Supplementary Figures

Size: px
Start display at page:

Download "Supplementary Figures"

Transcription

1 Supplementary Figures Supplementary Figure S1: Calculated band structure for slabs of (a) 14 blocks EuRh2Si2/Eu, (b) 10 blocks SrRh2Si2/Sr, (c) 8 blocks YbRh2Si2/Si, and (d) 14 blocks EuRh2Si2/Si slab; a block consists hereby of Si-Rh-Si-Sr/Eu/Yb layers and corresponds to the half of a conventional unit cell.

2 Supplementary Figure S2: Determination of the cleavage plane: (a) interlayer distances as a function of the doubled c-lattice constant; increasing strain pulls apart mainly Eu and Si-Rh-Si structures, whereas the distances inside the Si-Rh-Si block remain approximately constant. If the strain becomes too strong (az~28 A), the crystal breaks into two parts revealing one Eu and one Si terminated surface (the purple symbols depict the maximum distance between next-neighbour Eu-Si surface layers); the inset magnifies the small region of elastic deformation; (b) a slab geometry for az < 28 A; (c) a slab for az > 28 A, corresponding to the data marked with arrows in (a)

3 Supplementary Note 1: Angle-resolved photoemission experiments were performed at the Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland. Surface sensitive ultraviolet (UVARPES) spectra were taken at the Surface-Interface Spectroscopy (SIS) X09LA instrument, while for probing the truly bulk derived electronic structure respective experiments were performed in the soft x-ray regime (SXARPES) at the novel advanced resonant spectroscopy (ADRESS) station. The UVARPES spectra were taken using a VG-Scienta R4000 electron analyzer, and SXARPES spectra were acquired with a Phoibos 150 (Specs GmbH) machine. The overall energy resolution was set to about 15 mev at the SIS instrument and 80 mev at the ADRESS instrument, respectively. For both types of experiment, high quality single-crystalline samples of EuRh 2 Si 2 were mounted on a low-temperature goniometric manipulator (CARVING) with three angular degrees of freedom and cleaved in situ in ultra-high vacuum at a base pressure better than 5 x mbar and a temperature of T = 10 K. Immediately after cleaving the aforementioned experiments were performed keeping the samples at the same temperature. The time scheduled for studying each sample was about 4h including crystal alignment. The results were found to be fully reproducible in several experimental runs, using more than ten different samples. During experiment aging processes were never observed. Similarly to YbRh 2 Si 2, EuRh 2 Si 2 crystals cleave usually between layers of rare-earth (RE) and silicon atoms, leaving behind either europium- or silicon-terminated surfaces. The cleaved surface may be considered as a mosaic of alternating terminations which size and shape of individual domains are unique for each cleave. This causes certain difficulties taking Fermi surface maps, since it is necessary to keep the light-spot always on the same domain when the manipulator is operated. An Eu termination may easily be identified by an intense Eu 4f surface signal which is separated from the bulk emission by a surface core-level shift of about 1 ev and is found between 1.1 ev to 1.8 ev binding energy. For a Si-terminated surface a respective feature is missing (compare Figs. 1a) and 1b)). In order to emphasize the 4f-character of the studied electronic structure, we chose a photon energy of 120 ev where the atomic photoionization cross-section of Eu 4f states is large, while signals from Rh 4d states are strongly reduced by cross-section effects.

4 As it becomes obvious from a comparison of the experimental data in Fig. 1a) and the model calculation in Fig. 1c), predominantly 4f character is observed at the chosen photon energy. However, the spectral contributions from states of other angular momentum character are weak but not completely zero in the experimental data. This explains why the linear dispersive band remains visible up to high binding energies what is not reproduced in the simulated spectra where only 4f contributions are plotted.

5 Supplementary Note 2: Band structure calculations have been carried out with the FPLO code [24] which is a density functional theory code based on the full-potential local orbital method. Unless otherwise stated, the local density approximation (LDA) in the formulation of Perdew-Wang and a scalarrelativistic approximation have been used. Since LDA fails to describe highly-correlated electrons, the 4f basis has been fixed to an unpolarized configuration of seven f electrons, which is in accordance with the divalent behavior of europium ions in the compound [25]. Furthermore, the overlap of neighboring 4f orbitals has been neglected. In the following, this treatment will be referred to as frozen core approximation. LDA+U calculations (U~ 8 ev, J~ 1 ev, chosen according to [26]) lead to occupation numbers close to seven f electrons supporting the former limit. Substituting europium by strontium and keeping the lattice parameters constant yields a band structure qualitatively similar to the one of the frozen core approximation (Supplementary Fig. S1). However, it is not possible to distinguish between effects due to the frozen core approximation (i.e. the limited flexibility of the basis set, which may influence the surface states) and the difference in size between strontium and europium. Surface effects were simulated within a slab geometry, where the translational symmetry is broken artificially in one direction in order to obtain a surface configuration similar to that in the experiment. Since the single crystalline samples where cleaved perpendicular to the c-axis, three different surface terminations are basically possible: Eu, Si and Rh (neglecting terraces and other defect structures). To determine the most probable cleavage plane, a slab of two conventional unit cells has been gradually stretched along the c-axis. Subsequently, the forces acting onto each atom have been minimized ( relaxation of the atomic positions ). The atomic distances as a function of the slab s length (twice the c-axis parameter) are shown in Supplementary Fig. S2. Up to an increase of the c-axis parameter of 25%, the atomic positions scale with the elongation of the c-axis. Thereby, the distance between Eu and Si increases proportional to the increase of the c-axis while the distance between Si and Rh stays roughly constant indicating that the Si-Rh- Si block is tighter bound than the Si-Eu-Si one. When the potential energy stored in the structural elongation (comparable to a spring s energy) becomes larger than the surface energy, the slab breaks into two parts characterized by a europium and a silicon terminated surface.

