite systems Aberration-corrected TEM studies on interface of multilayered-perovskite systems By Lina Gunawan (0326114) Supervisor: Dr. Gianluigi Botton November 1, 2006 MSE 702(1) Presentation Outline Literature Review

More information

arxiv: v1 [cond-mat.mtrl-sci] 9 Apr 2007

arxiv: v1 [cond-mat.mtrl-sci] 9 Apr 2007 Electrical transport properties of polar heterointerface between KTaO 3 and SrTiO 3 A. Kalabukhov, 1, R. Gunnarsson, 1 T. Claeson, 1 and D. Winkler 1 arxiv:0704.1050v1 [cond-mat.mtrl-sci] 9 Apr 2007 1

More information

L YBCO è di MODA! U. Scotti di Uccio

L YBCO è di MODA! U. Scotti di Uccio L YBCO è di MODA! U. Scotti di Uccio Coherentia-CNR-INFM Napoli, Italy Prof. R. Vaglio F. Miletto Granozio, M. Radovic, N. Lampis, P. Perna, A. Sambri M. Salluzzo, G. De Luca, R. Di Capua, A. Gambardella,

More information

Nanoxide electronics

Nanoxide electronics Nanoxide electronics Alexey Kalabukhov Quantum Device Physics Laboratory MC2, room D515 Alexei.kalaboukhov@chalmers.se Playing Lego with oxide materials: G. Rijnders, D.H.A. Blank, Nature 433, 369 (2005)

More information

Chris G. Van de Walle

Chris G. Van de Walle Complex oxide interfaces Chris G. Van de Walle Anderson Janotti, Lars Bjaalie, Luke Gordon, Burak Himmetoglu, K. Krishnaswamy Materials Department, University of California, Santa Barbara ES213 June 11-14,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Titanium d xy ferromagnetism at the LaAlO 3 /SrTiO 3 interface J.-S. Lee 1,*, Y. W. Xie 2, H. K. Sato 3, C. Bell 3, Y. Hikita 3, H. Y. Hwang 2,3, C.-C. Kao 1 1 Stanford Synchrotron Radiation Lightsource,

More information

New Perspectives in ab initio Calculations. Semiconducting Oxides

New Perspectives in ab initio Calculations. Semiconducting Oxides for Semiconducting Oxides Volker Eyert Center for Electronic Correlations and Magnetism Institute of Physics, University of Augsburg October 28, 21 Outline LAOSTO 1 LAOSTO 2 Outline LAOSTO 1 LAOSTO 2 Calculated

More information

Nanoxide electronics

Nanoxide electronics Nanoxide electronics Alexey Kalabukhov Quantum Device Physics Laboratory MC2, room D515 Alexei.kalaboukhov@chalmers.se Playing Lego with oxide materials: G. Rijnders, D.H.A. Blank, Nature 433, 369 (2005)

More information

Localized vs. delocalized character of charge carriers in LaAlO 3 / SrTiO 3. superlattices

Localized vs. delocalized character of charge carriers in LaAlO 3 / SrTiO 3. superlattices Localized vs. delocalized character of charge carriers in LaAlO 3 / SrTiO 3 superlattices Kejin Zhou 1, Milan Radovic 2,1, Justine Schlappa 1, Vladimir Strocov 1, Ruggero Frison 3, Joel Mesot 1,2, Luc

More information

UvA-DARE (Digital Academic Repository) When X-rays and oxide heterointerfaces collide Slooten, E. Link to publication

UvA-DARE (Digital Academic Repository) When X-rays and oxide heterointerfaces collide Slooten, E. Link to publication UvA-DARE (Digital Academic Repository) When X-rays and oxide heterointerfaces collide Slooten, E. Link to publication Citation for published version (APA): Slooten, E. (2013). When X-rays and oxide heterointerfaces

More information

Origin of Metallic States at Heterointerface between Band Insulators LaAlO 3 and SrTiO 3

Origin of Metallic States at Heterointerface between Band Insulators LaAlO 3 and SrTiO 3 Origin of Metallic States at Heterointerface between Band Insulators LaAlO 3 and SrTiO 3 K. Yoshimatsu 1, R. Yasuhara 1, H. Kumigashira 1, 2, *, and M. Oshima 1, 2 1 Department of Applied Chemistry, University

