IV. The z-transform and realization of digital filters

Size: px
Start display at page:

Download "IV. The z-transform and realization of digital filters"

Transcription

1 Digitl Sigl Procssig 4 Dcmbr 6, 9 IV. Th -trsform d rlitio of digitl filtrs 7 Syllbus: Rviw of -trsforms, Applictios of -trsforms, Solutio of diffrc qutios of digitl filtrs, Bloc digrm rprsttio of lir costt-cofficit diffrc qutios, Bsic structurs of IIR systms, Trsposd forms, Bsic structurs of FIR systms, Systm fuctio. Cotts: 4. Itroductio 4. Importt proprtis of -trsforms 4. Trsforms of som usful squcs 4.4 Rgio of covrgc d stbility 4.5 Ivrs -trsform by prtil frctios 4.6 Rltioships mog systm rprsttios 4.7 Ivrs -trsform by powr sris xpsio log divisio 4.8 Computtio of frqucy rspos 4.9 Z-trsforms with iitil coditios 4. Stdy-stt d trsit rsposs for first ordr systm 4. Rlitio of digitl filtrs 4. Th Lttic structur Itroductio 4. *Ivrs -trsform by complx ivrsio itgrl DSP-4 Z of 84 Dr. Rvi Bill

2 Itroductio For cotiuous-tim systms th Lplc trsform is xtsio of th Fourir trsform. Th Lplc trsform c b pplid to brodr clss of sigls th th Fourir trsform c, sic thr r my sigls for which th Fourir trsform dos ot covrg but th Lplc trsform dos. Th Lplc trsform llows us, for xmpl, to prform trsform lysis of ustbl systms d to dvlop dditiol isights d tools for LTI systm lysis. Th -trsform is th discrt-tim coutrprt of th Lplc trsform. Th - trsform bls us to ly crti discrt-tim sigls tht do ot hv discrt-tim Fourir trsform. Th motivtios d proprtis of th -trsform closly rsmbl thos of th Lplc trsform. Howvr, s with th rltioship of th cotiuous tim vrsus th discrt-tim Fourir trsforms, thr r distictios btw th Lplc trsform d th - trsform. Dfiitio Th two-sidd biltrl -trsform, X, of th squc x is dfid s X ʓ{x} x whr r is th complx vribl. Th bov powr sris is Lurt sris. Th o sidd uiltrl -trsform is dfid s X + x Th uiltrl -trsform is prticulrly usful i lyig cusl systms spcifid by lir costt-cofficit diffrc qutios with oro iitil coditios ito which iputs r stppd. It is xtsivly usd i digitl cotrol systms. Im -pl ROC R R x R x+ Th rgio of covrgc ROC is th st of vlus for which th bov summtio covrgs. I grl th ROC is ulr rgio i th complx -pl giv by ROC R x < < R x+ Rltioship btw th -trsform d th discrt-tim Fourir trsform Sttig r i th dfiitio givs us X x r [ r x ] r DSP-4 Z of 84 Dr. Rvi Bill

3 If r, th th -trsform, vlutd o th uit circl, givs th discrt-tim Fourir trsform of th squc x, i.., X x X Exmpl 4.. Th positiv-tim sigl xt t, t, othrwis is smpld t T-scod itrvls rsultig i th squc xt or x x t t T T T, T d x,, < If < this squc dcys xpotilly to s. Substitutig x ito th dfiig qutio, th -trsform is ʓ{x} X, <, > -pl Im ROC, > Shdd r Pol t R Zro t Th ROC is >. This X is rtiol fuctio rtio of polyomils i. Th roots of th umrtor polyomil r th ros of X d th roots of th domitor polyomil r th pols of X. This is right-sidd squc. Right-sidd squcs hv ROC tht is th xtrior of circl with rdius R x > i this cs. If th ROC is th xtrior of circl it is rightsidd squc. Dfiitio A right-sidd squc x is o for which x for ll < whr is positiv or gtiv but fiit. If th x is cusl or positiv-tim squc. DSP-4 Z of 84 Dr. Rvi Bill

4 Exmpl 4.. Th gtiv-tim squc x b u. Rcll tht th uit stp squc u. if th rgumt of u. is, i.., if or. x b,, othrwis If b > this squc dcys xpotilly to s. Th -trsform is, ʓ{x} X x b Lt m d chg th limits ccordigly to gt, X m m b m b m b W ddd i th lst stp bov to m up for th m trm withi th summtio. Th rsult is, X, b < b, ROC is < b b Im -pl ROC b pol R ro This is lft-sidd squc. Such squc hs rgio of covrgc which is th itrior of circl, < R x+. I this cs th ROC is < b. ot tht if b th th two xmpls bov hv xctly th sm X. So wht ms th diffrc? Th rgio of covrgc ms th diffrc. Dfiitio A lft-sidd squc x is o for which x for ll, whr is positiv or gtiv but fiit. If th x is ticusl or gtiv-tim squc. DSP-4 Z 4 of 84 Dr. Rvi Bill

5 Exmpl 4.. [Two-sidd squc] This is th sum of th positiv- d gtiv-tim squcs of th prvious two xmpls. y, u b u b, < Substitutig ito th dfiig qutio, Y ʓ{y} ow, from Exmpls d, [ u b u ] ROC > & b b ROC < b b So, th dsird trsform Y hs rgio of covrgc qul to th itrsctio of th two sprt ROC s > d < b. Thus Y, with ROC { > } { < b } b b, with ROC < < b b Th ROC is th ovrlp of th shdd rgios, tht is, th ulr rgio btw d b. Th two ros r t d +b/, d th two pols t d b. Wh < b Im ro ro +b/ b R ROC pols DSP-4 Z 5 of 84 Dr. Rvi Bill

6 If b < th trsform dos ot covrg. Im ro > ro b R pols I th bov thr xmpls w my xprss th -trsform both s rtio of polyomils i i.., positiv powrs d s rtio of polyomils i gtiv powrs. From th dfiitio of th -trsform, w s tht for squcs which r ro for <, X ivolvs oly gtiv powrs of. Howvr, rfrc to th pols d ros is lwys i trms of th roots of th umrtor d domitor xprssd s polyomils i. Also, it is somtims covit to rfr to X, writt s rtio of polyomils i i.., positiv powr of, s hvig pols t ifiity if th dgr of th umrtor xcds th dgr of th domitor or ros t ifiity if th umrtor is of smllr dgr th th domitor. Exmpl 4..4 [Fiit-lgth squc] Oly fiit umbr of squc vlus r o-ro, s giv blow. x for < d for >, whr d r fiit o-ro for By th dfiig qutio w hv X x x x Covrgc of this xprssio rquirs simply tht x < for. Th my t o ll vlus xcpt if is gtiv d if is positiv. Thus th ROC is t lst < < d it my iclud ithr or dpdig o th sig of d. 4. Importt proprtis of -trsforms Th proofs r sily obtid by usig th bsic -trsform dfiitio d trsformtios i th summtio. [Sc. Opphim & S] DSP-4 Z 6 of 84 Dr. Rvi Bill

