Differential flatness applications to industrial machine control

Size: px
Start display at page:

Download "Differential flatness applications to industrial machine control"

Transcription

1 Autotio, Cotrol Itlligt Systs 4; (4: 4-5 Publish oli Sptbr, 4 ( oi:.648/j.cis.44. ISSN: (Prit; ISSN: (Oli Diffrtil fltss pplictios to iustril chi cotrol Ejik C. A, Gsh K. Vygoorthy Elctricl Egirig Progr, Abubkr Tfw Blw Uivrsity, PMB 48, Buchi, Nigri Rl-Ti Powr Itlligt Systs Lbortory, Clso Uivrsity, Clso, USA Eil rss: jik@yhoo.co (E. C. A, gkur@i.org (G. K. Vygoorthy To cit this rticl: Ejik C. A, Gsh K. Vygoorthy. Diffrtil Fltss Applictios to Iustril Mchi Cotrol. Autotio, Cotrol Itlligt Systs. Vol., No. 4, 4, pp oi:.648/j.cis.44. Abstrct: I this rticl th pplictios of iffrtil fltss to so iustril systs r prst. Coputtiol thos of obtiig th flt output th stright forwr tho of costructig th corrspoig cotrol lw r giv. So thorticl iustril systs r us s illustrtio icluig th thir orr sychroous chi ol th o gr of fro gtic lvittio syst ol. Coputtios of th flt output r o usig vrious pprochs. Th Lvi s pproch is prst i such til s to fcilitt quick urstig. Coputtios for th sychroous chi ol yil flt output tht is fuctio of th lo gl whil th gtic lvittio ol yil flt output tht is fuctio of th objcts positio. Rsults showig th stbiliztio of th ppli systs i fult ucrti situtios r iscuss. Kywors: Mgtic Lvittio, Fltss, Fbck Liriztio, Sychroous Mchi. Itrouctio THE cocpt of iffrtil fltss propos by Michl Fliss co-workrs [],[] bout twty yrs go hs volv ito full-flg fil for th stuy of cotrol systs i prcticlly w wy. I this sttig, cotrollbility is lik with syst fltss cotrollbl systs possss this fltss proprty [],[4]. For such systs thr is solutio st cll flt output i th solutio spc cosistig of st of stt vribls tht copltly prtriz th syst without th for solvig iffrtil qutios. Oc this output is show to b flt, it i ffct iplis tht th syst posssss wll chrctriz yics[5]. This is bcus ll syst prtrs cotrol bcos fuctio of th lirizig output tht c bl th grtio of rfrc trjctoris -priori. Th costructio of th fbck lw is o by sipl ivrsio of syst qutios with rspct to th cotrol. Th sch i rivtio is xtsio fro th iputoutput liriztio sch with zro itrl yics. Fliss t-l [] propos th otio of ogous quivlc fi clss of yic fbcks for clssifictio liriztio of systs i th for of Fliss iffrtil lgbric fors. Such clsss of systs r th so-cll iffrtilly flt systs. O of th i cosqucs of thir rsult is costructiv tho of coputig th fbck tht xctly lirizs flt syst. Accorigly cotrol syst M, F is iffrtilly flt rou p if oly if it is quivlt to trivil syst i ighborhoo ofp. A trivil syst c b fi s o which is without yics scrib by collctio of ipt vribls or R, F whr Fs( y, y (, y (,... ( y, y (, y (,..., with y R s y [6]. It is si to b iffrtilly flt if it is iffrtilly flt rou vry p of op s subst ofm. Th st y { y j,..., s} is cll flt or lirizig output of j M scrib by collctio of ipt vribls, th flt output hvig th s ubr of copots s th ubr of cotrol vribls. Th followig uctios r show with proofs i [].. Th ubr of copots of flt output is qul to ubr of iput chls.. A clssic lir syst is flt if oly if it is cotrollbl.. Th cotrollbility of iffrtilly flt systs is rlt to th wll kow strog ccssibility s s

2 4 Ejik C. A Gsh K. Vygoorthy: Diffrtil Fltss Applictios to Iustril Mchi Cotrol proprty of olir systs u to Suss Jurjvic. 4. If clssic olir syst is iffrtilly flt rou p, th it stisfis th strog ccssibility t p. 5. Diffrtil fltss s tht th stt iput y b copltly rcovr fro th flt output without itgrtig th syst iffrtil qutios. Aftr th itrouctio i Sctio, th ppr iscusss th bsic thory of iffrtil fltss i Sctio II. I Sctio III th procur of coputtios of flt output is til. Sctio IV iscusss th xpls for coputig flt outputs for so systs th siultios o o th rsultig cotrollrs of so iustril systs o MATLAB. Coclusios r giv i Sctio V whil i Sctio VI th rfrcs r giv.. Bsic Thory of Fltss A syst vribl is ogous if it c b xprss s lir cobitio of th iput, th output fiit ubr of thir ti rivtivs. Othrwis it is xogous. A sigl iput sigl output (SISO syst is thrfor flt or iffrtilly flt if thr xists ogous vribl cll th flt output, such tht th iput th output c b xprss s lir cobitio of th flt output fiit ubr of its ti rivtivs [7]. Nturlly y othr ogous vribl of th syst joys th s proprty with rspct to th flt output. Thus th flt output iffrtilly prtrizs ll syst vribls. Grlly, th fiitio of syst fltss c b cst i wht follows: Th syst f (ɺ, x x, u ( with x R u R is iffrtilly flt if o c fi st of vribls cll flt output; ( y h( x, uuu,ɺ,ɺɺ,..., u r y R syst vribls, cotrol, ( x α( y,ɺ,ɺɺ,..., y y y q ( u y y y y q β(,ɺ,ɺɺ,..., with q fiit itgr such tht th syst qutio ( ( (4.. Equivlc Fbck Th uthors i [] i thir coprhsiv ppr uifyig thir thory of fltss its ssocit yic fbck, forliz th cocpt tht two systs r quivlt if thr is ivrtibl trsfortio xchgig thir trjctoris, or if y vribl of o syst y b xprss s fuctio of th vribls of th othr syst of fiit ubr of thir ti rivtivs. I or grl ss this trsfortio is si to b Li- Bäcklu isoorphis. If two systs xɺ f ( x, u,( x, u X U R R r yɺ g( y, u,( y, v Y V R R vctor fils ( ( ( ( F( x, uu,, u... ( f ( x, u, uu,, u... ( ( ( ( G( y, v, v, v... ( g( y, v, v, v, v... whr, u α( x, z, w zɺ ( x, z, w, with, z Z R q r iffrtilly quivlt, it bcos possibl to go fro o to othr by yic fbck s show i Figur. Tht is by iffoorphis of th xt stt spc X Z. This yic fbck is ogous if th origil syst is iffrtilly quivlt to th clos loop syst. It is cll ogous bcus th w z vribls c b xprss s fuctios of th stt rivtivs of th iput. Thus fro th work i [9] it c b stt tht, if syst is iffrtilly flt, thr xists ogous yic fbck such tht th clos loop syst is iffoorphic to lir cotrollbl syst. Thrfor for olir syst qutio (, whr rk s (6 (7 (8 f (, (9 f (, ( u its yic fbck lirizbility s th xistc of: yic copstor; α ( q f ( ( y, yɺ, ɺɺ y,..., y, ( q ( α( y, yɺ, ɺɺ y,..., y, β( y, yɺ, ɺɺ y,..., y r iticlly stisfi [8]. q (5 whr zɺ ( x, z, v, z R u b( x, z, v, v R q