More information

Atomic Resolution Interfacial Structure of Lead-free Ferroelectric

Atomic Resolution Interfacial Structure of Lead-free Ferroelectric Atomic Resolution Interfacial Structure of Lead-free Ferroelectric K 0.5 Na 0.5 NbO 3 Thin films Deposited on SrTiO 3 Chao Li 1, Lingyan Wang 1*, Zhao Wang 2, Yaodong Yang 2, Wei Ren 1 and Guang Yang 1

More information

Resonant photo-ionization of point defects in HfO 2 thin films observed by second-harmonic generation.

Resonant photo-ionization of point defects in HfO 2 thin films observed by second-harmonic generation. Optics of Surfaces & Interfaces - VIII September 10 th, 2009 Resonant photo-ionization of point defects in HfO 2 thin films observed by second-harmonic generation. Jimmy Price and Michael C. Downer Physics

More information

in this web service Cambridge University Press

in this web service Cambridge University Press High-k Materials Mat. Res. Soc. Symp. Proc. Vol. 670 2001 Materials Research Society Materials and Physical Properties of Novel High-k and Medium-k Gate Dielectrics Ran Liu, Stefan Zollner, Peter Fejes,

More information

Persistent photoconductivity in 2-dimensional electron gases at different oxide interfaces

Persistent photoconductivity in 2-dimensional electron gases at different oxide interfaces Persistent photoconductivity in 2-dimensional electron gases at different oxide interfaces By Emiliano i Gennaro, Umberto Scotti di Uccio, Carmela Aruta, Claudia Cantoni, Alessandro Gadaleta, Andrew R.

More information

Chapter 3 Properties of Nanostructures

Chapter 3 Properties of Nanostructures Chapter 3 Properties of Nanostructures In Chapter 2, the reduction of the extent of a solid in one or more dimensions was shown to lead to a dramatic alteration of the overall behavior of the solids. Generally,

More information

Introduction to Engineering Materials ENGR2000. Dr.Coates

Introduction to Engineering Materials ENGR2000. Dr.Coates Introduction to Engineering Materials ENGR2000 Chapter 18: Electrical Properties Dr.Coates 18.2 Ohm s Law V = IR where R is the resistance of the material, V is the voltage and I is the current. l R A

More information

ELEMENTARY BAND THEORY

ELEMENTARY BAND THEORY ELEMENTARY BAND THEORY PHYSICIST Solid state band Valence band, VB Conduction band, CB Fermi energy, E F Bloch orbital, delocalized n-doping p-doping Band gap, E g Direct band gap Indirect band gap Phonon

More information

QUANTUM WELLS, WIRES AND DOTS

QUANTUM WELLS, WIRES AND DOTS QUANTUM WELLS, WIRES AND DOTS Theoretical and Computational Physics of Semiconductor Nanostructures Second Edition Paul Harrison The University of Leeds, UK /Cf}\WILEY~ ^INTERSCIENCE JOHN WILEY & SONS,

More information

Transport Properties of 2DEGs at Oxide Interfaces under the Effect of Light and Electric Field

Transport Properties of 2DEGs at Oxide Interfaces under the Effect of Light and Electric Field Universita' degli Studi di Napoli Federico II, Italy Dipartimento di Fisica "Ettore Pancini" Research Doctorate (PhD) in Fundamental and Applied Physics XXVIII Cycle Transport Properties of 2DEGs at Oxide

More information

Electrons, Holes, and Defect ionization

Electrons, Holes, and Defect ionization Electrons, Holes, and Defect ionization The process of forming intrinsic electron-hole pairs is excitation a cross the band gap ( formation energy ). intrinsic electronic reaction : null e + h When electrons

More information

* motif: a single or repeated design or color

* motif: a single or repeated design or color Chapter 2. Structure A. Electronic structure vs. Geometric structure B. Clean surface vs. Adsorbate covered surface (substrate + overlayer) C. Adsorbate structure - how are the adsorbed molecules bound

More information

Two dimensional electron gas at oxide interfaces

Two dimensional electron gas at oxide interfaces University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses, Dissertations, and Student Research: Department of Physics and Astronomy Physics and Astronomy, Department of Fall