7 Lirity If ʓ[x] X with ROC r x < < r x d ʓ[y] Y with ROC r y < < r y th ʓ[ x + b y] X + b Y with ROC t lst th ovrlp of th ROC s of X d Y. If thr is y pol-ro cclltio du to th lir combitio, th th ROC my b lrgr. Trsltio Tim-shiftig If ʓ[x] X with ROC r < < r th ʓ[x ] X with th sm ROC xcpt for th possibl dditio or dltio of or du to. Exmpl Giv x {, } d x x+ fid X d X d thir rspctiv ROCs. X +, ROC: tir -pl xcpt ; X +, ROC: tir - pl xcpt. ultiplictio by complx xpotil squc Sclig i th -domi If ʓ[x] X with ROC r < < r th ʓ[ x] X with ROC r / < < r. Exmpl Giv x {, } d x.5 x fid X d X d thir rspctiv ROCs. 4 ultiplictio by rmp If ʓ[x] X with ROC r < < r th dx ʓ[ x] with ROC r < < r. d Exmpl Giv x {, } d x + + x fid X d X d thir rspctiv ROCs. ʓ[x ] ʓ[] + ʓ[ x] + ʓ[ [ x]] 5 Tim rvrsl If ʓ[x] X with ROC r < < r th ʓ[ x ] X with ROC / / r r < < Exmpl Giv x u d X X dtrmi x. x.5 u, X, ROC:.5 <.5 ʓ - { X } x ; x ʓ - { X } x +. u 6 Covolutio i tim domi lds to multiplictio i frqucy domi Giv ʓ[x] X with ROC R x d ʓ[y] Y with ROC R y d x*y x h th ʓ[x*y] X.Y with ROC R x R y. 7 ultiplictio i tim domi lds to covolutio i frqucy domi If ʓ[x] X with ROC r x < < r x d ʓ[y] Y with ROC r y < < r y th ʓ[x.y] X v Y v dv, ROC r x r y < < r x r y. v C whr is complx cotour itgrl d C is closd cotour i th itrsctio of th ROCs C of Xv d Y/v. DSP-4 Z 7 of 84 Dr. Rvi Bill

8 8 Iitil Vlu Thorm If x is cusl squc with trsform X, th x lim X 9 Fil Vlu Thorm If ʓ[x] X d th pols of X r ll isid th uit circl th th vlu of x s is giv by x lim[ X ] Som lso giv this s x lim[ X ] 4. Trsforms of som usful squcs Th uit smpl δ: ʓ[δ]., ROC ll Dlyd uit smpl δ : ʓ[δ ]., ROC > if > < if < Uit stp u positiv tim: ʓ[u] u + + +, ROC < or > Uit stp u gtiv tim: ʓ[ u ] u + + +, ROC < 4 Expotil u, drivd i rlir xmpl: ʓ[ u ], ROC > 5 Expotil b u ; gtiv tim; drivd rlir: ʓ[ b u ], ROC < b b 6 Uit rmp u. Giv tht ʓ[u] U du d [..] ʓ[ u] d d ROC >, sm s tht of U 7 Siusoid si u : ʓsi u si, ROC > cos DSP-4 Z 8 of 84 Dr. Rvi Bill

9 DSP-4 Z 9 of 84 Dr. Rvi Bill ʓ si u si, ROC < or > Usig th idtitis cos d si w hv ʓ si u cos si, ROC > As xtsio, usig proprty #, ʓ si u cos / / si / cos si, ROC > 8 Cosiusoid cos u. Usig th rltio cos d procdur similr to tht for th siusoid w gt ʓ cos u cos cos, ROC > As xtsio, usig proprty #, ʓ cos u cos / / cos / / cos cos, ROC > 4.4 Rgio of covrgc d stbility Suppos x is cusl squc tht c b writt s sum of complx xpotils. This ts i wid clss of sigls icludig siusoids, xpotils, d products throf. Lt x i i u Tig th trsform of x givs ʓ[x] X i i

10 Th rgio of covrgc R is th itrsctio of th rgios of covrgc for ch xpotil s follows: R R i whr R i {: > i } i Thrfor, R {: > lrgst of i } s show hr Figur -pl Im ROC, > Lrgst i Lrgst i R All othr i isid circl Sic th ROC for trsltd xpotil rmis th sm s tht for th origil xpotil, ll right-sidd squcs tht r sums of trsltd xpotils hv ROCs similr to tht xprssd bov. By similr rgumt ll lft-sidd squcs xprssibl s sum of trsltd complx xpotils hv ROC, L, giv by L {: < smllst of b i } If w hv combitio of right- d lft-sidd squcs, th corrspodig ROC is th itrsctio of R d L. Thrfor th totl ROC bcoms ulr rgio s show blow d giv by R Totl R L {: Lrgst of i < < smllst of b i } Aulr rgio is th totl ROC Im Lrgst i Smllst b i R All othr i isid th ir circl All othr b i outsid th outr circl DSP-4 Z of 84 Dr. Rvi Bill

11 Th stbility of systm with impuls rspos tht is th sum of trsltd right- d lft-sidd squcs c b dtrmid from th rgio of covrgc. Assum tht h is th uit smpl rspos of cusl or o-cusl lir shift-ivrit systm. Lt ʓ[h] H, th so-clld systm fuctio. Th: Thorm A lir shift-ivrit systm with systm fuctio H is BIBO stbl if d oly if th ROC for H cotis th uit circl. This thorm c b usd to dtrmi stbility for giv H without obtiig th impuls rspos or chcig outputs for ll boudd iput sigls. Illustrtio of stbility d cuslity For A systm fuctio with pols t, sy,.5, d.5, thr r thr possibl rgios of covrgc. ROC is.5 < <.5. Hr th systm is stbl sic th uit circl is isid th rgio of covrgc. Th impuls rspos, h, is two-sidd, so th systm is ocusl. Im ROC Uit circl.5.5 R DSP-4 Z of 84 Dr. Rvi Bill

12 ROC is <.5. Hr th systm is ot stbl. Th impuls rspos, h, is lftsidd, so th systm is ocusl. Im ROC Uit circl.5.5 R ROC is >.5. Hr th systm is ot stbl. Th impuls rspos, h, is rightsidd, so th systm my b cusl. Im ROC.5.5 R 4.5 Ivrs -trsform by prtil frctios Asid Compriso of ivrs -trsform mthods A limittio of th powr sris mthod is tht it dos ot ld to closd form solutio lthough this c b dducd i simpl css, but it is simpl d lds itslf to computr implmttio. Howvr, bcus of its rcursiv tur cr should b t to miimi possibl build-up of umricl rrors wh th umbr of dt poits i th ivrs -trsform is lrg, for xmpl by usig doubl prcisio. DSP-4 Z of 84 Dr. Rvi Bill

13 Both th prtil frctio mthod d th ivrsio itgrl mthod rquir th vlutio of rsidus lbit prformd i diffrt wys. Th prtil frctio mthod rquirs X th vlutio of th rsidus of X or. Th complx ivrsio itgrl rquirs th vlutio of th rsidus of X. I my istcs vlutio of th complx ivrsio itgrl is dlssly difficult d ivolvd. Both th prtil frctio mthod d th ivrsio itgrl mthod ld to closd form solutios. Th mi disdvtg is hvig to fctori th domitor polyomil of X wh it is of ordr grtr th. Aothr disdvtg is multipl ordr pols d th rsultig diffrtitios wh dtrmiig rsidus. Th prtil frctio mthod dirctly grts th cofficits of prlll structurs for digitl filtrs. Th ivrsio itgrl mthod is widly usd i th lysis of qutitio rrors i discrt-tim systms. Ed of Asid As i Lplc trsforms, i ordr to xpd rtiol fuctio ito prtil frctios, th dgr of th umrtor should b lss th th dgr of th domitor propr frctio. If it is ot th w prform log divisio s blow whr Q is th quotit d is th rmidr. X Q + D D Log Divisio Q Quotit Domitor D umrtor --- Rmidr Th log divisio is do util w gt rmidr polyomil whos dgr is lss th th dgr of th domitor D. W th obti x s x ʓ - {X} ʓ - {Q} + ʓ - D Sic /D is propr frctio it c b xpdd ito prtil frctios. Th ovrll ivrs trsform is obtid by looig up tbl of -trsform pirs. Howvr, thr is ltrtiv vilbl i th cs of -trsforms which is ot vilbl i Lplc trsforms. This is rsult of th fct tht -trsforms r chrctrid by i th umrtor s c b vrifid by looig t tbl of -trsforms. Thrfor, istd of xpdig X w my, istd, xpd [X/] ito prtil frctios givig X A B + + so tht X is giv by A B X + + This c b ivrtd by simpl loo-up of tbl of trsforms. ot lso tht i som css X /D my ot b propr frctio but [X/] is d, thrfor, this mthod obvits th d for log divisio of by D. I still othr css v [X/] my ot b propr frctio. S ltr udr Grl procdur for prtil frctio xpsio. DSP-4 Z of 84 Dr. Rvi Bill