3 Autotio, Cotrol Itlligt Systs 4; (4: (,, b(,, iffoorphis; ( xɺ f ( xb, ( x, zv, zɺ β( x, zv, u α( x, z, v ( ξ Ξ( x, z,( ξ R q ( such tht th ( q isiol yics is giv by bcos costt lir cotrollbl syst ɺξ Fξ Gv (4 Figur. Trsfortio of Nolir Syst ito Lir Equivlt. Th copots of u xc b xprss s rllytic fuctios of th copot of qutio (, fiit ubr of thir rivtivs (qutios (, (4. Th yic fbck is si to b ogous if oly if th covrs hols, tht is, if oly if y copot of y c b xprss s rl-lytic fuctio of,x, u fiit ubr of its rivtivs. I fil rrk i [], th flt yics of syst whos output is giv by qutio ( is squr lft right iput-output ivrtibl syst, whr y copot of u or x y, by fiitio b rcovr fro y without itgrtig y iffrtil qutio: It is si to possss trivil zro-yics or trivil rsiul yics. Figur shows th ogous yic fbck liriztio procss cosistig of pol plct liriztio loops.. Grtig Flt Outputs Diffrtil fltss is i tht is turlly ssocit with urtri systs of iffrtil qutios whr syst of lgbric qutios i ukows [4] is writt s: Ax Bf, B, rk[ A, B]. (5 If Ais ivrtibl B is full rk, th x solutios y b writt i trs of fs x A Bf (6 s such k ll solutios prtrizbl i trs of f. I this sttig ogous trsfortio ϕ i which th origil vribls of th syst r trsfor without crtig w xogous vribls is rliz []... Clssicl Mthos Followig [4], cosir SISO syst giv by th trsfr fuctio ( y ( u( (7 ( th syst is cotrollbl if oly if th polyoils ( ( r copri, tht is thy hv o otrivil coo fctors. By Bzout s thor, thr xists polyoils ( b( such tht for ll s C w c writ ( ( b( ( (8. Dfi w vribl f ( u(, (9 ( y ( ( f (, u ( ( f ( ( ultiplyig both sis of (8 by f ( w hv, ( ( f ( b( ( f ( f ( or ( y( b( u( f ( ( which iplis w hv vribl f which is iffrtil fuctio of th syst iput output fiit ubr of thir ti rivtivs. Covrsly ll syst vribls iput r lso iffrtil fuctios of th w vribl. This w vribl qulifis s flt output. Thrfor giv y cotrollbl lir syst i trsfr fuctio

4 45 Ejik C. A Gsh K. Vygoorthy: Diffrtil Fltss Applictios to Iustril Mchi Cotrol for (7, th flt output c b chos s y costt ultipl of th vribl f ( u( or ( k f ( u( for y k, for xpl cosir th ( s, s lir, copri iiu phs fuctio y( u( fro (8, ( ( s b( ( s s( ( sb( b( s, ( b ( stisfis th qutio so tht fro (, f ( y( u(. f thrfor prtrizs ll syst vribls s giv. u( ( f ( ( s f ( sf ( f ( fɺ f siilrly y( ( f ( ( s f ( sf ( f ( fɺ f This trtt c b xt to th stt spc pproch [4]: For giv lir ti-ivrit SISO syst scrib by y( b s b s s s b u(, < ( Figur. Structur of Dyic Fbck Liriztio. with copri polyoils i urtor oitor its flt output κ f ( u(, which i s s trs of iffrtil qutio sclr output qutio givs: f f f u κ f f y b b b f κ ifx f, x fɺ (,., x f x x x th A bu, x x y c x x x x with A b κ c ( b b κ Th flt output of such syst is giv by f (,, ( C x whr C ( b, Ab,, A b is th Kl cotrollbility trix. Expl: Giv DC otor yics [4] LIɺ RI v k ω Jɺ ω Bω k I ( whr IArtur currt, wagulr Vlocity,, r lctricl costts,, r chicl costts. Th stt spc rprsttio is giv by R R k L L xɺ C L L x k L u xɺ k B x JL J J F ( C x JL ω C k k R JL JL L k L (4 Whr,,, r th cotrollbility trix, its ivrs flt output rspctivly. Th cotrol is coput usig s follows: x I JF BF, x ω F ( ɺ k JL ɺɺ LB RJ ɺ RB u v F F kf k k k.. Th Iplicit Rprsttio (Lévi s Mtho (5 Equtio ( c b loclly trsfor ito urtri iplicit syst for F( x, xɺ (6 x X, x, f ( x, u T X ( Tgt spc, for vry u rk f u x. This opts prolog ifol of solutios to th iplicit rprsttio. Th uthor i [] xts th otio of ogous trsfortio (Li- Bäcklu Isoorphis to th iplicit syst, sttig tht if two rgulr iplicit systs of qutio (6 r Li-

5 Autotio, Cotrol Itlligt Systs 4; (4: Bäcklu quivlt th thir lir cotgt pproxitio is loclly Li-Bäcklu quivlt. Th Iplicit syst qutio (6 is flt if oly if it is Li- Bäcklu quivlt. Th syst is flt if thr xists locl ppigs φ stisfyig φ ( y x such tht * f ; i,...,. Φ i * F F Φ f x ɺ x (7 * whr Φ f P( F, which r ctully polyoil trics th iffrtil oprtor is th itrit. Th ivrs of polyoil is ot polyoil th ivrs of squr trix is ot trix. Ths polyoil trics hv th followig chrctristics []:. Thy rquir th us of spcil lgbric ipultios.. P( F M its Sith copositio (or, igol ructio giv by VP F U (. θ (8 (,. A trix is M M is hypr-rgulr if p, q oly if it s Sith copositio ls to I, p, p, q p if p < q; to I P, if p q ; to I p if p > q p q, q 4. A squr trix M M is hypr-rgulr if p, q oly if it is uioulr- ot by u p subgroup of ivrtibl trics M. p, q 5. P(F is hypr-rgulr if oly if th lir cotgt pproxitio of th iplicit syst qutio (6 is cotrollbl iplyig tht th syst is flt. Ths r th copct st of trix ipultios tht l to th tritio of th syst s flt output. 4. Applictio to Sychroous Mchi 4.. Sychroous Mchi Ruc Orr Mol Fro th fourth orr ol of th sychroous chi, th irct xis c b ssu costt rucig it to thir orr o-xis ol [] giv by (9: ɺ ( x x i τ q f q whr i ɺ ω ω i ( ( r ( si R V ( r R ( x x( xq x ( xq x( q V cos q ( ( x ( si x V ( r R ( x x( xq x ( r R( q V cos 4.. Iplicit Mtho Usig Lévi s cssry sufficit coitios for iffrtil fltss [] whr for th syst of qutios (9 th syst orr th ubr of syst iput. Th otio of lir cotgt pproxitio hcforth cll cotgt pproxitio is fi thus. Giv trjctory t x(t of (6of clss C o itrvlj of R, th lir ti-vryig iplicit syst F F ( x( t, xɺ ( t ξ( t ( x( t, xɺ ( t ɺ ξ( t ( x xɺ with ξ ( ξ, ɺ ξ,... ΤΧ, is fi s th lir cotgt pproxitio of qutio (6 rou th trjctoryx. Th syst of qutios (9 is first trsfor to th iplicit quivlt, obti by liitig th yics tht cotis th syst iput f, kig F(, ω, q, ɺ, ɺ ω, ɺ q qul, Such tht H P D( ω ω i i q q ; wr ( ɺ ω ω ( Th cotgt pproxitio to th iplicit qutios ( ( is coput fro: F F F F F F P( F ɺ,, ω ωɺ q ɺ q ( It is otworthy ccorig to th chrctristics bov, tht th cotgt pproxitio of syst of qutios ( ( is hypr-rgulr if oly if it is cotrollbl. A if it is loclly flt roux, its lir cotgt pproxitio rou x is cotrollbl. Thrfor thr ust xist V L Sith ( P( F U R Sith ( P( F such tht H P D( ω ω i i w R q q (9 VP( F U ( I,, (4 Th cotgt pproxitio ftr pplyig qutio ( o qutio ( ( yils:

6 47 Ejik C. A Gsh K. Vygoorthy: Diffrtil Fltss Applictios to Iustril Mchi Cotrol whr: (5 ( ɺ ( R cos xqt si ɺ q( x cosɺ R cos ωv Ht ; ω H D ; P( F of rk rucs to lowr or uppr trigulr polyoil trix to prov its hypr-rgulrity. Th uioulr trics r costruct i such wy to shuffl th lts of th cotgt pproxitio trix chiv lowr trigulr for. Succssiv stps of th ructio r giv s follows []: Stp : Multiplyig qutio (5 with th uioulr trix- givs ω ( xqt x V( x si R cos RV qɺ q ; Ht ω D H t ( r R ( x x( xq x. Stp : Multiplyig qutio (6 with uioulr W ow pply th Sith copositio lgorith to trix- rucs row to [ ] qutio (5 i succssiv polyoil trix ipultios usig uioulr trics of rk util ω ω (7 ω D D D H H H (6 Stp : Multiplyig qutio (7 with uioulr trix - costt, yilig. shuffls row to k try [, ] i (7 ω D ω D ω D ω D (8 H H H H Stp 4: Multiplyig qutio (8 with uioulr trix-4 trigulr trix P (F. ω D H chivs th rquir lowr ω ω ω D ω (9 D D H D H H H Thrfor ( F D H P ω (4 Equtio (4 which is lowr trigulr polyoil trix provs th hypr-rgulrity of qutios (9. By right ultiplyig th uioulr trics to 4 us to grt P( F, th U trix is grt s giv i qutios 4 to 4: Stp b: Uioulr trix- by Uioulr trix-. Stp b: Equtio (4 by uioulr trix- (4 (4

7 Autotio, Cotrol Itlligt Systs 4; (4: Stp Equtio (4 by uioulr trix-4 ω D H ω D H Equtio (4 s U c b rrg copctly U A Thus fro Whr A ω H D ( (4. so givs th flt output y (49 y Vrifictio of th Flt Output of th Thir Orr Sigl- Iput (SMIBS ol is o by showig tht ll th syst stts vribls r fuctio of th flt output its rivtivs. such tht thus ω ɺ ω ɺ ω ɺɺ (5 (5 Rq (( x xqt V( x si R cos q P t t (5 ( t ( D R V ( R si x cos H ω ω ɺɺ qt ω Uɵ Usig th fiitio, ɵ U U I ω ( H D (44 (45 Equtio (5 is qurtic fuctio tht c b vlut for q. Sic th syst stts hv b show to b fuctios of th flt output its rivtivs, it follows tht ll othr syst vribls which r fuctios of th stts r lso fuctios of th flt output its rivtivs. Hc: ζ f, ɺ, ɺ ζ [ i, i, v, v, V ] (5 i i( i q qt t 4.. Copstor Dsig Siultio Rsults QU ɵ (46 it is possibl to coput by furthr trix ipultios Q L Sith( U ɵ which yils Q A (47 whr A is s fi bov. Multiplyig Qby th vctor T (, ω, q, th lst two tris i th rsultig vctor r: ω ω H D ( q which by (5 vishs iticlly ox. Th first try of th vctor is thrfor giv by: ( (, ω, q T y (48 Equtio (48 is trivilly strogly clos such tht It hs b show i th prcig sctio tht th copots of th syst stts othr syst vribls pig o th syst stts c b xprss s rllytic fuctios of th copot of fiit ubr of its rivtivs thus: x A(, ɺ, ɺɺ (54 Th yic fbck is show to b ogous sic th covrs hols, tht is, th flt outputy is xprss s rl-lytic fuctio of o of th stts of th syst. Thus th stt of th SMIBS is fuctio of th lirizig output its rivtivs up to orr α. Th ogous fbck syst to th followig clos loop syst is of orr α, so tht fro th lir syst ɺɺɺ v (55 th copstor follows. Cosirig th systs yicl qutios, prfor th followig stt trsfortios:

8 49 Ejik C. A Gsh K. Vygoorthy: Diffrtil Fltss Applictios to Iustril Mchi Cotrol zɺ z yɺ ɺ ω ω zɺ z ɺɺ y ɺɺ ɺ ω zɺ ɺɺɺ y ɺɺɺ ɺɺ ω v (56 This yils th quivlt orl for for th syst, fro which w c coput th olir cotrollr by ivrtig th xprssios fro ɺɺ ω. Th stt f trsfortios r ivrtibl xist throughout th trsit oprtig zo < < 8 o. Usig th twork prtrs of figur (, th rsultig xcittio cotrol is giv by []: Figur. Fult Loctio o th Sigl Mchi Ifiit Bus Syst (SMIBS f whr, τ Hv ω D ɺ A ɺ B -C q q (x -x i (57 E tω t Tɺ T qt A R -R V si -x V cos ; B x V si( ɺ -R V cos( ɺ ; qt C (x -x ɺ -x V cos( ɺ -R V si( ɺ ; qt T T E (x -x -x V si -R R V cos ; qt T q T Figur 4. Rsposs of Sp Dvitio to -Cycl Fult with without FVDFC. ɺ ((x -x x (x cos( R V si( ɺ q T R q; t T R ( r R ; x ( x x ; x ( x x. T qt q f is hrby prov lso to b fuctio of th flt vribl its rivtivs, tht is f β(, ɺ, ɺɺ (58 Th loop closur is th o to stbiliz th syst. * * * v k ( k ( ɺ ɺ k ( ɺɺ ɺ (59 choos k i ppropritly such tht th lir ti ivrit rror yics ( k k ɺ k ɺɺ (6 whr ( j ( j ( * ( j r stbl. Equtio (57 is th cotrol lw rfrr to s Fil Voltg Dyic Fbck Cotrollr (FVDFC, [] whil (59 is th lir iput tht stbilizs th syst to quilibriu. Siultio of th syst ws o by coctig th sychroous chi s sigl chi ifiit bus syst (SMIBS ur short circuit fult situtio s show i Figur. Figur 5. Rsposs of Tril Voltg to -Cycl Fult with without FVDFC. So siultio rsults with th syst quipp with th sig cotrollr r prst i Figurs 4 5 which r rprsttiv of th syst prforc. Ths figurs clrly show th rsposs of th cotrollr to thr-phs short circuit fult of -cycls urtio. Th syst ws rstor to sty stt oprtig poit s th cotrollr p th fult oscilltios ur thr scos s show by th chi sp vitio th corrspoig tril voltg. Th oscilltios i th ucotroll syst wr ot p withi th s ti urtio.