6 Same results have been found for different slabs, but one has to admit that only the mostfavorable terminations are found by this method. In addition, the computer experiment reveals that the top-most surface layers undergo an inward relaxation and the distances of RE-Si and Si- Rh layers at the surface are, thus, smaller than their respective distances in the bulk. However, this result can solely be viewed qualitatively, since for a quantitative study it has to be extrapolated to a semi-infinite surface. The finding of only two different surface terminations is supported by photoemission spectra as well as scanning tunneling microscopy experiments [27, 28]. The linear dispersive surface state appears for both surface terminations but is less pronounced if the outermost layer is formed by rare-earth or Sr atoms (Supplementary Fig. S1a and b). Whether this is a limitation of the calculation (i.e. slab approximation, frozen core approximation) or an intrinsic effect has not been explored yet. The perturbation induced by substituting the rareearths by Sr seems to have a small effect on the surface states [compare Supplementary Fig. S1a)+b) and Figs. S1c)+d)], although in case of YbRh 2 Si 2, which is a mixed-valent compound, the number of core electrons (and therefore the effective potential ) as well as the valence (influences the total electron density) differ from the ones of the Eu compound.

7 Supplementary Note 3: Our simplified model to simulate the photoemission spectra is based on the assumption that the coupling between the localized 4f states and the valence band near the Fermi level (mainly Rh 4d, Si 3s and Si 3p derived) is weak and, thus, we can calculate the photoemission signal for the two species separately introducing the interaction afterwards within a simple hybridization model. The latter is similar to the solution the periodic Anderson model within the Gutzwiller approximation [29]. For the atomic limit of the 4f emission the results of Gerken et. al. [30] (configuration interaction calculations) and for the valence band the results of the aforementioned density functional theory calculations are used. The latter is appropriate, since we are solely interested in a qualitative description (neglecting renormalization ) and the ground state of the parent compound reveals metallic character. The resulting hybridization Hamiltonian looks like and the hybridization matrix element V ij is chosen proportional to the overlap of atomic 4f and 4d wavefunctions originating from the Eu and Rh sites, respectively. Supplementary References: 25. B. Chevalier et. al., J. Phys. C: Solid State Phys. 19, (1986) 26. R. Gumeniuk et. al., Phys. Rev. B 82, (2010). 27. G. Kaindl et. al., Phys. Rev. B 51, (1995); W.D. Schneider et. al., Phys. Rev. B 28, (1983). 28. S. Ernst et. al., Nature, 474, (2011). 29. T. M. Rice and K. Ueda, Phys. Rev. Lett. 55, (1985). 30. F. Gerken, Journal of Physics F: Metal Physics 13, (1983).

Spin- and angle-resolved photoemission spectroscopy study of the Au(1 1 1) Shockley surface state

Spin- and angle-resolved photoemission spectroscopy study of the Au(1 1 1) Shockley surface state Journal of Electron Spectroscopy and Related Phenomena 137 140 (2004) 119 123 Spin- and angle-resolved photoemission spectroscopy study of the Au(1 1 1) Shockley surface state Matthias Muntwiler a,, Moritz

More information

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies.

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. PY482 Lecture. February 28 th, 2013 Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. Kevin E. Smith Department of Physics Department of Chemistry Division

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NMAT3449 Topological crystalline insulator states in Pb 1 x Sn x Se Content S1 Crystal growth, structural and chemical characterization. S2 Angle-resolved photoemission measurements at various

More information

Electron Spettroscopies

Electron Spettroscopies Electron Spettroscopies Spettroscopy allows to characterize a material from the point of view of: chemical composition, electronic states and magnetism, electronic, roto-vibrational and magnetic excitations.