14 Exmpl 4.5. S lso log divisio ltr. Fid th ivrs -trsform, usig prtil frctios, of X D This is ot propr frctio sic th dgr of th umrtor is ot lss th th dgr of th domitor. Howvr, X/ is propr frctio X which hs th prtil frctio xpsio X + or X + By looig up tbl of -trsforms th ivrs -trsform is ʓ - {X} x u + u ot tht w r givig hr th cusl solutio tht corrspods to ROC > ot < < or < so tht x is right-sidd squc. Th ltrtiv mthod is to divid by D s blow s is stdrd prctic i Lplc trsforms. ot tht i this log divisio th umrtor d domitor polyomils r rrgd i th ordr of dcrsig powrs of. Thr r thr othr wys ll of thm wrog of rrgig th two polyomils for th log divisio. Log Divisio Quotit Domitor + umrtor Rmidr Thus X c b xprssd s 4 4 X + +X whr X X is propr frctio d c b xpdd ito prtil frctios s blow: 4 A B X + Solvig for A d B w gt A d B, so tht X my b writt X + + Tig th ivrs -trsform w gt x ʓ - {X} ʓ - ʓ - {} + ʓ - + ʓ - A trm li ʓ -. is hdld by writig s. W ow tht ʓ - u, so ʓ - u DSP-4 Z 4 of 84 Dr. Rvi Bill

15 Similrly ʓ -. u. Thus x δ + u +. u This c b vrifid to b quivlt to x u + u obtid rlir. I ATLAB Prtil frctios Th prtil frctios my b computd by usig th rsidu fuctio. I this mthod X is rrgd s rtio of polyomils i gtiv powrs of d, i th domitor, th ldig cofficit. S Grl procdur for prtil frctio xpsio ltr. R R X K + + p p W dfi th cofficit vctors b [, -] d [, -, ]; R [R, R ] rprsts th rsidus prtil frctio costts, p [p, p ] th pols d K costt. %Prtil frctios b [, -], [, -, ], [R, p, K] rsidu b, Th ATLAB rsults rturd r R p K [] Th ATLAB output tlls us tht th pols r t d d th corrspodig rsidus r, rspctivly, d. Furthr K. Thrfor, X X ot tht th X + obtid by th rsidu fuctio d + r th sm sic X hs o rptd pols. This wo t b th cs if X hs rptd pols. Exmpl 4.5. [] Fid if th discrt LTI systm dscribd by y y +.5 y x + x is BIBO stbl or ot. Fid its trsfr fuctio d impuls rspos. Stch its pol-ro plot. Solutio T th -trsform of both sids: ʓ{y y +.5 y } ʓ{x + x } Y Y +.5 Y X + X Y +.5 X + DSP-4 Z 5 of 84 Dr. Rvi Bill

16 H Y X.5 /.5 /.5 Th domitor hs roots t 4...5, d.5.5 Thus th trsfr fuctio H hs ros t,, d pols t.5 ±.5. For cusl systm right-sidd squc, h th rgio of covrgc is > or >.77. Figur Im Uit circl Pol t R Zro t Zro t Pol t.5.5 Th impuls rspos is giv by h ʓ - {H}. W d prtil frctios for H; w shll istd hdl H/: H A Solvig for A d A *, w gt A * A t / A * Thus w hv * H A A H A + A * b DSP-4 Z 6 of 84 Dr. Rvi Bill

17 whr t / 4 b.5.5 Th ivrs -trsform is 4 / So tht for, h A + A * b,, othrwis h A / 4 A / 4 + A * / 4 + A * / 4 / 4 + / 4 + / 4 / 4 / / 4 / 4 + / 4 / 4 / 4 cos /4 cos /4 + / 4 / 4 si /4 To sum up, h [cos /4 + si /4],, othrwis Altrtivly, sic th two trms i / 4 h A + A * / 4, r complx cougts of ch othr w c writ / 4 h R A, DSP-4 Z 7 of 84 Dr. Rvi Bill

18 Altrtiv I th bov solutio th impuls rspos iitilly cotis complx umbrs; ths hv b lgbriclly mipultd ito si d cosi trms. A mor dirct wy to obti th impuls rspos i form tht cotis o complx umbrs is to us rsults #7 d #8 i Trsforms of som usful squcs d mipult th trsform H.5.5 ito thos forms. Comprig th domitor of H with th domitor of th trsforms of th si d cosi fuctios ʓ si u si, ROC > cos d ʓ cos u cos, ROC > cos w gt.5 cos from which.5, cos ω /4, cos, cos ½, si, si ½ Th umrtors of th two trsforms th r si d cos I light of ths w mipult th umrtor of H so tht it will coti d umrtor Domitor. 5 Thus H W hv, i ffct, rrgd H s H + Thrfor, h ʓ - {H} ʓ - + ʓ DSP-4 Z 8 of 84 Dr. Rvi Bill

19 Imgiry Prt cos / 4 u + si / 4 u I ATLAB Pol-ro plot It is covit to spcify th trsfr fuctio s rtio of polyomils i H.5 Th umrtor cofficits, from lft to right, r {b i, i to }, spcifyig th vctor b [b, b ] [, ]. Similrly, th domitor cofficits r { i, i to } from lft to right, with spcifyig th vctor [,, ] [, -,.5]. %Pol-ro plot b [, ]; [, -,.5]; pl b, Rl Prt I ATLAB Prtil frctios Th prtil frctios my b computd by usig th rsidu fuctio s blow. ot tht H is rrgd s rtio of polyomils i gtiv powrs of. R R H K p p W dfi th cofficit vctors b [, ] d [, -,.5]; R [R, R ] rprsts th rsidus prtil frctio costts, p [p, p ] th pols d K costt. %Prtil frctios b [, ], [, -,.5], DSP-4 Z 9 of 84 Dr. Rvi Bill

20 [R, p, K] rsidu b, Th ATLAB rsults rturd r R.5 -.5i.5 +.5i p.5 +.5i.5 -.5i K [] Thrfor,.5.5 H Exmpl 4.5. Fid th ivrs trsform of X, whr th ROC is >, 4 b < /, c / < <. Solutio Th thr possibl rgios of covrgc r show blow. Th xmpl shows tht th ivrs trsform, x, is uiqu oly wh th ROC is spcifid. b c For ROC > X 4 A B + / / A / /, d B / DSP-4 Z of 84 Dr. Rvi Bill / X / / + / / / X + / Th ivrs is / / x ʓ - {X} ʓ - / ʓ - / / + ʓ - /

21 Th ROC is outsid th lrgst pol sigifyig right-sidd squc for ch pol. Th ivrs bcoms x u u u u b For ROC < /. Th prtil frctio xpsio dos ot chg. Sic th ROC is iwrd of th smllst pol, x cosists of two gtiv-tim squcs. x ʓ - {X} ʓ - / / + ʓ - / u / u / / u c For ROC / < <. Th prtil frctio xpsio stys th sm. Th pol t corrspods to gtiv-tim squc lft-sidd squc whil th pol t / givs positiv-tim squc right-sidd squc. / / x ʓ - {X} ʓ - / ʓ - / / + ʓ - / u Th ovrll rsult is two-sidd squc. DSP-4 Z of 84 Dr. Rvi Bill u u Exmpl Somtims thr is o i th umrtor to fctor out, but w still c divid X by s i this xmpl. Fid x for X whr th ROC is >. 4 Solutio X A B C / / A B C / / / X + / X + / x δ + u / u Exmpl [] Fid th ivrs -trsform of X...56 Solutio Th roots of th qudrtic i th domitor r giv by u

22 b b 4c...4 X.8.7 X A B C....5 A B C / / d.7 X.79 / /.75 X x ʓ - {X}.79 δ +.8 u u Exmpl Fid th ivrs -trsform of X / / 4 Solutio X / / 4 A / / 4 B C / 4 / / / A B C + + / / 4 8 X / / X 8 + / / 4 x 8 δ + 8 u 6 u 4, > ½. DSP-4 Z of 84 Dr. Rvi Bill