More information

EELS & EDX spectrum imaging : pushing the limits

EELS & EDX spectrum imaging : pushing the limits EELS & EDX spectrum imaging : pushing the limits David W McComb Department of Materials Science and Engineering The Ohio State University Columbus, Ohio USA Note : Seven slides showing unpublished data

More information

Titanium d xy ferromagnetism at the LaAlO 3 /SrTiO 3 interface

Titanium d xy ferromagnetism at the LaAlO 3 /SrTiO 3 interface Titanium d xy ferromagnetism at the LaAlO 3 /SrTiO 3 interface SLAC-PUB-15439 J.-S. Lee 1,*, Y. W. Xie 2, H. K. Sato 3, C. Bell 3, Y. Hikita 3, H. Y. Hwang 2,3, C.-C. Kao 1 1 Stanford Synchrotron Radiation

More information

Luminescence basics. Slide # 1

Luminescence basics. Slide # 1 Luminescence basics Types of luminescence Cathodoluminescence: Luminescence due to recombination of EHPs created by energetic electrons. Example: CL mapping system Photoluminescence: Luminescence due to

More information

Supplementary Information for Dimensionality-Driven. Insulator-Metal Transition in A-site Excess. Nonstoichiometric Perovskites

Supplementary Information for Dimensionality-Driven. Insulator-Metal Transition in A-site Excess. Nonstoichiometric Perovskites Supplementary Information for Dimensionality-Driven Insulator-Metal Transition in A-site Excess Nonstoichiometric Perovskites Z. Wang, M. Okude, M. Saito, S. Tsukimoto, A. Ohtomo, M. Tsukada, M. Kawasaki,

More information

Surfaces, Interfaces, and Layered Devices

Surfaces, Interfaces, and Layered Devices Surfaces, Interfaces, and Layered Devices Building blocks for nanodevices! W. Pauli: God made solids, but surfaces were the work of Devil. Surfaces and Interfaces 1 Interface between a crystal and vacuum

More information

Spectroscopy of correlated electrons in nickelates and titanates

Spectroscopy of correlated electrons in nickelates and titanates Spectroscopy of correlated electrons in nickelates and titanates Metal-insulator transitions and novel 2DEGs Dept. of Physics University of CA, Santa Barbara Strong Electron Correlations Materials which

More information

Rashba spin-orbit coupling in the oxide 2D structures: The KTaO 3 (001) Surface

Rashba spin-orbit coupling in the oxide 2D structures: The KTaO 3 (001) Surface Rashba spin-orbit coupling in the oxide 2D structures: The KTaO 3 (001) Surface Sashi Satpathy Department of Physics University of Missouri, Columbia, USA E Ref: K. V. Shanavas and S. Satpathy, Phys. Rev.

More information

High T c superconductivity at the interface between the CaCuO 2 and SrTiO 3 insulating oxides

High T c superconductivity at the interface between the CaCuO 2 and SrTiO 3 insulating oxides High T c superconductivity at the interface between the CaCuO 2 and SrTiO 3 insulating oxides D. Di Castro 1,2,*, C. Cantoni 3, F. Ridolfi 1, C. Aruta 2, A. Tebano 1,2, N. Yang 2,4, G. Balestrino 1,2 1

More information

Polar asymmetry of La(1 δ )Al(1+ δ )O3/SrTiO3 heterostructures probed by optical second harmonic generation

Polar asymmetry of La(1 δ )Al(1+ δ )O3/SrTiO3 heterostructures probed by optical second harmonic generation Polar asymmetry of La(1 δ )Al(1+ δ )O3/SrTiO3 heterostructures probed by optical second harmonic generation Andrea Rubano, Gabriele De Luca, Jürgen Schubert, Zhe Wang, Shaobo Zhu, Darrell G. Schlom, Lorenzo

More information

Optical Properties of Solid from DFT

Optical Properties of Solid from DFT Optical Properties of Solid from DFT 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India & Center for Materials Science and Nanotechnology, University of Oslo, Norway http://folk.uio.no/ravi/cmt15

More information

Surface physics, Bravais lattice

Surface physics, Bravais lattice Surface physics, Bravais lattice 1. Structure of the solid surface characterized by the (Bravais) lattice + space + point group lattice describes also the symmetry of the solid material vector directions