More information

Quantum Condensed Matter Physics Lecture 12

Quantum Condensed Matter Physics Lecture 12 Quantum Condensed Matter Physics Lecture 12 David Ritchie QCMP Lent/Easter 2016 http://www.sp.phy.cam.ac.uk/drp2/home 12.1 QCMP Course Contents 1. Classical models for electrons in solids 2. Sommerfeld

More information

A Momentum Space View of the Surface Chemical Bond - Supplementary Information

A Momentum Space View of the Surface Chemical Bond - Supplementary Information A Momentum Space View of the Surface Chemical Bond - Supplementary Information Stephen Berkebile, a Thomas Ules, a Peter Puschnig, b Lorenz Romaner, b Georg Koller, a Alexander J. Fleming, a Konstantin

More information

One-Step Theory of Photoemission: Band Structure Approach

One-Step Theory of Photoemission: Band Structure Approach One-Step Theory of Photoemission: Band Structure Approach E. KRASOVSKII Christian-Albrechts University Kiel Dresden, 19 April 2007 CONTENTS One-Step Theory Theory of Band Mapping Valence band photoemission

More information

Supporting Information

Supporting Information Supporting Information Yi et al..73/pnas.55728 SI Text Study of k z Dispersion Effect on Anisotropy of Fermi Surface Topology. In angle-resolved photoemission spectroscopy (ARPES), the electronic structure

More information

Supplementary Figure S1: Number of Fermi surfaces. Electronic dispersion around Γ a = 0 and Γ b = π/a. In (a) the number of Fermi surfaces is even,

Supplementary Figure S1: Number of Fermi surfaces. Electronic dispersion around Γ a = 0 and Γ b = π/a. In (a) the number of Fermi surfaces is even, Supplementary Figure S1: Number of Fermi surfaces. Electronic dispersion around Γ a = 0 and Γ b = π/a. In (a) the number of Fermi surfaces is even, whereas in (b) it is odd. An odd number of non-degenerate

More information

In order to determine the energy level alignment of the interface between cobalt and

In order to determine the energy level alignment of the interface between cobalt and SUPPLEMENTARY INFORMATION Energy level alignment of the CuPc/Co interface In order to determine the energy level alignment of the interface between cobalt and CuPc, we have performed one-photon photoemission

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/9/eaat8355/dc1 Supplementary Materials for Electronic structures and unusually robust bandgap in an ultrahigh-mobility layered oxide semiconductor, Bi 2 O 2 Se

More information

Concepts in Surface Physics

Concepts in Surface Physics M.-C. Desjonqueres D. Spanjaard Concepts in Surface Physics Second Edition With 257 Figures Springer 1. Introduction................................. 1 2. Thermodynamical and Statistical Properties of

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Region mapping. a Pristine and b Mn-doped Bi 2 Te 3. Arrows point at characteristic defects present on the pristine surface which have been used as markers

More information

Energy Spectroscopy. Ex.: Fe/MgO

Energy Spectroscopy. Ex.: Fe/MgO Energy Spectroscopy Spectroscopy gives access to the electronic properties (and thus chemistry, magnetism,..) of the investigated system with thickness dependence Ex.: Fe/MgO Fe O Mg Control of the oxidation

More information

Spectroscopies for Unoccupied States = Electrons

Spectroscopies for Unoccupied States = Electrons Spectroscopies for Unoccupied States = Electrons Photoemission 1 Hole Inverse Photoemission 1 Electron Tunneling Spectroscopy 1 Electron/Hole Emission 1 Hole Absorption Will be discussed with core levels

More information

Supplementary Information for Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100)

Supplementary Information for Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100) Supplementary Information for Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100) Adrian Radocea,, Tao Sun,, Timothy H. Vo, Alexander Sinitskii,,# Narayana R. Aluru,, and Joseph

More information

Photoelectron Interference Pattern (PEIP): A Two-particle Bragg-reflection Demonstration

Photoelectron Interference Pattern (PEIP): A Two-particle Bragg-reflection Demonstration Photoelectron Interference Pattern (PEIP): A Two-particle Bragg-reflection Demonstration Application No. : 2990 Beamlime: BL25SU Project Leader: Martin Månsson 0017349 Team Members: Dr. Oscar Tjernberg

More information

Cross-Section Scanning Tunneling Microscopy of InAs/GaSb Superlattices

Cross-Section Scanning Tunneling Microscopy of InAs/GaSb Superlattices Cross-Section Scanning Tunneling Microscopy of InAs/GaSb Superlattices Cecile Saguy A. Raanan, E. Alagem and R. Brener Solid State Institute. Technion, Israel Institute of Technology, Haifa 32000.Israel

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION A Stable Three-dimensional Topological Dirac Semimetal Cd 3 As 2 Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S. -K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang,

More information

DFT EXERCISES. FELIPE CERVANTES SODI January 2006

DFT EXERCISES. FELIPE CERVANTES SODI January 2006 DFT EXERCISES FELIPE CERVANTES SODI January 2006 http://www.csanyi.net/wiki/space/dftexercises Dr. Gábor Csányi 1 Hydrogen atom Place a single H atom in the middle of a largish unit cell (start with a