23 4 Exmpl Fid th ivrs of X / / 4 DSP-4 Z of 84 Dr. Rvi Bill for ROC ½ < < X / / 4 / 4 / 8 Thr is pol t. Th umrtor dgr is d is grtr th th domitor dgr. By log divisio w rduc th umrtor dgr by so tht th rsultig umrtor dgr is lss th tht of th domitor dgr. X /6 / + / 4 / 8 4 / 4 / 8 ot tht i th log divisio ldig to th bov rsult th umrtor d domitor polyomils r rrgd i th ordr of dcrsig powrs of. Thr r thr othr wys ll of thm wrog of rrgig th two polyomils for th log divisio. Th propr frctio prt c ow b xpdd ito prtil frctios: /6 / A B + / 4 / 8 / / 4 A B X X /6 / / 4 /6 / / 4 4 / / 4 + / 5/ 7/6 5 / 7 /6 + / 4 5 / 7 /6 + / / x δ+ + + u Th swr hs vlus for d du to th pol t. Th rsultig x is ot cusl squc. I ATLAB Prtil frctios Th trsform X rprsts ocusl squc. 4 X 4 / 4 /8 / 4 /8 Prtil frctios cot b computd by usig th rsidu fuctio dirctly o X sic. Howvr, X /6 / + 4 +X / 4 /8 4 whr /6 / X /6 / / 4 /8 / 4 /8 O which w my us th rsidu fuctio. Exmpl Assumig tht H idpdtly of ch othr 4 5 is cusl systm fuctio, prov th followig

24 Solutio h 4/5 + 9/5 b h 5 u + 4 h + 9 H 4 / 5 9/ u u- u-, b H , c By log divisio H Exmpl Prtil frctios c b obtid with th -trsform, sy H, xprssd s rtio of polyomils i gtiv powrs of. This mouts to xpdig H/ ito prtil frctios. Hr is xmpl: 8 4 H / 4 / This xmpl is from Prlll rlitio of IIR filtrs, towrds th d of this Uit whr w obti H / / Howvr, w my lso procd with gtiv powrs of s blow w my viw p s w vribl: / 4 /.5.5 H By log divisio w rduc th dgr of th umrtor by d th xpd th propr frctio prt ito prtil frctios: Log Divisio 6 Quotit Domitor umrtor Rmidr Lt 8 6 H A B Comprig cofficits of li powrs of i th umrtors o both sids : A + C 8 : A + B.5C 6 :.5A.5B which giv A 8, B, d C 6, d 8 H C DSP-4 Z 4 of 84 Dr. Rvi Bill

25 I ATLAB Th prtil frctios my b computd by usig th rsidu fuctio: 8 4 R R R H K p p p W dfi th cofficit vctors b [8, -4,, -] d [, -.5,.75, -.5]; R rprsts th rsidus prtil frctio costts, p th pols d K costt. ot tht i th umrtor ms, d i th domitor ms ; sic is ot lss th this is ot propr rtiol fuctio, so tht K will hv oro lmts. %Prtil frctios b [8, -4,, -], [, -.5,.75, -.5], [R, p, K] rsidu b, Th ATLAB rsults rturd r R -8 -i -8 +i 8 p.5 +.5i.5 -.5i.5 K 6 Thrfor, 8 H DSP-4 Z 5 of 84 Dr. Rvi Bill

26 DSP-4 Z 6 of 84 Dr. Rvi Bill Ivrs -trsform wh thr r rptd roots With rptd roots, tht is, -th ordr pol t w hv X i th form X, ROC > Th tbl blow givs th ivrs -trsforms for svrl vlus of d for th grl cs of rbitrry. Rptd Roots X x ʓ - [X] for ROC > u! u! u 4! u!... u Grl procdur for prtil frctio xpsio Sic X/ must b rtiol, it ts th form X L L L L K K K K If K < L th o dustmt is dd. Th prtil frctio xpsio is strightforwrd. If K L th divid util th rmidr polyomil i hs dgr of L or lss: X c K L K L + +c + c d d d L L L L L L Th first prt of th bov xprssio, c K L K L + +c + c, will vtully cotribut δ fuctios to th output squc som of which r tim-dvcd so tht th rsultig x will b ocusl. Th scod prt th propr frctio is xpdd ito prtil frctios. Assum w hv o rptd pol of ordr m, cll it, d tht ll th rst r distict, cll thm m+, m+,, L. Th lt d d d L L L L L L m m A + m m A + + A + L m B Th cofficits A m of thm d B m L of thm r foud s follows: A! m m m m d d,,,, m

27 B [ ], m+, m+,, L I th rsultig x th cotributio of th A trms is umbr of xpotils multiplid by,,, tc., d th cotributio of th B trms is umbr of complx xpotils. Exmpl 4.5. Fid th ivrs of H.5, > Solutio This trsform is propr rtiol fuctio. W shll us this xmpl to giv summry of th thr styls of obtiig prtil frctios: Expdig H dirctly, Expdig H / d Expdig H s i ATLAB lso itr. Wh th pols of H r distict th prtil frctio cofficits rturd by th ATLAB fuctio rsidu r th sm s i xpdig H /. Howvr, wh thr r rptd pols it ms diffrc i th cofficits s wll s i th fil lyticl forms of th ivrs trsforms i ths two mthods. I dditio, dirctly xpdig H rsults i lyticl form tht is still diffrt from th othr two. I y vt th thr ivrs trsforms r th sm s fr s th ctul squc vlus r cocrd. Expdig H W hv A B B H Thr is pol t d rptd pol t.5. Th cofficits A, B d B r giv by A B. 5.5 B d d.5 Thus H 4.5 Tig th ivrs -trsform, + h 4 ʓ - 4 ʓ - Expdig H / W hv ʓ ʓ -. 5 ʓ - 4 u.5! + 4 ʓ u.5 u u 4.5 u 8.5 u DSP-4 Z 7 of 84 Dr. Rvi Bill

28 H.5.5 Th cofficits C, D d D r giv by Thus C.5.5 D. 5.5 D H H d d Tig th ivrs -trsform, + D C ʓ - h 4 ʓ - 4 ʓ u +.5 u 4.5 u! 4 u 4.5 u 4.5 u.5 4 D +.5 Expdig H s i ATLAB W strt with H xprssd s rtio of polyomils i gtiv powrs of. Howvr, for th s of cotiuity w hv H H.5.5 E F W hv ordrd th cofficits i th ordr i which ATLAB displys thm. W c dfi v so tht corrspods to v d.5 to v. Th trsform ow pprs s Hv + + v.5 v v.5v Th cofficits E, F d F r giv by E.5 v F E.5. 4 F 4 F.5v F DSP-4 Z 8 of 84 Dr. Rvi Bill

29 Thrfor, F d dv 4 H v v 4 Tig th ivrs -trsform, v v.v v. v v h 4 ʓ ʓ u 4.5! 4 u 4.5 u u! 4 u u I ATLAB This prticulr st of prtil frctios my b computd by usig th rsidu fuctio: E F F H K p p p W dfi th cofficit vctors b [,, ] d [,,.5,.5]; R [E, F, F ] rprsts th rsidus yd to th bov prtil frctio cofficits, p th pols d K costt. %Prtil frctios b [,, ], [,,.5,.5], [R, p, K] rsidu b, Th ATLAB rsults rturd r R i -4 - i p i i K [] Thrfor, H DSP-4 Z 9 of 84 Dr. Rvi Bill