More information

arxiv: v1 [cond-mat.str-el] 18 Dec 2015

arxiv: v1 [cond-mat.str-el] 18 Dec 2015 Infrared ellipsometry study of the confined electrons in a high-mobility γ-al 2 O 3 /SrTiO 3 heterostructure M. Yazdi-Rizi, P. Marsik, and B. P. P. Mallett arxiv:1512.06008v1 [cond-mat.str-el] 18 Dec 2015

More information

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Optical Properties of Semiconductors 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Light Matter Interaction Response to external electric

More information

Electric displacement as the fundamental variable in electronic-structure calculations

Electric displacement as the fundamental variable in electronic-structure calculations Electric displacement as the fundamental variable in electronic-structure calculations CECAM - Centre Européen de Calcul Atomique et Moléculaire EPF Lausanne, Switzerland Conference UC Davis, 6/23/2009

More information

Giant tunability of the two-dimensional electron gas at the interface of -Al 2 O 3 /SrTiO 3

Giant tunability of the two-dimensional electron gas at the interface of -Al 2 O 3 /SrTiO 3 Supporting Information Giant tunability of the two-dimensional electron gas at the interface of -Al 2 O 3 /SrTiO 3 Wei Niu,, Yu Zhang, Yulin Gan, Dennis V. Christensen, Merlin V. Soosten, Eduardo J. Garcia-Suarez,

More information

Nanoscale confinement of photon and electron

Nanoscale confinement of photon and electron Nanoscale confinement of photon and electron Photons can be confined via: Planar waveguides or microcavities (2 d) Optical fibers (1 d) Micro/nano spheres (0 d) Electrons can be confined via: Quantum well

More information

Magnetoresistance of 2D and 3D Electron Gas in LaAlO 3 /SrTiO 3. Heterostructures: Influence of Magnetic Ordering, Interface Scattering and

Magnetoresistance of 2D and 3D Electron Gas in LaAlO 3 /SrTiO 3. Heterostructures: Influence of Magnetic Ordering, Interface Scattering and Magnetoresistance of 2D and 3D Electron Gas in LaAlO 3 /SrTiO 3 Heterostructures: Influence of Magnetic Ordering, Interface Scattering and Dimensionality X. Wang 1,2, W.M Lü 1,2, A. Annadi 1,2, Z.Q. Liu

More information

High resolution ion beam analysis. Torgny Gustafsson

High resolution ion beam analysis. Torgny Gustafsson High resolution ion beam analysis Torgny Gustafsson Review articles and Books L. C. Feldman, J. W. Mayer and S. T. Picraux, Materials Analysis by Ion Channeling, Academic Press (1982) I. Stensgaard, Surface

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

Chapter 6 ELECTRICAL CONDUCTIVITY ANALYSIS

Chapter 6 ELECTRICAL CONDUCTIVITY ANALYSIS Chapter 6 ELECTRICAL CONDUCTIVITY ANALYSIS CHAPTER-6 6.1 Introduction The suitability and potentiality of a material for device applications can be determined from the frequency and temperature response

More information

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID.

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID. Electron Energy, E Free electron Vacuum level 3p 3s 2p 2s 2s Band 3s Band 2p Band Overlapping energy bands Electrons E = 0 1s ATOM 1s SOLID In a metal the various energy bands overlap to give a single

More information

Solid Surfaces, Interfaces and Thin Films

Solid Surfaces, Interfaces and Thin Films Hans Lüth Solid Surfaces, Interfaces and Thin Films Fifth Edition With 427 Figures.2e Springer Contents 1 Surface and Interface Physics: Its Definition and Importance... 1 Panel I: Ultrahigh Vacuum (UHV)

More information

EE 527 MICROFABRICATION. Lecture 5 Tai-Chang Chen University of Washington

EE 527 MICROFABRICATION. Lecture 5 Tai-Chang Chen University of Washington EE 527 MICROFABRICATION Lecture 5 Tai-Chang Chen University of Washington MICROSCOPY AND VISUALIZATION Electron microscope, transmission electron microscope Resolution: atomic imaging Use: lattice spacing.