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

Energy Spectroscopy. Excitation by means of a probe

Energy Spectroscopy. Excitation by means of a probe Energy Spectroscopy Excitation by means of a probe Energy spectral analysis of the in coming particles -> XAS or Energy spectral analysis of the out coming particles Different probes are possible: Auger

More information

Supplementary information

Supplementary information Supplementary information Supplementary Figure S1STM images of four GNBs and their corresponding STS spectra. a-d, STM images of four GNBs are shown in the left side. The experimental STS data with respective

More information

Spin-resolved photoelectron spectroscopy

Spin-resolved photoelectron spectroscopy Spin-resolved photoelectron spectroscopy Application Notes Spin-resolved photoelectron spectroscopy experiments were performed in an experimental station consisting of an analysis and a preparation chamber.

More information

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1?

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1? Physics 243A--Surface Physics of Materials: Spectroscopy Final Examination December 16, 2014 (3 problems, 100 points total, open book, open notes and handouts) Name: [1] (50 points), including Figures

More information

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli Department of Physics & Astronomy University of British Columbia Vancouver, B.C. Outline: Part I State-of-the-Art

More information

Supplementary Figure 1 PtLuSb RHEED and sample structure before and after capping layer

Supplementary Figure 1 PtLuSb RHEED and sample structure before and after capping layer Supplementary Figure 1 PtLuSb RHEED and sample structure before and after capping layer desorption. a, Reflection high-energy electron diffraction patterns of the 18 nm PtLuSb film prior to deposition

More information

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Angle-Resolved Two-Photon Photoemission of Mott Insulator Angle-Resolved Two-Photon Photoemission of Mott Insulator Takami Tohyama Institute for Materials Research (IMR) Tohoku University, Sendai Collaborators IMR: H. Onodera, K. Tsutsui, S. Maekawa H. Onodera

More information

2) Atom manipulation. Xe / Ni(110) Model: Experiment:

2) Atom manipulation. Xe / Ni(110) Model: Experiment: 2) Atom manipulation D. Eigler & E. Schweizer, Nature 344, 524 (1990) Xe / Ni(110) Model: Experiment: G.Meyer, et al. Applied Physics A 68, 125 (1999) First the tip is approached close to the adsorbate

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family Z. K. Liu 1,2,3, L. X. Yang 4,5,6, Y. Sun 7, T. Zhang 4,5, H. Peng 5, H. F. Yang 5,8, C. Chen 5, Y. Zhang 6, Y.

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures a b A B Supplementary Figure S1: No distortion observed in the graphite lattice. (a) Drift corrected and reorientated topographic STM image recorded at +300

More information

X-ray Imaging and Spectroscopy of Individual Nanoparticles

X-ray Imaging and Spectroscopy of Individual Nanoparticles X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland Intensity [a.u.] 1.4 1.3 1.2 1.1 D 8 nm 1 1 2 3 1.0 770

More information

Hole-concentration dependence of band structure in (Bi,Pb) 2 (Sr,La) 2 CuO 6+δ determined by the angle-resolved photoemission spectroscopy

Hole-concentration dependence of band structure in (Bi,Pb) 2 (Sr,La) 2 CuO 6+δ determined by the angle-resolved photoemission spectroscopy Journal of Electron Spectroscopy and Related Phenomena 137 140 (2004) 663 668 Hole-concentration dependence of band structure in (Bi,Pb) 2 (Sr,La) 2 CuO 6+δ determined by the angle-resolved photoemission

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

Photoelectron Spectroscopy

Photoelectron Spectroscopy Stefan Hüfner Photoelectron Spectroscopy Principles and Applications Third Revised and Enlarged Edition With 461 Figures and 28 Tables JSJ Springer ... 1. Introduction and Basic Principles 1 1.1 Historical

More information

Application of single crystalline tungsten for fabrication of high resolution STM probes with controlled structure 1

Application of single crystalline tungsten for fabrication of high resolution STM probes with controlled structure 1 Application of single crystalline tungsten for fabrication of high resolution STM probes with controlled structure 1 A. N. Chaika a, S. S. Nazin a, V. N. Semenov a, V. G. Glebovskiy a, S. I. Bozhko a,b,

More information

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e) (a) (b) Supplementary Figure 1. (a) An AFM image of the device after the formation of the contact electrodes and the top gate dielectric Al 2 O 3. (b) A line scan performed along the white dashed line

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION A Dirac point insulator with topologically non-trivial surface states D. Hsieh, D. Qian, L. Wray, Y. Xia, Y.S. Hor, R.J. Cava, and M.Z. Hasan Topics: 1. Confirming the bulk nature of electronic bands by

More information

Solid Surfaces, Interfaces and Thin Films

Solid Surfaces, Interfaces and Thin Films Hans Lüth Solid Surfaces, Interfaces and Thin Films Fifth Edition With 427 Figures.2e Springer Contents 1 Surface and Interface Physics: Its Definition and Importance... 1 Panel I: Ultrahigh Vacuum (UHV)

More information

Electronic structure of correlated electron systems. Lecture 2

Electronic structure of correlated electron systems. Lecture 2 Electronic structure of correlated electron systems Lecture 2 Band Structure approach vs atomic Band structure Delocalized Bloch states Fill up states with electrons starting from the lowest energy No

More information

Scanning Tunneling Microscopy. how does STM work? the quantum mechanical picture example of images how can we understand what we see?