30 which grs with th hd-clcultd rsults. Exmpl 4.5. Fid th ivrs of X 6 6, for > ½ 5 / 4 / /6 4 X /6 A B + B C + + / / 4 / / / 4 /6 A / / 4 C B B X d d /6 / / 4 /6 / 4 / /6 /6 / / 4 / 4 / 4 / DSP-4 Z of 84 Dr. Rvi Bill / 4 / 4 / 4 /6 9 / 4 / / / / /6 5/ / / / 4 d d /6 / 4 / / 4 /6 / 4 / 4 / 9 5 / + 5 X + Tig th ivrs -trsform, x ʓ - {X} / / 9 + / + 9 / 9 / / 4 ʓ - {} + 5/ʓ - 9ʓ - / / + 9ʓ - / 4 5 δ + u 9 u + 9 u 4 Othr possibilitis If w choos to xpd X, rthr th X /, ito prtil frctios, w d to prform log divisio to rduc th dgr of th umrtor by rsultig i / 4 / X + + X 5/ 4 / /6 whr X is th propr frctio prt of th bov X / 4 / 5/ 4 / /6

31 Eithr X itslf or X / my ow b xpdd ito prtil frctios. I ATLAB Th prtil frctios my b computd by usig th rsidu fuctio: /6 R R R X K + + 5/ 4 / /6 p p p W dfi th cofficit vctors b [, -,, -/6] d [, -5/4, /, -/6]; R rprsts th rsidus prtil frctio cofficits, p th pols d K costt. ot tht i th umrtor ms, d i th domitor ms ; sic is ot lss th this is ot propr rtiol fuctio, so tht K will hv oro lmts. %Prtil frctios b [, -,, -/6], [, -5/4, /, -/6], [R, p, K] rsidu b, + Th ATLAB rsults rturd r R p K Thrfor, /6 X 5/ 4 / / Exmpl 4.5. Fid th ivrs of X / / 4 X DSP-4 Z of 84 Dr. Rvi Bill A A for ROC > ½. + + / / 4 / / / / A / 4 / / / 4 A A d! d / 4 / d! d / 4 / B / / 4 X 6 / 8 / / / 4 A B + / 4

32 X / / / x ʓ - {X} 6ʓ - ʓ / - / + 8ʓ - 8 ʓ / - / 4 6 u u + 8 u! Th u my b fctord out tc. / 4 8 u 4 ATLAB X 4 7/ 4 9/8 5/6 / %Prtil frctios b [,,, ], [, -7/4, 9/8, -5/6, /], [R, p, K] rsidu b, Th ATLAB rsults rturd r R.+ *.44 +.i i p.5 +.i.5 -.i.5.5 K [] X 44 / 88 + / 4 + / 8 / 4 + DSP-4 Z of 84 Dr. Rvi Bill

33 Rltioships mog systm rprsttios A discrt-tim lir shift-ivrit systm c b chrctrid by its uit smpl rspos, diffrc qutio, systm fuctio, or frqucy rspos. Assum tht systm is dscribd by th lir costt cofficit diffrc qutio y br x r r Systm fuctio T th -trsform of both sids of th bov qutio ʓ y ʓ br x r, or r ʓ Y b r r y Y br Th systm fuctio is H r r Xb r r Y X ʓ x r, or X, or r r b r r Uit smpl rspos If x δ th X ʓ[x] ʓ[δ]. Th corrspodig y is th uit smpl rspos h. W hv Y H, or Y H.X H. H X So, giv H, th systm fuctio, th uit smpl rspos is h ʓ - [H]. Th diffrc qutio from th H Th systm fuctio H is first writt i trms of Y gtiv powrs of d st qul to. Th cross-multiply d t th ivrs -trsform X to gt th diffrc qutio. Frqucy rspos of th systm is th Fourir trsform DTFT of th uit smpl rspos h: H h Compr this with th systm fuctio H dfid s th -trsform of th uit smpl rspos h H h Thus th frqucy rspos, if it xists, c b obtid by rplcig th i H by follows: s DSP-4 Z of 84 Dr. Rvi Bill

34 H h H Th systm is implicitly BIBO-stbl. Th bov rltioships for stbl, cusl systm rprstd by lir costt cofficit diffrc qutio r summrid i digrm blow. St H Diffrc Equtio T -trsform, solv for Y/X H T ivrs -trsform h Writ i trms of, cross multiply, t ivrs -trsform T -trsform Exmpl 4.6. Fid th impuls rspos of y y + x. Solutio ot tht w hv solvd this i th tim domi rlir. Tig th -trsform of both sids with ro iitil coditios, Y Y + X, or Y H X Assum cuslity. Th from th tbl of trsforms, h ʓ - [H] u. Cuslity i trms of th -trsform, H, d th ROC A cusl LTI systm hs impuls rspos h for <, d is, thrfor, right-sidd squc. This lso implis tht th ROC of H is th xtrior of circl i th -pl. For cusl systm th powr sris H h h + h + h + Eq. dos ot iclud y positiv powrs of. Cosqutly, th ROC icluds. Thrfor, w hv th pricipl: A discrt-tim LTI systm is cusl if d oly if th ROC of its systm fuctio is th xtrior of circl, d icluds. Th iitil vlu thorm sys tht for cusl squc, h, th iitil vlu is giv by h lim H This my b s by sttig i Eq. mig ll trms go to ro xcpt th trm h. Thus, for cusl squc, h, if h is fiit, th, lim H is fiit. Cosqutly, with H xprssd s rtio of polyomils i positiv powrs of, th ordr of th umrtor polyomil cot b grtr th th ordr of th domitor polyomil if it wr thr DSP-4 Z 4 of 84 Dr. Rvi Bill

35 DSP-4 Z 5 of 84 Dr. Rvi Bill would b positiv powrs of i th powr sris of H, corrspodig to o-ro h for gtiv ; lso would ot b icludd i th ROC; or, quivltly, th umbr of fiit ros of H cot b grtr th th umbr of fiit pols. Th bov discussio is summd up s follows: A discrt-tim LTI systm with rtiol systm fuctio H is cusl if d oly if. Th ROC is th xtrior of circl outsid th outrmost pol, d,. With H xprssd s rtio of polyomils i, positiv powrs of, th ordr of th umrtor is ot grtr th th ordr of th domitor. Coditio lo is ot ough bcus th squc my b right-sidd but ot cusl. If H is rprstd s rtio of polyomils i s H L L L L K K K K Eq. th L K if th systm is cusl i othr words domitor dgr umrtor dgr. O th othr hd, if w writ H s th rtio of polyomils i gtiv powrs of s H b b b b / /... / / /... / b b b b th, if th systm is to b cusl,. This is s by sttig, d rquirig tht h b / b fiit. This is illustrtd with xmpl whr,.g., H which, by log divisio, c b s to coti positiv powr of hc o-csul. ot Wh H is writt s rtio of polyomils i positiv powr of, s i Eq., w hv rquird tht L K for cuslity. Ths L d K r ot to b cofusd with th d cotid i th diffrc qutio. Cosidr, for xmpl, th systm y + y x + b x whr, ccordig to th ottio of th diffrc qutio, d. Apprtly is grtr th d this is llowbl. I othr words, thr is o rstrictio o th rltiv vlus of d. For, th trsfr fuctio is giv by H X Y b b b d it is s tht th umrtor dgr K is ot grtr th th domitor dgr L. Thus th systm is cusl. As othr xmpl cosidr y + y x + b x+ which is o-cusl bcus of th x+ trm. Th trsfr fuctio is H X Y b b b b ot tht, wh th umrtor d domitor r xprssd i trms of gtiv powrs of,. O th othr hd, wh th umrtor d domitor r xprssd i trms of positiv powrs of, w hv