More information

Skyrmions in quasi-2d chiral magnets

Skyrmions in quasi-2d chiral magnets MRSEC 1 Skyrmions in quasi-2d chiral magnets Mohit Randeria Ohio State University kitp ucsb August 2015 2 James Rowland Sumilan Banerjee (now at Weizmann) Onur Erten (now at Rutgers) * Banerjee, Erten

More information

conditions in oxide heterostructures

conditions in oxide heterostructures SLAC-PUB-14508 General considerations of the electrostatic boundary conditions in oxide heterostructures Takuya Higuchi 1 and Harold Y. Hwang 2,3 1 Department of Applied Physics, University of Tokyo, Hongo,

More information

Effects of substrate on the dielectric and tunable properties of epitaxial SrTiO 3 thin films

Effects of substrate on the dielectric and tunable properties of epitaxial SrTiO 3 thin films JOURNAL OF APPLIED PHYSICS 100, 114107 2006 Effects of substrate on the dielectric and tunable properties of epitaxial SrTiO 3 thin films J. H. Hao a Department of Applied Physics, The Hong Kong Polytechnic

More information

EXTRINSIC SEMICONDUCTOR

EXTRINSIC SEMICONDUCTOR EXTRINSIC SEMICONDUCTOR In an extrinsic semiconducting material, the charge carriers originate from impurity atoms added to the original material is called impurity [or] extrinsic semiconductor. This Semiconductor

More information

Chapter 3 Chapter 4 Chapter 5

Chapter 3   Chapter 4 Chapter 5 Preamble In recent years bismuth-based, layer-structured perovskites such as SrBi 2 Nb 2 O 9 (SBN) and SrBi 2 Ta 2 O 9 (SBT) have been investigated extensively, because of their potential use in ferroelectric

More information

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H.

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H. Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H. Tolk Department of Physics and Astronomy Vanderbilt University,

More information

THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY. Electrical Transport Properties of Nanostructured SrTiO3/LaAlO3 Interface PIER PAOLO AURINO

THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY. Electrical Transport Properties of Nanostructured SrTiO3/LaAlO3 Interface PIER PAOLO AURINO THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Electrical Transport Properties of Nanostructured SrTiO3/LaAlO3 Interface PIER PAOLO AURINO Department of Microtechnology and Nanoscience CHALMERS UNIVERSITY

More information

Controlling Kondo like Scattering at the SrTiO 3 based Interfaces

Controlling Kondo like Scattering at the SrTiO 3 based Interfaces Controlling Kondo like Scattering at the SrTiO 3 based Interfaces K. Han, 1,2 N. Palina, 1,3 S. W. Zeng, 1,2 Z. Huang,*,1 C. J. Li, 1 W. X. Zhou, 1,2 D Y. Wan, 1,2 L. C. Zhang, 1,2 X. Chi, 3 R. Guo, 1,4

More information

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES experiments on 3D topological insulators Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Outline Using ARPES to demonstrate that certain materials

More information

3. Semiconductor heterostructures and nanostructures

3. Semiconductor heterostructures and nanostructures 3. Semiconductor eterostructures and nanostructures We discussed before ow te periodicity of a crystal results in te formation of bands. or a 1D crystal, we obtained: a (x) x In 3D, te crystal lattices

More information

Mott insulators. Mott-Hubbard type vs charge-transfer type

Mott insulators. Mott-Hubbard type vs charge-transfer type Mott insulators Mott-Hubbard type vs charge-transfer type Cluster-model description Chemical trend Band theory Self-energy correction Electron-phonon interaction Mott insulators Mott-Hubbard type vs charge-transfer

More information

Cross-Section Scanning Tunneling Microscopy of InAs/GaSb Superlattices

Cross-Section Scanning Tunneling Microscopy of InAs/GaSb Superlattices Cross-Section Scanning Tunneling Microscopy of InAs/GaSb Superlattices Cecile Saguy A. Raanan, E. Alagem and R. Brener Solid State Institute. Technion, Israel Institute of Technology, Haifa 32000.Israel

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

Photoelectron spectroscopy of transition metal oxide interfaces

Photoelectron spectroscopy of transition metal oxide interfaces Eur. Phys. J. Appl. Phys. (2015) 70: 20701 DOI: 10.1051/epjap/2015150075 Review Article THE EUROPEAN PHYSICAL JOURNAL APPLIED PHYSICS Photoelectron spectroscopy of transition metal oxide interfaces Jörg