Scanning Tunneling Microscopy. how does STM work? the quantum mechanical picture example of images how can we understand what we see? Scanning Tunneling Microscopy how does STM work? the quantum mechanical picture example of images how can we understand what we see? Observation of adatom diffusion with a field ion microscope Scanning

More information

Role of the Octahedra Rotation on the Electronic Structures of 4d Transition Metal Oxides

Role of the Octahedra Rotation on the Electronic Structures of 4d Transition Metal Oxides Role of the Octahedra Rotation on the Electronic Structures of 4d Transition Metal Oxides Changyoung Kim Dept. Physics, Yonsei University B. J. Kim 1, J. Yu 1, S. J. Oh 1, H. Koh 2, I. Nagai 3, S. I. Ikeda

More information

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Authors: Yang Xu 1,2, Ireneusz Miotkowski 1, Chang Liu 3,4, Jifa Tian 1,2, Hyoungdo

More information

Lecture 12 Multiplet splitting

Lecture 12 Multiplet splitting Lecture 12 Multiplet splitting Multiplet splitting Atomic various L and S terms Both valence and core levels Rare earths Transition metals Paramagnetic free molecules Consider 3s level emission from Mn2+

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 10.1038/nature06219 SUPPLEMENTARY INFORMATION Abrupt Onset of Second Energy Gap at Superconducting Transition of Underdoped Bi2212 Wei-Sheng Lee 1, I. M. Vishik 1, K. Tanaka 1,2, D. H. Lu 1, T. Sasagawa

More information

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Elke Arenholz Lawrence Berkeley National Laboratory Antiferromagnetic contrast in X-ray absorption Ni in NiO Neel Temperature

More information

Introduction to Scanning Tunneling Microscopy

Introduction to Scanning Tunneling Microscopy Introduction to Scanning Tunneling Microscopy C. JULIAN CHEN IBM Research Division Thomas J. Watson Research Center Yorktown Heights, New York New York Oxford OXFORD UNIVERSITY PRESS 1993 CONTENTS List

More information

Electronic Structure of Surfaces

Electronic Structure of Surfaces Electronic Structure of Surfaces When solids made of an infinite number of atoms are formed, it is a common misconception to consider each atom individually. Rather, we must consider the structure of the

More information

STM spectroscopy (STS)

STM spectroscopy (STS) STM spectroscopy (STS) di dv 4 e ( E ev, r) ( E ) M S F T F Basic concepts of STS. With the feedback circuit open the variation of the tunneling current due to the application of a small oscillating voltage

More information

Optical signatures of silicon-vacancy spins in diamond. (supplementary information)

Optical signatures of silicon-vacancy spins in diamond. (supplementary information) Optical signatures of silicon-vacancy spins in diamond (supplementary information) Tina Müller 1*, Christian Hepp 2*, Benjamin Pingault 1, Elke Neu 2,3, Stefan Gsell 4, Matthias Schreck 4, Hadwig Sternschulte

More information

Weyl semimetal phase in the non-centrosymmetric compound TaAs

Weyl semimetal phase in the non-centrosymmetric compound TaAs Weyl semimetal phase in the non-centrosymmetric compound TaAs L. X. Yang 1,2,3, Z. K. Liu 4,5, Y. Sun 6, H. Peng 2, H. F. Yang 2,7, T. Zhang 1,2, B. Zhou 2,3, Y. Zhang 3, Y. F. Guo 2, M. Rahn 2, P. Dharmalingam

More information

Observation of Bulk Defects by Scanning Tunneling Microscopy and Spectroscopy: Arsenic Antisite Defects in GaAs

Observation of Bulk Defects by Scanning Tunneling Microscopy and Spectroscopy: Arsenic Antisite Defects in GaAs VOLUME 71, NUMBER 8 PH YSICAL REVI EW LETTERS 23 AUGUST 1993 Observation of Bulk Defects by Scanning Tunneling Microscopy and Spectroscopy: Arsenic Antisite Defects in GaAs R. M. Feenstra, J. M. Woodall,

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS A11046W1 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2015 Wednesday, 17 June, 2.30

More information

a b c Supplementary Figure S1

a b c Supplementary Figure S1 a b c Supplementary Figure S1 AFM measurements of MoS 2 nanosheets prepared from the electrochemical Liintercalation and exfoliation. (a) AFM measurement of a typical MoS 2 nanosheet, deposited on Si/SiO

More information

X-ray absorption spectroscopy.