9 Autotio, Cotrol Itlligt Systs 4; (4: Figur 6. Block igr of INTECO TM glv ol 5. Applictio to Mgtic Lvittio Th ol vlopt of th gtic lvittio is bs o th syst vlop by INTECO TM for th purpos of tchig. Th syst block igr is show i Figur 6. INTECO us piricl lysis to ol th cotrol of th currt tht gos to th lctrogt. Th rsultig lir rltioship is fou to b stright li i ( u u b with zo. Th costts b r tri fro th xpritl t. Th syst yics r scrib i (6 (6. x ɺ x (6 x f _ p _ f p g x f _ p xɺ (6 xɺ ( k u c i x p p x p (6 Whr g is grvittiol forc, is ss of objct, f _ p, f _ p, p, p, ki, c r syst costts. Flt output Th flt output c b tri usig Lvi s tho by pplyig th iplicit fuctio thory liitig th yics with cotrol. Th vritiol qutio is giv by[]: Whr x ɺɺ f _ p f _ p x ( f p x x x f p x x (64 Th polyoil trix will thrfor b or copctly p( f x f _ p x x f _ p x x x x x (65 p ( f [ A b] (66 x f _ p Whr A x - polyoil x f _ p b x. Usig Sith s lgorith for th ipultio of polyoil trics, th followig right Sith stps r prfor. [ A b] A b b [ ], thrfor Uˆ A, such tht b Thrfor, Uˆ A b Q s rquir. (67 x Q x A (68 x b Such tht th first li rs y x which givs y x th flt output, whil th sco li is iticlly qul to zro fro (66 showig th fltss of th syst yics. This follows tht th flt output of this glv ol is th bll positio which is lso syst vribl.

10 5 Ejik C. A Gsh K. Vygoorthy: Diffrtil Fltss Applictios to Iustril Mchi Cotrol 5.. Copstor Dsig Siultio Rsults st poit of.6. Fro th coput flt output th cotrol lw follow fro th followig copstor y x yɺ xɺ x ɺɺ y ɺɺ x xɺ ɺɺɺ y ɺɺɺ x ɺɺ x u L (69 Fro (6, w hv Figur 7. Bll positio for t sco siultio x ( g xɺ f _ p f _ p x f _ P (7 A fro xɺ (69 th cotrol lw is coput s x ɺɺ u x c p p p whr M p x ( ( g xɺ ( ( g xɺ xɺ M p f _ p ki x f _ p f _ P f _ p A th lir cotrol is giv by (7 Figur 8. Appli cotrols for t sco siultio Figs. 9 show th rspos of th syst to crsig st poit lvls lik i scig stircs. This tsk ss to b chllgig cotrol tsk s c b s by th sloppy rspos of th PID cotrollr us o th s syst s s i fig. Th fltss bs cotrollr i ot show th s sloppy bhvior for th scig st poit lvls s s i fig 9. Th PID bhv lik it is hvig ifficulty copig with th shrp trsitios of th bll positio. Stuis of othr systs show tht th fltss cotrollr givs strog first swig cotrol s wll iprovs stbility rgi of th syst. * * * u k ( k ( ɺ ɺ k ( ɺɺ ɺ L (7 Th gis k i r chos such tht th lir ti ivrit rror yics ( k k ɺ k ɺ (7 whr ( j ( j ( * ( j r stbl. To coput th gis, (7 c b rwritt s Hurwitz polyoil by s k s k s k. (74 Th clos loop chrctristic polyoil of thir orr quivlt syst is giv i trs of th turl frqucy pig rtio by ( s such tht coprig (74 (75 givs ξω s ω( s β (75, k ξω β ω, k β k βω ξω Figurs 7 8 shows th bll positio th Fltss cotrol ppli to stbiliz it. Th rsults r for t sco siultio of th glv syst to lvitt bll to Figur 9. Rspos to iput [.5,.4,.,.,.] usig th Fltss bs cotrollr

11 Autotio, Cotrol Itlligt Systs 4; (4: xpcttios prfor wll wh copr with th PID schs. Rfrcs [] Fliss M., Lévi J., Mrti Ph., Roucho P. (999 A Li-Bäcklu pproch to quivlt fltss of olir systs, IEEE Trsctios o Autotic Cotrol, 8: [] Fliss M., Lévi J., Mrti Ph., Roucho P. (99 Fltss fct of olir systs: itrouctory thory xpls, It. J. of Cotrol, 6(6: 7-6. [] Lévi J. ( Rvis (6 O th cssry sufficit coitios for iffrtil fltss Elctroic Prit, Digitl Librry for Physics Astrooy, Hrvr- Sithsoi ctr for Astrophysics, (rxiv: th/6545v. [4] Hbrtt Sir-Rirz, Suil K. Agrwl (4 Diffrtilly flt systs, Mrcl Dkkr, Ic, Nw York Figur. Rspos to iput [.5,.4,.,.,.] usig th PID cotrollr 6. Coclusio This ppr prst so bsic thory of fltss-bs fbck liriztio, vrit of th wll-kow tchiqus of fbck liriztio. Thorticl forultio xpls to hc lrig of th cocpt of fltss how it is coput for crti iustril systs is giv. A ovl tho of coputtio of th flt output vlop by J Lvi is itrouc two iustril systs us to illustrt its fficcy. A pplictio to th sychroous chi gtic lvittio syst ws chiv by costructig cotrol lw rou th flt output. Th tho rquirs th thticl lysis of syst ols for fltss - coitio tht scribs how wll chrctriz th ol is with viw to triig its possssio of virtul (flt output riv by cotributios by th syst stt vribls. This output ws tri for th giv ols us to obti corrspoig fbck lws for th trsfor lir systs quipp with lir cotrollr us to stbiliz th systs to sty stt or p syst oscilltios iuc by fult. For th oxis sigl iput sychroous chi (SMIBS ol thr xists flt output th rotor gl (lt syst vribl whil for th gtic lvittio syst th flt output coput is th bll positio which is lso syst vribl. Th siultio rsults obti gr with th [5] Fliss M., Lévi J., Mrti Ph., Roucho P. (99 Fltss fct of olir systs: itrouctory thory xpls, It. J. of Cotrol, 6(6: 7-6. [6] Roucho P., Fliss M, Lévi J., Mrti Ph. (99 Fltss otio plig: th cr with -trilrs. I Proc. ECC 9, Groig, Pgs [7] Lévi J. (999 Ar thr w iustril prspctivs i th cotrol of chicl systs? I Pul M. Frk, itor, Avcs i Cotrol, pgs Sprigr-Vrlg, Loo. [8] Kiss B., Lévi J., Mullhupt Ph. ( Cotrol of ruc siz ol of us vy cr usig oly otor positio ssors. I A. Isiori, F. Lbhi-Lgrrigu, W. Rspok, itors, Nolir Cotrol i th Yr, volu, pgs. Sprigr. [9] Chrlt B., Lévi J., Mrio R. (99 Sufficit coitios for yic stt fbck liriztio, SIAM J. of Cotrol Optiiztio, 9(:8-57. [] Arso P.M Fou A.A (994 Powr syst cotrol stbility, IEEE sris o Powr Systs. [] E. C. A, J. T. Ag, U. O. Aliyu J. Lvi, (6 A w tchiqu for fbck liristio pplictio i powr syst stbilistio. IASTED Itrtiol Cofrc o POWER, ENERGY APPLICATIONS Gboro Botsw, Sptbr.-, Pgs [] Ejik A, Gsh K. Vygoorthy (, Sior Mbr, IEEE PSO tu fltss bs cotrol of gtic lvittio syst, 45 th IEEE Iustril Autotio Cotrol Aul Cofrc, r 7 th Octobr, Housto Txs.