36 DSP-4 Z 6 of 84 Dr. Rvi Bill H X Y b with th umrtor dgr grtr th th domitor dgr. Omit Rtiol trsfr fuctio; LTI systm Giv th systm with th th ordr diffrc qutio, y + y + + y b x + b x + + b x, w my writ it i th mor compct form y r r r x b, ot tht som uthors t th cofficit of y,, to b. I th bov diffrc qutio w my divid through by so tht th cofficit of y is. W c fid th trsfr fuctio of th systm by tig th -trsform o both sids of th qutio. W ot tht i fidig th impuls rspos of systm d, cosqutly, i fidig th trsfr fuctio, th systm must b iitilly rlxd ro iitil coditios. Thus, if w ssum ro iitil coditios, w c us th lirity d tim-shift proprtis to gt Y X r r b r so tht H X Y r r r b Eq. Th corrspodig impuls rspos c b foud s h ʓ {H}. Th pols of th systm trsfr fuctio r th sm s th chrctristic vlus of th corrspodig diffrc qutio. For th systm to b stbl, th pols must li withi th uit circl i th -pl. Cosqutly, for stbl, cusl fuctio, th ROC icluds th uit circl. Th systm fuctio, H, is rtiol fuctio: H D b b b b b Hr d D std for umrtor d domitor rspctivly. If d b, w c void th gtiv powrs of by fctorig out b d s follows: H D b. /... / /... / b b b b Sic d D r polyomils i, thy c b xprssd i fctord form s H D b p p p

37 C., whr C b / p Thus H hs fiit ros t,,,, d fiit pols t p, p,, p, d ros if > or pols if < t th origi. Pols d ros my lso occur t. A pol xists t if H, d ro xists t if H. If w cout th pols d ros t d s wll s th pols d ros, w fid tht H hs xctly th sm umbr of pols d ros. By dfiitio th ROC of H should ot c ot coti y pols. Propr rtiol fuctio Tig, w hv b b b... b H D... This is clld propr rtiol fuctio if d <. This mouts to syig tht th umbr of fiit ros is lss th th umbr of fiit pols. Fiit ros d pols xclud thos t. This coditio is rltd to prtil frctio xpsio d hs othig to do with cuslity. Ed of Omit Exmpl 4.6. Giv th pol-ro plot for H Solutio Th domitor hs roots pols t, d.6 Thr is ro t. Furthr, sic th domitor dgr is grtr th th umrtor dgr by it is clr tht H, so tht thr is dditiol ro t. I ATLAB th trsfr fuctio is spcifid s rtio of polyomils i. H.. Th umrtor cofficits, {b i, i to } d th domitor cofficits { i, i to } r spcifid s th two vctors b [, ] d [, -, -]. %Pol-ro plot b [, ]; [, -, -]; pl b, DSP-4 Z 7 of 84 Dr. Rvi Bill

38 Imgiry Prt Rl Prt DSP-4 Z 8 of 84 Dr. Rvi Bill

39 DSP-4 Z 9 of 84 Dr. Rvi Bill Exmpl 4.6. Giv th pol-ro plot for H Solutio From H w c s tht thr r 9 pols t d 8 ros t sudry plcs d dditiol ro t owig to th domitor dgr big grtr th th umrtor dgr by. For th ATLAB sgmt th umrtor d domitor cofficits r t from H %Pol-ro plot b [: 9]; [, ]; pl b, Rl Prt Imgiry Prt

40 Imgiry Prt Exmpl Giv th pol-ro plot for y x +.8 x.8 x.45 y Solutio Th ros r,.8 Th pols r giv by, ± d.99.45]. For th ATLAB progrm th cofficit vctors r b [,.8, -.8] d [,, %Pol-ro plot b [,.8, -.8]; [,,.45]; pl b, Rl Prt DSP-4 Z 4 of 84 Dr. Rvi Bill

41 From th grl form H i Eq. w c obti two importt spcil forms: th ll-ro systm, d th ll-pol systm. Thr r, of cours, trivil pols or ros prst. Th ll-ro systm If for, w hv H b r r r. Eithr t or cosidr tht is bsorbd i th b r cofficits, so tht b b... b H b b b... b I this cs, H cotis ros d th ordr pol t th origi. Sic th systm cotis oly trivil pols t d o-trivil ros, it is clld ll-ro systm. Such systm hs fiit-durtio impuls rspos FIR, d is clld FIR systm or movig vrg A systm. ot tht th corrspodig dfrc qutio is y b x + b x + + b x Th ll-pol systm O th othr hd, if b for, w hv b H b... b. / /... / Hr gi, ithr t or imgi tht it is bsorbd i th othr cofficits vi., b,,,,. Thus b H... Hr H hs pols d th ordr ro t th origi. W usully do ot m rfrc to ths trivil ros. As rsult this systm fuctio cotis oly o-trivil pols d th corrspodig systm is clld ll-pol systm. Du to th prsc of th pols, th impuls rspos of such systm is ifiit i durtio, d hc it is IIR systm. W c divid th umrtor ito th domitor d thrby xpd H ito ifiit sris from which it is vidt tht h is of ifiit durtio. ot tht th corrspodig dfrc qutio is y + y + + y b x Th pol-ro systm Th grl form, though, cotis both pols d ros d th systm is clld pol-ro systm with pols d ros, b b b... b H... Pols d/or ros t d r implid but r ot coutd xplicitly. Du to th prsc of pols, th pol-ro systm is IIR systm. 4.7 Ivrs -trsform by powr sris xpsio log divisio If th -trsform is xprssd s rtiol fuctio rtio of polyomils i or w c us log divisio to xpd it ito powr sris. If th trsform is xprssd s irrtiol fuctio w c us th pproprit powr sris xpsio formul vilbl i mthmticl DSP-4 Z 4 of 84 Dr. Rvi Bill

42 tbls such s th CRC Tbls. ot tht if th trsform is xprssd s irrtiol fuctio th th prtil frctio xpsio mthod of ivrsio wo t wor. By dfiitio th -trsform of th squc x is giv by X x + x + x + x + x + This is powr sris Lurt sris. So by log divisio w obti th powr sris xpsio of X d th, by compriso with th powr sris dfiitio giv bov, w c idtity th squc x. I prticulr th cofficit of is th squc vlu x. Th mthod is usful i obtiig quic loo t th first fw vlus of th squc x. This pproch dos ot ssur lyticl solutio. Th ROC will dtrmi whthr th sris hs positiv or gtiv xpots. For right-sidd squcs th X will b obtid with primrily gtiv xpots, whil lft-sidd squcs will hv primrily positiv xpots. For ulr ROC, Lurt xpsio would giv both positiv- d gtivtim trms. This lst possibility is illustrtd i th xmpl blow by tig littl hlp from prtil frctios. Exmpl 4.7. Fid th ivrs trsform, by log divisio, of X whr th ROC is >, b <, c < < Solutio ROC is >. W xpct right-sidd squc, with prdomitly gtiv xpots of. For th log divisio rrg umrtor d domitor s dcrsig powrs Im ROC R of d th divid; or s icrsigly gtiv powr of i.., d th divid Q D DSP-4 Z 4 of 84 Dr. Rvi Bill

43 Thus X By compriso with th dfiig qutio X x + x + x + x + w s tht th squc vlus r x x, or x for <, d x, x, x 5, tc. Altrtivly, it is lso possibl to writ X s rtio of polyomils i X ot tht th polyomils r writt i th ordr of icrsig gtiv powrs of, tht is,. Log divisio givs th sm swr s obtid rlir: Q D Solutio b Th ROC is <. W xpct lft-sidd squc with prdomitly positiv xpots of. For th log divisio th polyomils r writt i th ordr of icrsig powrs of or dcrsigly gtiv powrs of, i..,. ROC Im R / 5/4 9/8 Q D / / 5/ + / 5/ + 5/4 5/4 4 9/4 + 5/4 4 9/4 + 7/8 4 9/8 5 Thus X / 5/4 9/8 9/8 5/4 /. By comprig with th dfiig qutio X x + x + x + x + x + DSP-4 Z 4 of 84 Dr. Rvi Bill

44 w s tht th squc is giv by x /, x 5/4, x 9/8, tc., d x for Th othr wy of log divisio is show blow: / 5/4 9/8 Q D / / Omit Solutio c Th ROC is < <. W xpct two-sidd squc with both positiv d gtiv xpots of. Looig t th pol-ro cofigurtio, th pol t implis right-sidd squc d th pol t lft-sidd squc. Obviously ust sigl log divisio cot giv both th lft-sidd d th right-sidd squcs simultously. W shll obti th prtil frctio xpsio first d th procd with th divisio to obti th squcs sprtly. Ths two squcs r th combid ito o squc to gt th solutio. ot tht w do this oly to illustrt th mthod of log divisio. But oc w us prtil frctios th utility of log divisio is ullifid. Im ROC R X A B X X A B +. /. / + + For th trm w hv right-sidd squc giv by log divisio thus: DSP-4 Z 44 of 84 Dr. Rvi Bill