X-ray absorption spectroscopy. X-ray absorption spectroscopy www.anorg.chem.uu.nl/people/staff/frankdegroot/ X-ray absorption spectroscopy www.anorg.chem.uu.nl/people/staff/frankdegroot/ Frank de Groot PhD: solid state chemistry U Nijmegen

More information

This article is available at IRis:

This article is available at IRis: Author(s) D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dill, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan This article is available

More information

Surface Defects on Natural MoS 2

Surface Defects on Natural MoS 2 Supporting Information: Surface Defects on Natural MoS 2 Rafik Addou 1*, Luigi Colombo 2, and Robert M. Wallace 1* 1 Department of Materials Science and Engineering, The University of Texas at Dallas,

More information

Tunable Dirac Fermion Dynamics in Topological Insulators

Tunable Dirac Fermion Dynamics in Topological Insulators Supplementary information for Tunable Dirac Fermion Dynamics in Topological Insulators Chaoyu Chen 1, Zhuojin Xie 1, Ya Feng 1, Hemian Yi 1, Aiji Liang 1, Shaolong He 1, Daixiang Mou 1, Junfeng He 1, Yingying

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

Supplementary Information: Observation of a topological crystalline insulator phase and topological phase transition in Pb 1 x Sn x Te

Supplementary Information: Observation of a topological crystalline insulator phase and topological phase transition in Pb 1 x Sn x Te Supplementary Information: Observation of a topological crystalline insulator phase and topological phase transition in Pb 1 x Sn x Te Su-Yang Xu, Chang Liu, N. Alidoust, M. Neupane, D. Qian, I. Belopolski,

More information

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS)

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS) Spectroscopy of Nanostructures Angle-resolved Photoemission (ARPES, UPS) Measures all quantum numbers of an electron in a solid. E, k x,y, z, point group, spin E kin, ϑ,ϕ, hν, polarization, spin Electron

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Method: Epitaxial graphene was prepared by heating an Ir(111) crystal to 550 K for 100 s under 2 x 10-5 Pa partial pressure of ethylene, followed by a flash anneal to 1420 K 1.

More information

Supplementary Material for In situ frequency gating and beam splitting of vacuum- and extreme-ultraviolet pulses

Supplementary Material for In situ frequency gating and beam splitting of vacuum- and extreme-ultraviolet pulses Supplementary Material for In situ frequency gating and beam splitting of vacuum- and extreme-ultraviolet pulses Rajendran Rajeev, Johannes Hellwagner, Anne Schumacher, Inga Jordan, Martin Huppert, Andres

More information

Spectroscopy at nanometer scale

Spectroscopy at nanometer scale Spectroscopy at nanometer scale 1. Physics of the spectroscopies 2. Spectroscopies for the bulk materials 3. Experimental setups for the spectroscopies 4. Physics and Chemistry of nanomaterials Various

More information

Birck Nanotechnology Center XPS: X-ray Photoelectron Spectroscopy ESCA: Electron Spectrometer for Chemical Analysis

Birck Nanotechnology Center XPS: X-ray Photoelectron Spectroscopy ESCA: Electron Spectrometer for Chemical Analysis Birck Nanotechnology Center XPS: X-ray Photoelectron Spectroscopy ESCA: Electron Spectrometer for Chemical Analysis Dmitry Zemlyanov Birck Nanotechnology Center, Purdue University Outline Introduction

More information

3.1 Electron tunneling theory

3.1 Electron tunneling theory Scanning Tunneling Microscope (STM) was invented in the 80s by two physicists: G. Binnig and H. Rorher. They got the Nobel Prize a few years later. This invention paved the way for new possibilities in

More information

Spectro-microscopic photoemission evidence of surface dissociation and charge uncompensated areas in Pb(Zr,Ti)O 3 (001) layers

Spectro-microscopic photoemission evidence of surface dissociation and charge uncompensated areas in Pb(Zr,Ti)O 3 (001) layers Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Electronic Supplementary Information - Phys. Chem. Chem. Phys. Spectro-microscopic

More information

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824

More information

Electron Spectroscopy

Electron Spectroscopy Electron Spectroscopy Photoelectron spectroscopy is based upon a single photon in/electron out process. The energy of a photon is given by the Einstein relation : E = h ν where h - Planck constant ( 6.62

More information

CITY UNIVERSITY OF HONG KONG. Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires

CITY UNIVERSITY OF HONG KONG. Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires CITY UNIVERSITY OF HONG KONG Ë Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires u Ä öä ªqk u{ Submitted to Department of Physics and Materials Science gkö y in Partial Fulfillment