More information

Electronic Structure and Band Alignment of LaMnO 3 /SrTiO 3 Polar/Nonpolar Heterojunctions

Electronic Structure and Band Alignment of LaMnO 3 /SrTiO 3 Polar/Nonpolar Heterojunctions FULL PAPER Polar/Non-Polar Heterojunctions Electronic Structure and Band Alignment of LaMnO 3 /SrTiO 3 Polar/Nonpolar Heterojunctions Tiffany C. Kaspar,* Peter V. Sushko, Steven R. Spurgeon, Mark E. Bowden,

More information

A new era in surface diffraction pulsed laser deposition of complex metal oxide thin films

A new era in surface diffraction pulsed laser deposition of complex metal oxide thin films A new era in surface diffraction pulsed laser deposition of complex metal oxide thin films Phil Willmott, Christian Schlepütz tz,, Roger Herger, Oliver Bunk, and Bruce Patterson Beamline X04SA Materials

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

Ba x Sr 1-x TiO 3 /pc-si HETEROJUNCTION

Ba x Sr 1-x TiO 3 /pc-si HETEROJUNCTION Armenian Journal of Physics, 2013, vol. 6, issue 4, pp. 177-187 Ba x Sr 1-x TiO 3 /pc-si HTROJUNCTION V. BUNIATYAN 1, C. HUCK 2, A. POGHOSSIAN 2, V.M. AROUTIOUNIAN 3, and M.J. SCHONING 2 1 State ngineering

More information

Chapter 1 Overview of Semiconductor Materials and Physics

Chapter 1 Overview of Semiconductor Materials and Physics Chapter 1 Overview of Semiconductor Materials and Physics Professor Paul K. Chu Conductivity / Resistivity of Insulators, Semiconductors, and Conductors Semiconductor Elements Period II III IV V VI 2 B

More information

Strain-induced single-domain growth of epitaxial SrRuO 3 layers on SrTiO 3 : a high-temperature x-ray diffraction study

Strain-induced single-domain growth of epitaxial SrRuO 3 layers on SrTiO 3 : a high-temperature x-ray diffraction study Strain-induced single-domain growth of epitaxial SrRuO 3 layers on SrTiO 3 : a high-temperature x-ray diffraction study Arturas Vailionis 1, Wolter Siemons 1,2, Gertjan Koster 1 1 Geballe Laboratory for

More information

Introduction into defect studies. in ceramic materials(iii) Structure, Defects and Defect Chemistry. Z. Wang. January 18, 2002

Introduction into defect studies. in ceramic materials(iii) Structure, Defects and Defect Chemistry. Z. Wang. January 18, 2002 Introduction into defect studies in ceramic materials(iii) Structure, Defects and Defect Chemistry Z. Wang January 18, 2002 1. Mass, Charge and Site Balance The Schottky reactions for NaCl and MgO, respectively,

More information

Processing of Semiconducting Materials Prof. Pallab Banerji Department of Material Science Indian Institute of Technology, Kharagpur

Processing of Semiconducting Materials Prof. Pallab Banerji Department of Material Science Indian Institute of Technology, Kharagpur Processing of Semiconducting Materials Prof. Pallab Banerji Department of Material Science Indian Institute of Technology, Kharagpur Lecture - 4 Doping in Semiconductors Good morning. Let us start with

More information

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV 3.1 Introduction to Semiconductors Y. Baghzouz ECE Department UNLV Introduction In this lecture, we will cover the basic aspects of semiconductor materials, and the physical mechanisms which are at the

More information

Chapter 9. Electron mean free path Microscopy principles of SEM, TEM, LEEM

Chapter 9. Electron mean free path Microscopy principles of SEM, TEM, LEEM Chapter 9 Electron mean free path Microscopy principles of SEM, TEM, LEEM 9.1 Electron Mean Free Path 9. Scanning Electron Microscopy (SEM) -SEM design; Secondary electron imaging; Backscattered electron