45 Q D Th corrspodig squc is x R,, othrwis For th trm w hv lft sidd squc / /4 /8. Q D + / / / /4 /4 /4 /8 4 /8 4 Th corrspodig squc is x L, <, othrwis Th complt squc is th x x R + x L,, < Ed of Omit 4.8 Computtio of frqucy rspos Lt th systm fuctio b giv by H r b r r Th frqucy rspos is H or Hω H. Thus DSP-4 Z 45 of 84 Dr. Rvi Bill

46 whr H Hω H b cos r r r r r cos b r r r b si r si b cos r r r r cos A B C D b si r r si A b r cos r, B b r si r, C cos, D si. r r Th mgitud d phs of H r giv, rspctivly, by A B Hω C D d H B D t t A C Thorm Th frqucy rspos H for BIBO-stbl systm will lwys covrg. Accordigly vry BIBO-stbl systm will hv frqucy rspos d dscribbl stdystt rspos to siusoidl iputs. But, th covrs of this sttmt is ot tru, tht is, th fct tht H xists dos ot imply tht th systm is stbl. Exmpl 4.8. [Th idl low pss filtr] For th Hω giv i figur blow fid h, th uit smpl rspos. Hω Priodic π ω c ω c π π ω <Hω Phs Priodic Solutio Th uit smpl rspos is th ivrs DTFT of Hω h π ω c ω c π π si H c c d d, for ll c c c ω c c DSP-4 Z 46 of 84 Dr. Rvi Bill

47 It is s tht h for gtiv so tht th idl low pss filtr is ocusl. orovr, lthough h tils off s gos from to d from to, it c b show tht h is ot fiit. This ms tht th idl low pss filtr is ot BIBO-stbl ithr. Exmpl 4.8. [] A discrt systm is giv by th diffrc qutio y 5 y x + 4 x whr x is th iput d y is th output. Dtrmi th mgitud d phs rspos s fuctio of frqucy for ω π. ot tht th systm is ot stbl sic it hs pol t 5, which is outsid th uit circl. Th fct tht th stdy stt frqucy rspos xists dos ot m tht th systm is stbl. Solutio [S lso Uit I] Tig th -trsform d with dos of lgbr w fid th trsfr fuctio Y 4 H X 5 Th frqucy rspos is giv by 4 4 Hω H 5 5 D ω 4 cos 4 si ω ω cos 4 si d si t cos 4 Dω D 5 cos 5 si Dω cos 5 si d D si t cos 5 Dω Hω D cos 4 si cos 5 si H D si t si cos 4 t cos 5 Th frqucy rspos c b plottd. ot tht Hω is v fuctio d H is odd fuctio of ω. Usig ATLAB: 4 4 b b b... Hω Hr th vctors b d spcify, rspctivly, th umrtor d domitor cofficits. I our xmpl b, b 4,, d 5. Th ATLAB sgmt d th corrspodig plots follow. ot tht th plot gos from to. Compr with th solutio obtid i Uit I usig diffrt fuctio. b [, 4]; %umrtor cofficits [, -5]; %Domitor cofficits w -*pi: pi/56: *pi; [h] frqb,, w; subplot,,, plotw, bsh; xlbl'frqucy \omg', ylbl'gitud'; grid DSP-4 Z 47 of 84 Dr. Rvi Bill

48 gitud Phs - Rdis subplot,,, plotw, glh; xlbl'frqucy \omg', ylbl'phs - Rdis'; grid Frqucy Frqucy Exmpl 4.8. Assum H is cusl systm. Fid th diffrc qutio d 6 th frqucy rspos. Solutio Arrg H i trms of gtiv powrs of Y H X 6 6 Cross multiplyig Y 6 X 6Y Y Y X X Tig th ivrs -trsform 6y y y x x y 6 y + 6 y + x 6 x Th pols of H r loctd t ,.5 d / 6 d r isid th uit circl. This big cusl systm, th ROC is > ½ d cotis th uit circl. Th systm is stbl, d th frqucy rspos is migful. It is giv by DSP-4 Z 48 of 84 Dr. Rvi Bill

49 whr Hω H 6 6 ω cos si cos si si t cos Dω 6 6 6cos 6si cos si 6cos cos 6si si Th mgitud rspos is giv by cos si Hω 6cos cos 6si si Th phs rspos is giv by si 6si si H t t cos 6cos cos D 6si si t 6coscos Usig ATLAB: H 6 6 b b b... Hω 6... Hr th vctors b d spcify, rspctivly, th umrtor d domitor cofficits. I our xmpl b, b, b, 6, d. Th ATLAB sgmt d th corrspodig plots follow. ot tht th plot gos from to. b [,, -]; %umrtor cofficits [6, -, -]; %Domitor cofficits w -pi: pi/56: pi; [h] frqb,, w; subplot,,, plotw, bsh; xlbl'frqucy \omg Rd', ylbl'gitud'; grid subplot,,, plotw, glh; xlbl'frqucy \omg Rd', ylbl'phs - Rdis'; grid DSP-4 Z 49 of 84 Dr. Rvi Bill

50 Phs - Rdis gitud Frqucy Rd Frqucy Rd Exmpl [] Discuss th stbility of H ssumig it is cusl systm. Fid th diffrc qutio d th frqucy rspos. b Dtrmi th frqucy, mgitud d phs rsposs d tim dly for th systm y + /4 y x x. Solutio Fid th ROC d th pols: H Thr is ro t. Th domitor hs roots t, d.6 Uit circl Im ROC >.6 R.6.6 DSP-4 Z 5 of 84 Dr. Rvi Bill

51 Th pol loctios r show hr. For th systm to b cusl th ROC is th xtrior of circl with rdius.6. I this cs ROC dos ot iclud th uit circl. Equivltly, ll th pols do ot li withi th uit circl. Hc th systm is ot stbl. b Tig th -trsform o both sids of y + /4 y x x w gt Y + /4 Y X X, or Y { + /4 } X { }, or Y H X / 4.5 Thr is sigl ro t d sigl pol t.5 which is isid th uit circl hc stbl. Th frqucy rspos is giv by Hω H.5.5 D whr ω cos si cos si Dω. 5 cos si. 5 cos.5 si Th mgitud rspos is giv by Hω cos si cos.5 si si t cos.5 si t cos Th phs rspos is giv by si si H t t cos cos.5 d Th tim group dly is giv by d H. Usig ATLAB: b b b... Hω Hr th vctors b d spcify, rspctivly, th umrtor d domitor cofficits. I our xmpl b, b,,.5. Th ATLAB sgmt d th corrspodig plots follow. ot tht th plot gos from to. b [, -]; %umrtor cofficits [,.5]; %Domitor cofficits w -pi: pi/56: pi; [h] frqb,, w; subplot,,, plotw, bsh; xlbl'frqucy \omg Rd', ylbl'gitud'; grid subplot,,, plotw, glh; xlbl'frqucy \omg Rd', ylbl'phs - Rdis'; grid DSP-4 Z 5 of 84 Dr. Rvi Bill

52 Phs - Rdis gitud Frqucy Rd Frqucy Rd 4.9 Z-trsforms with iitil coditios To solv th th ordr diffrc qutio y y + br x r r with o-ro iitil coditios w d iitil coditios o th output y d iitil coditios o th iput x. Usully th iput is pplid suddly i.., it is stppd ito th systm t, so tht o iitil coditios r dd for it, tht is, x for <. Th output y, howvr, i grl, will hv o-ro iitil coditios for to. W r solvig for y for, so tht Y ʓ{y} is th o-sidd -trsform. Th diffrc qutio cotis othr trms li y, y, tc. which r dlyd vrsios of y. Suppos, th w shll hv y, y, d y to dl with. Th trsform of y is hdld s follows. First, for th squc y s show blow w dfi Y + ʓ{y, } A B C... W shll rfr to this loosly s ust Y wh thr is o possibility of cofusio. y y y y A B C DSP-4 Z 5 of 84 Dr. Rvi Bill