More information

Electronic shells or molecular orbitals: Photoelectron spectra of Ag n clusters

Electronic shells or molecular orbitals: Photoelectron spectra of Ag n clusters Electronic shells or molecular orbitals: Photoelectron spectra of Ag n clusters H. Handschuh, Chia-Yen Cha, P. S. Bechthold, G. Ganteför, and W. Eberhardt Institut für Festkörperforschung, Forschungszentrum

More information

QUANTUM WELLS, WIRES AND DOTS

QUANTUM WELLS, WIRES AND DOTS QUANTUM WELLS, WIRES AND DOTS Theoretical and Computational Physics of Semiconductor Nanostructures Second Edition Paul Harrison The University of Leeds, UK /Cf}\WILEY~ ^INTERSCIENCE JOHN WILEY & SONS,

More information

M2 TP. Low-Energy Electron Diffraction (LEED)

M2 TP. Low-Energy Electron Diffraction (LEED) M2 TP Low-Energy Electron Diffraction (LEED) Guide for report preparation I. Introduction: Elastic scattering or diffraction of electrons is the standard technique in surface science for obtaining structural

More information

Shu Hu 1,2, Matthias H. Richter 1,2, Michael F. Lichterman 1,2, Joseph Beardslee 2,4, Thomas Mayer 5, Bruce S. Brunschwig 1 and Nathan S.

Shu Hu 1,2, Matthias H. Richter 1,2, Michael F. Lichterman 1,2, Joseph Beardslee 2,4, Thomas Mayer 5, Bruce S. Brunschwig 1 and Nathan S. Supporting Information for: Electrical, Photoelectrochemical and Photoelectron Spectroscopic Investigation of the Interfacial Transport and Energetics of Amorphous TiO 2 /Si Heterojunctions Shu Hu 1,2,

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES 1 SUPPLEMENTARY FIGURES Supplementary Figure 1: Initial stage showing monolayer MoS 2 islands formation on Au (111) surface. a, Scanning tunneling microscopy (STM) image of molybdenum (Mo) clusters deposited

More information

Introduction of XPS Absolute binding energies of core states Applications to silicone Outlook

Introduction of XPS Absolute binding energies of core states Applications to silicone Outlook Core level binding energies in solids from first-principles Introduction of XPS Absolute binding energies of core states Applications to silicone Outlook TO and C.-C. Lee, Phys. Rev. Lett. 118, 026401

More information

Spin and angular resolved photoemission experiments on epitaxial graphene. Abstract

Spin and angular resolved photoemission experiments on epitaxial graphene. Abstract Spin and angular resolved photoemission experiments on epitaxial graphene Isabella Gierz, 1, Jan Hugo Dil, 2, 3 Fabian Meier, 2, 3 Bartosz Slomski, 2, 3 Jürg Osterwalder, 3 Jürgen Henk, 4 Roland Winkler,

More information

Core Level Spectroscopies

Core Level Spectroscopies Core Level Spectroscopies Spectroscopies involving core levels are element-sensitive, and that makes them very useful for understanding chemical bonding, as well as for the study of complex materials.

More information

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES experiments on 3D topological insulators Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Outline Using ARPES to demonstrate that certain materials

More information

Surface Sensitivity & Surface Specificity

Surface Sensitivity & Surface Specificity Surface Sensitivity & Surface Specificity The problems of sensitivity and detection limits are common to all forms of spectroscopy. In its simplest form, the question of sensitivity boils down to whether

More information

Hybridization effects in 4f systems as observed by photoemission spectroscopy

Hybridization effects in 4f systems as observed by photoemission spectroscopy Hybridization eects in 4 systems as observed by photoemission spectroscopy Yu. Kucherenko Institute or Metal Physics, Academy o Sciences o Ukraine, Kiev C. Laubschat, S.L. Molodtsov, S. Danzenbächer et

More information

Basics of DFT applications to solids and surfaces

Basics of DFT applications to solids and surfaces Basics of DFT applications to solids and surfaces Peter Kratzer Physics Department, University Duisburg-Essen, Duisburg, Germany E-mail: Peter.Kratzer@uni-duisburg-essen.de Periodicity in real space and

More information

Visualizing the evolution from the Mott insulator to a charge-ordered insulator in lightly doped cuprates

Visualizing the evolution from the Mott insulator to a charge-ordered insulator in lightly doped cuprates Visualizing the evolution from the Mott insulator to a charge-ordered insulator in lightly doped cuprates Peng Cai 1, Wei Ruan 1, Yingying Peng, Cun Ye 1, Xintong Li 1, Zhenqi Hao 1, Xingjiang Zhou,5,

More information

Basic Semiconductor Physics

Basic Semiconductor Physics 6 Basic Semiconductor Physics 6.1 Introduction With this chapter we start with the discussion of some important concepts from semiconductor physics, which are required to understand the operation of solar

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supporting Information Single Layer Lead Iodide: Computational Exploration of Structural, Electronic