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point:

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point: roic Oscilltor Pottil W r ow goig to stuy solutios to t TIS for vry usful ottil tt of t roic oscilltor. I clssicl cics tis is quivlt to t block srig robl or tt of t ulu (for sll oscilltios bot of wic r

More information

IX. Ordinary Differential Equations

IX. Ordinary Differential Equations IX. Orir Diffrtil Equtios A iffrtil qutio is qutio tht iclus t lst o rivtiv of uow fuctio. Ths qutios m iclu th uow fuctio s wll s ow fuctios of th sm vribl. Th rivtiv m b of orr thr m b svrl rivtivs prst.

More information

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space Mish Kumr Mishr D.B.OhU Ktoch It. J. Comp. Tch. Appl. Vol ( 33-37 Som Commo Fi Poit Thorms for Pir of No psiv Mppigs i Grliz Epotil Cov Mtric Spc D.B.Oh Mish Kumr Mishr U Ktoch (Rsrch scholr Drvii Uivrsit

More information

How much air is required by the people in this lecture theatre during this lecture?

How much air is required by the people in this lecture theatre during this lecture? 3 NTEGRATON tgrtio is us to swr qustios rltig to Ar Volum Totl qutity such s: Wht is th wig r of Boig 747? How much will this yr projct cost? How much wtr os this rsrvoir hol? How much ir is rquir y th

More information

MM1. Introduction to State-Space Method

MM1. Introduction to State-Space Method MM Itroductio to Stt-Spc Mthod Wht tt-pc thod? How to gt th tt-pc dcriptio? 3 Proprty Alyi Bd o SS Modl Rdig Mtril: FC: p469-49 C: p- /4/8 Modr Cotrol Wht th SttS tt-spc Mthod? I th tt-pc thod th dyic

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

EE Control Systems LECTURE 11

EE Control Systems LECTURE 11 Up: Moy, Ocor 5, 7 EE 434 - Corol Sy LECTUE Copyrigh FL Lwi 999 All righ rrv POLE PLACEMET A STEA-STATE EO Uig fc, o c ov h clo-loop pol o h h y prforc iprov O c lo lc uil copor o oi goo y- rcig y uyig

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

Lectures 2 & 3 - Population ecology mathematics refresher

Lectures 2 & 3 - Population ecology mathematics refresher Lcturs & - Poultio cology mthmtics rrshr To s th mov ito vloig oultio mols, th olloig mthmtics crisht is suli I i out r mthmtics ttook! Eots logrithms i i q q q q q q ( tims) / c c c c ) ( ) ( Clculus

More information

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points) Chm 5 Problm St # ANSWER KEY 5 qustios, poits Qutum Mchics & Spctroscopy Prof. Jso Goodpstr Du ridy, b. 6 S th lst pgs for possibly usful costts, qutios d itgrls. Ths will lso b icludd o our futur ms..

More information

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q. LASS XII Q Evlut : Q sc Evlut c Q Evlut: ( ) Q Evlut: Q5 α Evlut: α Q Evlut: Q7 Evlut: { t (t sc )} / Q8 Evlut : ( )( ) Q9 Evlut: Q0 Evlut: Q Evlut : ( ) ( ) Q Evlut : / ( ) Q Evlut: / ( ) Q Evlut : )

More information

page 11 equation (1.2-10c), break the bar over the right side in the middle

page 11 equation (1.2-10c), break the bar over the right side in the middle I. Corrctios Lst Updtd: Ju 00 Complx Vrils with Applictios, 3 rd ditio, A. Dvid Wusch First Pritig. A ook ought for My 007 will proly first pritig With Thks to Christi Hos of Swd pg qutio (.-0c), rk th

More information

Integration by Guessing

Integration by Guessing Itgrtio y Gussig Th computtios i two stdrd itgrtio tchiqus, Sustitutio d Itgrtio y Prts, c strmlid y th Itgrtio y Gussig pproch. This mthod cosists of thr stps: Guss, Diffrtit to chck th guss, d th Adjust

More information

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is Discrt-tim ourir Trsform Rviw or discrt-tim priodic sigl x with priod, th ourir sris rprsttio is x + < > < > x, Rviw or discrt-tim LTI systm with priodic iput sigl, y H ( ) < > < > x H r rfrrd to s th

More information

Emil Olteanu-The plane rotation operator as a matrix function THE PLANE ROTATION OPERATOR AS A MATRIX FUNCTION. by Emil Olteanu

Emil Olteanu-The plane rotation operator as a matrix function THE PLANE ROTATION OPERATOR AS A MATRIX FUNCTION. by Emil Olteanu Emil Oltu-Th pl rottio oprtor s mtri fuctio THE PLNE ROTTON OPERTOR S MTRX UNTON b Emil Oltu bstrct ormlism i mthmtics c offr m simplifictios, but it is istrumt which should b crfull trtd s it c sil crt

More information

A Single-Integral Representation for the Green Function of Steady Ship Flow in Water of Finite Depth

A Single-Integral Representation for the Green Function of Steady Ship Flow in Water of Finite Depth A Sigl-Itgrl Rprsttio for th Gr uctio of Stdy Ship low i Wtr of iit Dpth Thi Nguy & Xio-Bo Ch Costl Systs Sttio, P City, L 7 (USA x: --85-- Eil: NguyTC@csc.vy.il Rsrch Dprtt, BV, 7bis, Plc ds Rflts, 9

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

ASSERTION AND REASON

ASSERTION AND REASON ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

More information

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error.