More information

EECS143 Microfabrication Technology

EECS143 Microfabrication Technology EECS143 Microfabrication Technology Professor Ali Javey Introduction to Materials Lecture 1 Evolution of Devices Yesterday s Transistor (1947) Today s Transistor (2006) Why Semiconductors? Conductors e.g

More information

The effect of point defects in zircon

The effect of point defects in zircon aterials for nuclear waste immobilization: The effect of point defects in zircon iguel Pruneda Department of Earth Sciences University of Centre for Ceramic Immobilisation Radiation damage process α-decay

More information

ECE236A Semiconductor Heterostructure Materials Group III Nitride Semiconductors Lecture 17, Nov. 30, 2017

ECE236A Semiconductor Heterostructure Materials Group III Nitride Semiconductors Lecture 17, Nov. 30, 2017 ECE236A Semiconductor Heterostructure Materials Group III Nitride Semiconductors Lecture 17, Nov. 30, 2017 Spontaneous and Piezoelectric Polarization Effects on 2DEG in HFETs Effects of Polarization on

More information

Charge-Induced Second-Harmonic Generation in Bilayer WSe 2

Charge-Induced Second-Harmonic Generation in Bilayer WSe 2 Supplementary Information for Charge-Induced Second-Harmonic Generation in Bilayer WSe Huakang Yu, Deep Talukdar, Weigao Xu, Jacob B. Khurgin,* and Qihua Xiong,3,* Division of Physics and Applied Physics,

More information

J. Price, 1,2 Y. Q. An, 1 M. C. Downer 1 1 The university of Texas at Austin, Department of Physics, Austin, TX

J. Price, 1,2 Y. Q. An, 1 M. C. Downer 1 1 The university of Texas at Austin, Department of Physics, Austin, TX Understanding process-dependent oxygen vacancies in thin HfO 2 /SiO 2 stacked-films on Si (100) via competing electron-hole injection dynamic contributions to second harmonic generation. J. Price, 1,2

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure S1: Calculated band structure for slabs of (a) 14 blocks EuRh2Si2/Eu, (b) 10 blocks SrRh2Si2/Sr, (c) 8 blocks YbRh2Si2/Si, and (d) 14 blocks EuRh2Si2/Si slab;

More information

Semiconductor Device Physics

Semiconductor Device Physics 1 Semiconductor Device Physics Lecture 1 http://zitompul.wordpress.com 2 0 1 3 2 Semiconductor Device Physics Textbook: Semiconductor Device Fundamentals, Robert F. Pierret, International Edition, Addison

More information

*Specifications subject to change without notice.

*Specifications subject to change without notice. The Power of STEM *Specifications subject to change without notice. No. 1301G040C 1101E010C Printed in Japan, Kp Atomic Resolution Analytical Microscope Serving Advanced Technology Atomic Resolution Analytical

More information

Electrical Properties

Electrical Properties Electrical Properties Electrical Conduction R Ohm s law V = IR I l Area, A V where I is current (Ampere), V is voltage (Volts) and R is the resistance (Ohms or ) of the conductor Resistivity Resistivity,

More information

From 180º stripe domains to more exotic patterns of polarization in ferroelectric nanostructures. A first principles view

From 180º stripe domains to more exotic patterns of polarization in ferroelectric nanostructures. A first principles view From 180º stripe domains to more exotic patterns of polarization in ferroelectric nanostructures. A first principles view Pablo Aguado-Puente Javier Junquera Ferroelectricity: Basic definitions Existence

More information

Oxide Films & Nanostructures on Silicon for Thermal Energy Harvesting in Microelectronic Devices

Oxide Films & Nanostructures on Silicon for Thermal Energy Harvesting in Microelectronic Devices Oxide Films & Nanostructures on Silicon for Thermal Energy Harvesting in Microelectronic Devices R. Bachelet R. Moalla, A. Carretero-Genevrier, L. Mazet, L. Louahadj, J. Penuelas, B. Vilquin, C. Dubourdieu,

More information

Effect of the High-k Dielectric/Semiconductor Interface on Electronic Properties in Ultra-thin Channels

Effect of the High-k Dielectric/Semiconductor Interface on Electronic Properties in Ultra-thin Channels Effect of the High-k Dielectric/Semiconductor Interface on Electronic Properties in Ultra-thin Channels Evan Wilson, Daniel Valencia, Mark J. W. Rodwell, Gerhard Klimeck and Michael Povolotskyi Electrical