More information

Physics 541: Condensed Matter Physics

Physics 541: Condensed Matter Physics Physics 541: Condensed Matter Physics Final Exam Monday, December 17, 2012 / 14:00 17:00 / CCIS 4-285 Student s Name: Instructions There are 24 questions. You should attempt all of them. Mark your response

More information

Probing Matter: Diffraction, Spectroscopy and Photoemission

Probing Matter: Diffraction, Spectroscopy and Photoemission Probing Matter: Diffraction, Spectroscopy and Photoemission Anders Nilsson Stanford Synchrotron Radiation Laboratory Why X-rays? VUV? What can we hope to learn? 1 Photon Interaction Incident photon interacts

More information

Supplementary information: Topological Properties Determined by Atomic Buckling in Self-Assembled Ultrathin Bi (110)

Supplementary information: Topological Properties Determined by Atomic Buckling in Self-Assembled Ultrathin Bi (110) Supplementary information: Topological Properties Determined by Atomic Buckling in Self-Assembled Ultrathin Bi (110) Yunhao Lu, *,, Wentao Xu, Mingang Zeng, Guanggeng Yao, Lei Shen, Ming Yang, Ziyu Luo,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NNANO.211.214 Control over topological insulator photocurrents with light polarization J.W. McIver*, D. Hsieh*, H. Steinberg, P. Jarillo-Herrero and N. Gedik SI I. Materials and device fabrication

More information

Magneto-Excitons in Semiconductor Quantum Rings

Magneto-Excitons in Semiconductor Quantum Rings phys. stat. sol. (a) 190, No. 3, 781 785 (2002) Magneto-Excitons in Semiconductor Quantum Rings I. Galbraith 1 ), F. J. Braid, and R. J. Warburton Department of Physics, Heriot-Watt University, Edinburgh,

More information

Supplementary information for. Atomically resolved spectroscopic study of Sr 2 IrO 4 : Experiment and theory

Supplementary information for. Atomically resolved spectroscopic study of Sr 2 IrO 4 : Experiment and theory Supplementary information for Atomically resolved spectroscopic study of Sr 2 IrO 4 : Experiment and theory Qing Li 1,9,, Guixin Cao 2,3,, Satoshi Okamoto 3, Jieyu Yi 2,3, Wenzhi Lin 1, Brian C. Sales

More information

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis X-ray Spectroscopy Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis Element specific Sensitive to low concentrations (0.01-0.1 %) Why XAS? Applicable under

More information

Itinerant to localized transition of f electrons in antiferromagnetic superconductor UPd 2 Al 3

Itinerant to localized transition of f electrons in antiferromagnetic superconductor UPd 2 Al 3 1 Itinerant to localized transition of f electrons in antiferromagnetic superconductor UPd 2 Al 3 Shin-ichi Fujimori 1, Yuji Saitoh 1, Tetsuo Okane 1, Atsushi Fujimori 1,2, Hiroshi Yamagami 1,3, Yoshinori

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

X-Ray Photoelectron Spectroscopy (XPS)-2

X-Ray Photoelectron Spectroscopy (XPS)-2 X-Ray Photoelectron Spectroscopy (XPS)-2 Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Fulmer 261A Electron Spectroscopy for Chemical Analysis (ESCA) The 3 step model: 1.Optical excitation 2.Transport

More information

2.1 Experimental and theoretical studies

2.1 Experimental and theoretical studies Chapter 2 NiO As stated before, the first-row transition-metal oxides are among the most interesting series of materials, exhibiting wide variations in physical properties related to electronic structure.

More information

NiO - hole doping and bandstructure of charge transfer insulator

NiO - hole doping and bandstructure of charge transfer insulator NiO - hole doping and bandstructure of charge transfer insulator Jan Kuneš Institute for Physics, Uni. Augsburg Collaboration: V. I. Anisimov S. L. Skornyakov A. V. Lukoyanov D. Vollhardt Outline NiO -

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/2/e1601832/dc1 Supplementary Materials for Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures Neil R. Wilson,

More information

structure and paramagnetic character R. Kakavandi, S-A. Savu, A. Caneschi, T. Chassé, M. B. Casu Electronic Supporting Information

structure and paramagnetic character R. Kakavandi, S-A. Savu, A. Caneschi, T. Chassé, M. B. Casu Electronic Supporting Information At the interface between organic radicals and TiO 2 (110) single crystals: electronic structure and paramagnetic character R. Kakavandi, S-A. Savu, A. Caneschi, T. Chassé, M. B. Casu Electronic Supporting

More information

6.5 mm. ε = 1%, r = 9.4 mm. ε = 3%, r = 3.1 mm

6.5 mm. ε = 1%, r = 9.4 mm. ε = 3%, r = 3.1 mm Supplementary Information Supplementary Figures Gold wires Substrate Compression holder 6.5 mm Supplementary Figure 1 Picture of the compression holder. 6.5 mm ε = 0% ε = 1%, r = 9.4 mm ε = 2%, r = 4.7

More information