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error. Drivatio of a Prdictor of Cobiatio # ad th SE for a Prdictor of a Positio i Two Stag Saplig with Rspos Error troductio Ed Stak W driv th prdictor ad its SE of a prdictor for a rado fuctio corrspodig to

More information

Periodic Structures. Filter Design by the Image Parameter Method

Periodic Structures. Filter Design by the Image Parameter Method Prioic Structurs a Filtr sig y th mag Paramtr Mtho ECE53: Microwav Circuit sig Pozar Chaptr 8, Sctios 8. & 8. Josh Ottos /4/ Microwav Filtrs (Chaptr Eight) microwav filtr is a two-port twork us to cotrol

More information

MATRIX ALGEBRA, Systems Linear Equations

MATRIX ALGEBRA, Systems Linear Equations MATRIX ALGEBRA, Systes Lier Equtios Now we chge to the LINEAR ALGEBRA perspective o vectors d trices to reforulte systes of lier equtios. If you fid the discussio i ters of geerl d gets lost i geerlity,

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

National Quali cations

National Quali cations PRINT COPY OF BRAILLE Ntiol Quli ctios AH08 X747/77/ Mthmtics THURSDAY, MAY INSTRUCTIONS TO CANDIDATES Cdidts should tr thir surm, form(s), dt of birth, Scottish cdidt umbr d th m d Lvl of th subjct t

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1 NOD6 (\Dt\04\Kot\J-Advced\SMP\Mths\Uit#0\NG\Prt-\0.Determits\0.Theory.p65. INTRODUCTION : If the equtios x + b 0, x + b 0 re stisfied by the sme vlue of x, the b b 0. The expressio b b is clled determit

More information

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations.

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations. Dy : Mondy 5 inuts. Ovrviw of th PH47 wsit (syllus, ssignnts tc.). Coupld oscilltions W gin with sss coupld y Hook's Lw springs nd find th possil longitudinl) otion of such syst. W ll xtnd this to finit

More information

Decomposability of Global Tasks for Multi-agent Systems

Decomposability of Global Tasks for Multi-agent Systems 49th IEEE Cofrc o Dcisio Cotrol Dcmbr 15-17, 2010 Hilto Atlt Hotl, Atlt, GA, USA Dcomposbility of Globl Tsks for Multi-gt Systms Mohmm Krimii Hi Li Abstrct Multi-gt systm is rpily vlopig rsrch r with strog

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES Scietific Reserch of the Istitute of Mthetics d Coputer Sciece 3() 0, 5-0 APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES Jolt Borows, Le Łcińs, Jowit Rychlews Istitute of Mthetics,

More information

CHAPTER 5d. SIMULTANEOUS LINEAR EQUATIONS

CHAPTER 5d. SIMULTANEOUS LINEAR EQUATIONS CHAPTE 5. SIUTANEOUS INEA EQUATIONS A. J. Crk Schoo of Egirig Dprtmt of Civi Eviromt Egirig by Dr. Ibrhim A. Asskkf Sprig ENCE - Compttio thos i Civi Egirig II Dprtmt of Civi Eviromt Egirig Uivrsity of

More information

The Fourier-Like and Hartley-Like Wavelet Analysis Based on Hilbert Transforms

The Fourier-Like and Hartley-Like Wavelet Analysis Based on Hilbert Transforms XXII SIPÓSIO BRSILEIRO DE TELEOUNIÇÕES - SBrT, -8 DE SETEBRO DE, PINS, SP Th Fourir-Lik Hrtly-Lik Wvlt lyi B o Hilbrt Trfor Luci R Sor, Hélio Olivir Rto J Sobrl itr btrct I cotiuou-ti wvlt lyi, ot wvlt

More information

Predictors of long term post-traumatic stress in mothers and fathers after a child s admission to PICU

Predictors of long term post-traumatic stress in mothers and fathers after a child s admission to PICU Prictors of log tr post-trutic strss i othrs fthrs ftr chil s issio to PICU Colvill G, Boyls C, Gry S, Ross O, Mht R PICU, Southpto Grl Hospitl Rlvt Litrtur Post Trutic Strss Disorr DSM IV critri Trutic

More information

Exercises for lectures 23 Discrete systems

Exercises for lectures 23 Discrete systems Exrciss for lcturs 3 Discrt systms Michal Šbk Automatické říí 06 30-4-7 Stat-Spac a Iput-Output scriptios Automatické říí - Kybrtika a robotika Mols a trasfrs i CSTbx >> F=[ ; 3 4]; G=[ ;]; H=[ ]; J=0;

More information

National Quali cations

National Quali cations Ntiol Quli ctios AH07 X77/77/ Mthmtics FRIDAY, 5 MAY 9:00 AM :00 NOON Totl mrks 00 Attmpt ALL qustios. You my us clcultor. Full crdit will b giv oly to solutios which coti pproprit workig. Stt th uits

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Spin Structure of Nuclei and Neutrino Nucleus Reactions Toshio Suzuki

Spin Structure of Nuclei and Neutrino Nucleus Reactions Toshio Suzuki Spi Structur of Nucli d Nutrio Nuclus Rctios Toshio Suzuki Excittio of Spi Mods by s. Spctr DAR, DIF 3. Chrg-Exchg Rctios C, - N by iprovd spi-isospi itrctio with shll volutio Sprdig ffcts of GT strgth

More information

LE230: Numerical Technique In Electrical Engineering

LE230: Numerical Technique In Electrical Engineering LE30: Numricl Tchiqu I Elctricl Egirig Lctur : Itroductio to Numricl Mthods Wht r umricl mthods d why do w d thm? Cours outli. Numbr Rprsttio Flotig poit umbr Errors i umricl lysis Tylor Thorm My dvic

More information

Fourier Series and Applications

Fourier Series and Applications 9/7/9 Fourier Series d Applictios Fuctios epsio is doe to uderstd the better i powers o etc. My iportt probles ivolvig prtil dieretil equtios c be solved provided give uctio c be epressed s iiite su o

More information

82A Engineering Mathematics

82A Engineering Mathematics Clss Notes 9: Power Series /) 8A Egieerig Mthetics Secod Order Differetil Equtios Series Solutio Solutio Ato Differetil Equtio =, Hoogeeous =gt), No-hoogeeous Solutio: = c + p Hoogeeous No-hoogeeous Fudetl

More information

Extension Formulas of Lauricella s Functions by Applications of Dixon s Summation Theorem

Extension Formulas of Lauricella s Functions by Applications of Dixon s Summation Theorem Avll t http:pvu.u Appl. Appl. Mth. ISSN: 9-9466 Vol. 0 Issu Dr 05 pp. 007-08 Appltos Appl Mthts: A Itrtol Jourl AAM Etso oruls of Lurll s utos Appltos of Do s Suto Thor Ah Al Atsh Dprtt of Mthts A Uvrst

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions Solutios for HW 8 Captr 5 Cocptual Qustios 5.. θ dcrass. As t crystal is coprssd, t spacig d btw t plas of atos dcrass. For t first ordr diffractio =. T Bragg coditio is = d so as d dcrass, ust icras for

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

On the Rodrigues Formula Solution. of the Hypergeometric-Type Differential Equation