More information

Inelastic soft x-ray scattering, fluorescence and elastic radiation

Inelastic soft x-ray scattering, fluorescence and elastic radiation Inelastic soft x-ray scattering, fluorescence and elastic radiation What happens to the emission (or fluorescence) when the energy of the exciting photons changes? The emission spectra (can) change. One

More information

Lecture 15: Optoelectronic devices: Introduction

Lecture 15: Optoelectronic devices: Introduction Lecture 15: Optoelectronic devices: Introduction Contents 1 Optical absorption 1 1.1 Absorption coefficient....................... 2 2 Optical recombination 5 3 Recombination and carrier lifetime 6 3.1

More information

The electronic structure of solids. Charge transport in solids

The electronic structure of solids. Charge transport in solids The electronic structure of solids We need a picture of the electronic structure of solid that we can use to explain experimental observations and make predictions Why is diamond an insulator? Why is sodium

More information

Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory

Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory Chapter 4: Bonding in Solids and Electronic Properties Free electron theory Consider free electrons in a metal an electron gas. regards a metal as a box in which electrons are free to move. assumes nuclei

More information

First NanoARPES Available at SOLEIL: A Powerful Tool for Studying Advanced Materials

First NanoARPES Available at SOLEIL: A Powerful Tool for Studying Advanced Materials First NanoARPES Available at SOLEIL: A Powerful Tool for Studying Advanced Materials Brief Introduction:! Nanotechnology Nano-Probe Nano-ARPES Classical ARPES and NanoARPES analysis of the electronic structure

More information

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties 2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties Artem Pulkin California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole

More information

Density of states for electrons and holes. Distribution function. Conduction and valence bands

Density of states for electrons and holes. Distribution function. Conduction and valence bands Intrinsic Semiconductors In the field of semiconductors electrons and holes are usually referred to as free carriers, or simply carriers, because it is these particles which are responsible for carrying

More information

Chapter 5. Effects of Photonic Crystal Band Gap on Rotation and Deformation of Hollow Te Rods in Triangular Lattice

Chapter 5. Effects of Photonic Crystal Band Gap on Rotation and Deformation of Hollow Te Rods in Triangular Lattice Chapter 5 Effects of Photonic Crystal Band Gap on Rotation and Deformation of Hollow Te Rods in Triangular Lattice In chapter 3 and 4, we have demonstrated that the deformed rods, rotational rods and perturbation

More information

Fabrication / Synthesis Techniques

Fabrication / Synthesis Techniques Quantum Dots Physical properties Fabrication / Synthesis Techniques Applications Handbook of Nanoscience, Engineering, and Technology Ch.13.3 L. Kouwenhoven and C. Marcus, Physics World, June 1998, p.35

More information

Electronic structure of correlated electron systems. G.A.Sawatzky UBC Lecture

Electronic structure of correlated electron systems. G.A.Sawatzky UBC Lecture Electronic structure of correlated electron systems G.A.Sawatzky UBC Lecture 6 011 Influence of polarizability on the crystal structure Ionic compounds are often cubic to maximize the Madelung energy i.e.

More information

Summary lecture VI. with the reduced mass and the dielectric background constant

Summary lecture VI. with the reduced mass and the dielectric background constant Summary lecture VI Excitonic binding energy reads with the reduced mass and the dielectric background constant Δ Statistical operator (density matrix) characterizes quantum systems in a mixed state and

More information

The interfacial study on the Cu 2 O/Ga 2 O 3 /AZO/TiO 2 photocathode for water splitting fabricated by pulsed laser deposition

The interfacial study on the Cu 2 O/Ga 2 O 3 /AZO/TiO 2 photocathode for water splitting fabricated by pulsed laser deposition Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2017 The interfacial study on the Cu 2 O/Ga 2 O 3 /AZO/TiO 2 photocathode for

More information

Lecture 3: Electron statistics in a solid

Lecture 3: Electron statistics in a solid Lecture 3: Electron statistics in a solid Contents Density of states. DOS in a 3D uniform solid.................... 3.2 DOS for a 2D solid........................ 4.3 DOS for a D solid........................

More information