On the Rodrigues Formula Solution. of the Hypergeometric-Type Differential Equation Itrtiol Mthticl Foru Vol. 8 3 o. 3 455-466 HIKARI Lt.-hikri.co htt://x.oi.org/.988/if.3.3733 O th Rorigus Forul Solutio of th Hrgotric-T Diffrtil Eutio W. Roi Egirig Mthtics Grou Eiurgh Nir Uirsit olito

More information

Chapter 11 Design of State Variable Feedback Systems

Chapter 11 Design of State Variable Feedback Systems Chpter Desig of Stte Vrible Feedbck Systems This chpter dels with the desig of cotrollers utilizig stte feedbck We will cosider three mjor subjects: Cotrollbility d observbility d the the procedure for

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Chapter 8 Approximation Methods, Hueckel Theory

Chapter 8 Approximation Methods, Hueckel Theory Witr 3 Chm 356: Itroductory Qutum Mchics Chptr 8 Approimtio Mthods, ucl Thory... 8 Approimtio Mthods... 8 Th Lir Vritiol Pricipl... mpl Lir Vritios... 3 Chptr 8 Approimtio Mthods, ucl Thory Approimtio

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

IV. The z-transform and realization of digital filters

IV. The z-transform and realization of digital filters www.tuworld.com www.tuworld.com Digitl Sigl Procssig 4 Dcmbr 6, 9 IV. Th -trsform d rlitio of digitl filtrs 7 Syllbus: Rviw of -trsforms, Applictios of -trsforms, Solutio of diffrc qutios of digitl filtrs,

More information

Classical Theory of Fourier Series : Demystified and Generalised VIVEK V. RANE. The Institute of Science, 15, Madam Cama Road, Mumbai

Classical Theory of Fourier Series : Demystified and Generalised VIVEK V. RANE. The Institute of Science, 15, Madam Cama Road, Mumbai Clssil Thoy o Foi Sis : Dmystii Glis VIVEK V RANE Th Istitt o Si 5 Mm Cm Ro Mmbi-4 3 -mil ss : v_v_@yhoooi Abstt : Fo Rim itgbl tio o itvl o poit thi w i Foi Sis t th poit o th itvl big ot how wh th tio

More information

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property Lier Time-Ivrit Bsic Properties LTI The Commuttive Property The Distributive Property The Associtive Property Ti -6.4 / Chpter Covolutio y ] x ] ] x ]* ] x ] ] y] y ( t ) + x( τ ) h( t τ ) dτ x( t) * h(

More information

Chapter 9 Infinite Series

Chapter 9 Infinite Series Sctio 9. 77. Cotiud d + d + C Ar lim b lim b b b + b b lim + b b lim + b b 6. () d (b) lim b b d (c) Not tht d c b foud by prts: d ( ) ( ) d + C. b Ar b b lim d lim b b b b lim ( b + ). b dy 7. () π dy

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

IIT JEE MATHS MATRICES AND DETERMINANTS

IIT JEE MATHS MATRICES AND DETERMINANTS IIT JEE MTHS MTRICES ND DETERMINNTS THIRUMURUGN.K PGT Mths IIT Trir 978757 Pg. Lt = 5, th () =, = () = -, = () =, = - (d) = -, = -. Lt sw smmtri mtri of odd th quls () () () - (d) o of ths. Th vlu of th

More information

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C Joural of Mathatical Aalysis ISSN: 2217-3412, URL: www.ilirias.co/ja Volu 8 Issu 1 2017, Pags 156-163 SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C BURAK

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case Chpter : Algebr: A. Bckgroud lgebr: A. Like ters: I lgebric expressio of the for: () x b y c z x y o z d x... p x.. we cosider x, y, z to be vribles d, b, c, d,,, o,.. to be costts. I lgebric expressio

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

DC machines. Transforms mechanical energy into electric energy with DC voltage and current (DC generator or dynamo), or conversely (DC motor)

DC machines. Transforms mechanical energy into electric energy with DC voltage and current (DC generator or dynamo), or conversely (DC motor) DC mchi Trform mchicl rgy ito lctric rgy with DC oltg currt (DC grtor or ymo, or corly (DC motor bruh bll brig bll brig rotor (rmtur collctor bruh holr ttor (iuctor 20/04/2018 DC mchi 1 DC mchi uctor or

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

Lectures 5-8: Fourier Series

Lectures 5-8: Fourier Series cturs 5-8: Fourir Sris PHY6 Rfrcs Jord & Smith Ch.6, Bos Ch.7, Kryszig Ch. Som fu jv pplt dmostrtios r vilbl o th wb. Try puttig Fourir sris pplt ito Googl d lookig t th sits from jhu, Flstd d Mths Oli

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

terms of discrete sequences can only take values that are discrete as opposed to

terms of discrete sequences can only take values that are discrete as opposed to Diol Bgyoko () OWER SERIES Diitio Sris lik ( ) r th sm o th trms o discrt sqc. Th trms o discrt sqcs c oly tk vls tht r discrt s opposd to cotios, i.., trms tht r sch tht th mric vls o two cosctivs os

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

CAPACITANCE CALCULATION USING EEM

CAPACITANCE CALCULATION USING EEM Act Elctrotchic t Iformtic Vol. 9, o., 009, 5 3 5 CAPACITACE CALCULATIO USIG EEM Slvoljub R. ALEKSIĆ, Mirj PERIĆ, Sš S. ILIĆ Dprtmt of Thorticl Elctricl Egirig, Fculty of Elctroic Egirig, Uivrsity of iš,

More information

On Gaussian Distribution

On Gaussian Distribution Prpr b Çğt C MTU ltril gi. Dpt. 30 Sprig 0089 oumt vrio. Gui itributio i i ollow O Gui Ditributio π Th utio i lrl poitiv vlu. Bor llig thi utio probbilit it utio w houl h whthr th r ur th urv i qul to

More information

Inner Product Spaces INNER PRODUCTS

Inner Product Spaces INNER PRODUCTS MA4Hcdoc Ir Product Spcs INNER PRODCS Dto A r product o vctor spc V s ucto tht ssgs ubr spc V such wy tht th ollowg xos holds: P : w s rl ubr P : P : P 4 : P 5 : v, w = w, v v + w, u = u + w, u rv, w =

More information

Formal Languages The Pumping Lemma for CFLs

Formal Languages The Pumping Lemma for CFLs Forl Lguges The Pupig Le for CFLs Review: pupig le for regulr lguges Tke ifiite cotext-free lguge Geertes ifiite uer of differet strigs Exple: 3 I derivtio of log strig, vriles re repeted derivtio: 4 Derivtio

More information

Frequency-domain Characteristics of Discrete-time LTI Systems

Frequency-domain Characteristics of Discrete-time LTI Systems requecy-domi Chrcteristics of Discrete-time LTI Systems Prof. Siripog Potisuk LTI System descriptio Previous bsis fuctio: uit smple or DT impulse The iput sequece is represeted s lier combitio of shifted

More information

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM Fr Est Journl o Mthtil Sins (FJMS) Volu 6 Nur Pgs 8- Pulish Onlin: Sptr This ppr is vill onlin t http://pphjo/journls/jsht Pushp Pulishing Hous DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF MATRICES

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

Analogy between microstructured beam model and Eringen s nonlocal beam model for buckling and vibration

Analogy between microstructured beam model and Eringen s nonlocal beam model for buckling and vibration Rct Avcs i Mcicl Eiri Mcics Aloy bt icrostructur b ol Eri s olocl b ol for buckli vibrtio M W, Z Z, N lll, W H Du Abstrct Tis ppr poits out t loy bt icrostructur b ol Eri s olocl b tory T icrostructur

More information

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form 0.5 Power Series I the lst three sectios, we ve spet most of tht time tlkig bout how to determie if series is coverget or ot. Now it is time to strt lookig t some specific kids of series d we will evetully

More information

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC CLSS XI ur I CHPTER.6. Proofs d Simpl pplictios of si d cosi formul Lt C b trigl. y gl w m t gl btw t sids d C wic lis btw 0 d 80. T gls d C r similrly dfid. T sids, C d C opposit to t vrtics C, d will

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

minimize c'x subject to subject to subject to

minimize c'x subject to subject to subject to z ' sut to ' M ' M N uostrd N z ' sut to ' z ' sut to ' sl vrls vtor of : vrls surplus vtor of : uostrd s s s s s s z sut to whr : ut ost of :out of : out of ( ' gr of h food ( utrt : rqurt for h utrt

More information

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) Awr: = ( + )(y + ) Diff prtilly w.r.to & y hr p & q y p = (y + ) ;

More information

Chapter 5. Chapter 5 125

Chapter 5. Chapter 5 125 Chptr 5 Chptr 5: Itroductio to Digitl Filtrs... 6 5. Itroductio... 6 5.. No rcursiv digitl filtrs FIR... 7 5.. Rcursiv digitl filtr IIR... 8 5. Digitl Filtr Rlistio... 5.. Prlll rlistio... 5.. Cscd rlistio...

More information

ELG4156 Design of State Variable Feedback Systems

ELG4156 Design of State Variable Feedback Systems ELG456 Desig of Stte Vrible Feedbck Systems This chpter dels with the desig of cotrollers utilizig stte feedbck We will cosider three mjor subjects: Cotrollbility d observbility d the the procedure for

More information

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2]

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2] QUESTION PAPER WITH SOLUTION OF JEE ADVANCED - 6 7. Lt P (HELD ON d MAY SUNDAY 6) FEEL THE POWER OF OUR KNOWLEDGE & EXPERIENCE Our Top clss IITi fculty tm promiss to giv you uthtic swr ky which will b

More information

Impedance Matching Equation: Developed Using Wheeler s Methodology

Impedance Matching Equation: Developed Using Wheeler s Methodology Impedce Mtchig Equtio: Developed Usig Wheeler s Methodology IEEE Log Isld Sectio Ates & Propgtio Society Presettio December 4, 0 y Alfred R. Lopez Outlie. ckgroud Iformtio. The Impedce Mtchig Equtio. The

More information

Stability Study of Fuzzy Control Processes Application to a Nonlinear Second Order System

Stability Study of Fuzzy Control Processes Application to a Nonlinear Second Order System IJSI Itrtiol Jourl of omputr Scic Issus, Vol. 9, Issu, No, Mrch 0 ISSN (Oli): 694-084 www.ijsi.org 97 Stbility Study of Fuzzy otrol Procsss Applictio to Nolir Scod Orr Systm Bsm Zhr, Ais Skly d Mohmd Brjb

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

FL/VAL ~RA1::1. Professor INTERVI of. Professor It Fr recru. sor Social,, first of all, was. Sys SDC? Yes, as a. was a. assumee.

FL/VAL ~RA1::1. Professor INTERVI of. Professor It Fr recru. sor Social,, first of all, was. Sys SDC? Yes, as a. was a. assumee. B Pror NTERV FL/VAL ~RA1::1 1 21,, 1989 i n or Socil,, fir ll, Pror Fr rcru Sy Ar you lir SDC? Y, om um SM: corr n 'd m vry ummr yr. Now, y n y, f pr my ry for ummr my 1 yr Un So vr ummr cour d rr o l

More information

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems 0 Th -Trsform Dpt. of Elctroics Eg. -- DH609 Sigls d Systms 0. Th -Trsform Lplc trsform - for cotios tim sigl/systm -trsform - for discrt tim sigl/systm 0. Th -trsform For ipt y H H h with ω rl i.. DTFT

More information

Model of the multi-level laser

Model of the multi-level laser Modl of th multilvl lsr Trih Dih Chi Fulty of Physis, Collg of turl Sis, oi tiol Uivrsity Tr Mh ug, Dih u Kho Fulty of Physis, Vih Uivrsity Astrt. Th lsr hrtristis dpd o th rgylvl digrm. A rsol rgylvl

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

PREPARATORY MATHEMATICS FOR ENGINEERS

PREPARATORY MATHEMATICS FOR ENGINEERS CIVE 690 This qusti ppr csists f 6 pritd pgs, ch f which is idtifid by th Cd Numbr CIVE690 FORMULA SHEET ATTACHED UNIVERSITY OF LEEDS Jury 008 Emiti fr th dgr f BEg/ MEg Civil Egirig PREPARATORY MATHEMATICS

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

CREATED USING THE RSC COMMUNICATION TEMPLATE (VER. 2.1) - SEE FOR DETAILS

CREATED USING THE RSC COMMUNICATION TEMPLATE (VER. 2.1) - SEE   FOR DETAILS uortig Iormtio: Pti moiitio oirmtio vi 1 MR: j 5 FEFEFKFK 8.6.. 8.6 1 13 1 11 1 9 8 7 6 5 3 1 FEFEFKFK moii 1 13 1 11 1 9 8 7 6 5 3 1 m - - 3 3 g i o i o g m l g m l - - h k 3 h k 3 Figur 1: 1 -MR or th

More information

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg ymmetricl Compoets equece impedces Although the followig focuses o lods, the results pply eqully well to lies, or lies d lods. Red these otes together with sectios.6 d.9 of text. Cosider the -coected lced

More information

Upper Bound of Partial Sums Determined by Matrix Theory

Upper Bound of Partial Sums Determined by Matrix Theory Turish Jourl of Alysis d Nuber Theory, 5, Vol, No 6, 49-5 Avilble olie t http://pubssciepubco/tjt//6/ Sciece d Eductio Publishig DOI:69/tjt--6- Upper Boud of Prtil Sus Deteried by Mtrix Theory Rbh W Ibrhi

More information

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions MAT 8: Clculus II Tst o Chptr 9: qucs d Ifiit ris T-Hom Portio olutios. l l l l 0 0 L'Hôpitl's Rul 0 . Bgi by computig svrl prtil sums to dvlop pttr: 6 7 8 7 6 6 9 9 99 99 Th squc of prtil sums is s follows:,,,,,

More information

Case Study VI Answers PHA 5127 Fall 2006

Case Study VI Answers PHA 5127 Fall 2006 Qustion. A ptint is givn 250 mg immit-rls thophyllin tblt (Tblt A). A wk ltr, th sm ptint is givn 250 mg sustin-rls thophyllin tblt (Tblt B). Th tblts follow on-comprtmntl mol n hv first-orr bsorption

More information