53 W th obti y by dlyig th squc by o uit, show blow. y y A B C As c b s from th grph ʓ{y, } y A B C... Y y Y + I similr fshio 4 ʓ{y, } y y A B C... Y y y d by xtsio ʓ{y, } Y y y y For this would b th lst. But w c grli ʓ{y, } Y y y... y I th cs of th iput x, sic it is pplid suddly t, th iitil coditios r ro, tht is, x x x, so tht ʓ{x u} X With this ituitiv bcgroud w giv blow th mthmticl drivtio of th - trsform of th dlyd tructd squc. Z-trsform of dlyd tructd squc iitil coditios Th o-sidd -trsform of x is X + ʓ{x u} x Giv th squc x, w dly it by uits, d th truct it to th lft of to gt x u. W wt fid th -trsform of x u. ʓ{x u} x u x If w lt r, th r+, d th summtio limits to bcom r to. Th ʓ{x u} x r r r r x r r r x r x r r X x r r r r DSP-4 Z 5 of 84 Dr. Rvi Bill X + IC r Y +

54 DSP-4 Z 54 of 84 Dr. Rvi Bill... x x x X... x x x X W shll loosly rfr to X + s X d writ th rsult s ʓ{x u}... x x x X Th bov rsult is usd to solv lir costt cofficit diffrc qutios with iputs tht r stppd ito systm. Suppos w wt th solutio of y r r r x b, subct to th iitil coditios {yi, i,,, } d {xi, i,,, } W t th -trsform of th qutio usig th rsult drivd bov for dlyd-tructd squcs ʓ y ʓ r r r x b, } { y r r r x b } {, whr w hv usd Z to m ʓ th -trsformtio oprtio. Th lft hd sid is LHS ʓ{y} + ʓ{y } + ʓ{y } + + ʓ{y } Y + { Y + y } + { Y + y + y } + + { Y + y + y + + y + } ot tht i trms of th drivtio rlir ll of th Y s r Y + s, i.., o-sidd trsforms. All th Y trms c b groupd togthr udr summtio, d ll th rmiig trms, du to th iitil coditios {yi, i,,, }, c b groupd togthr so tht th bov c b writt s LHS Y + g{, y, y,, y } By followig similr procdur th right hd sid c lso b writt s follows hr gi th X s r X + s, i.., o-sidd trsforms: RHS r r r X b + h{, x, x,, x } Du to Iitil Coditios Du to Iitil Coditios Iitil coditio trms Iitil coditio trms

55 Writig out i full, LHS RHS bcoms Y + g{ } br r Fctorig out Y d X d rrrgig w hv Y Y X X b r r r b r r + r r X + h{ } + h{ } g{ } h{...} g{...} Tig th ivrs -trsform w gt r br y ʓ r X + ʓ h{...} g{...} To summri: to solv for y w t th -trsform of th lir costt cofficit diffrc qutio usig iitil coditios, mipult i th -domi to gt Y d th t th ivrs -trsform of Y to gt y. Exmpl 4.9. Fid th solutio to y y + y 4, with iitil coditios y 4, y. Solutio Thr r thr mthods of solutio:. Fid th itrtiv solutio i th discrt-tim domi. I grl this will ot giv lyticl closd form of solutio.. Solv i th discrt-tim domi homogous solutio + prticulr solutio.. Solv i th frqucy domi s w do blow. For iput squc x tht is stppd ito systm, spcifid i words li x for <, th iitil coditios r clrly ro d do ot mttr. But for output squc y whr th iitil coditios y, y r xplicitly giv to b o-ro w d to us th bov drivd -trsform for dlyd tructd squc. I prticulr w hv ʓ{y} Y ʓ{y } Y y ʓ{y } Y y y Tig th -trsform of th diffrc qutio w gt ʓ y y y ʓ 4 ʓ{y} ʓ{y } + ʓ{y } / 4 Y Y y + Y y y DSP-4 Z 55 of 84 Dr. Rvi Bill / 4

56 Pluggig i th iitil coditios y 4 d y Y Y 4 Y 4 + Y / 4 Y / 4 Y.5 Y / 9/ 4 / Y / 4 / 9 / 4 / / 4 9 / 4 / / 4 Y 9/ 4 / / 4 / 9/ 4 / A / / / 4 9/ 4 / B / / 4 / 9/ 4 / C / 4 / Y / / + + / 4 / Y + + / 4 / / 4 9 / 4 / / 4 DSP-4 Z 56 of 84 Dr. Rvi Bill A B C + + / 4 / y u 4 Th itrtiv solutio for this problm ws obtid i Uit I. Th tim-domi solutio ws covrd i HW Extr. Th solutio is rptd blow y,,,, Exmpl 4.9. [] Solv th followig lir diffrc qutio y + y 4 y giv y y. Solutio ot tht th output is turl rspos corrspodig to th spcifid iitil coditios. Thr is o forcd rspos sic x. Th itrtiv solutio is 7 y,,,,

57 For th solutio i th frqucy domi w t th -trsform of th diffrc qutio ʓ y y y ʓ 4 ʓ{y} + ʓ{y } 4 ʓ{y } Y + Y y 4 Y y y Y + Y 4 Y Y Y.5.5 Y Th domitor o th right hd sid hs roots t, Y A B A.9 DSP-4 Z 57 of 84 Dr. Rvi Bill 5.9 d.89 4 B Y.9.89 y , Th first fw vlus of th squc r y.5,.76,.5,.9,... d should b comprd with th itrtiv solutio. I th cotxt of ATLAB, w my us filtrb,, x to grt th squc y. Th cofficits of y. d x. r umbrd slightly diffrtly s blow: From th diffrc qutio y + y + y + b x + b x + b x + y + y 4 y, w ot tht th iput is x d th cofficits of y. d x. giv us th d b vctors: [,.5, -.5] d b []. Th o-ro iitil coditios y y must first b covrtd to quivlt iitil coditios for th filtr fuctio to wor. W spcify th vctor yic [y, y ] [, ] d grt th quivlt iitil coditios ic by th fuctio filticb,, yic. Th quivlt iitil coditios r th usd to grt th filtr output through filtrb,, x, ic. Th ATLAB sgmt follows:

58 x y %o-ro iitil coditios b [], [,.5, -.5], yic [, ], :5, x.* % %Equivlt iitil coditios ic filticb,, yic, y filtrb,, x, ic subplot,,, stm, x; xlbl'', ylbl'x'; titl'iput Squc'; subplot,,, stm, y; xlbl'', ylbl'y'; titl'output Squc'; Th output is: y [ ] Iput Squc Output Squc Exmpl 4.9. [] Fid th rspos squc for th filtr dfid by y 7 y + 6 y x Assum th systm is iitilly rlxd. Obti th systm fuctio d plot its pols d ros. Solutio Th phrs iitilly rlxd ms tht th iitil coditios r ro, tht is, y for < d x for <. Th qustio dos t spcify wht th iput x is, so ssum δ. Wht will th output b if both th iput d th iitil coditios r ro? 4. Stdy-stt d trsit rsposs for first ordr systm DSP-4 Z 58 of 84 Dr. Rvi Bill

59 W cosidr siusoidl iputs. Although th prsttio is oly for first ordr systm, th rltioship stblishd for th stdy-stt rspos i trms of th trsfr fuctio of th systm is grl rsult for stbl systms d siusoidl iputs. Th systm is y y + x, with th iitil coditio y d th iput x cos u. W hv cosidrd th timdomi bhvior of this systm i Uit I. Assum < i ordr to hv stbl systm. Th systm fuctio is obtid with ro iitil coditios, Y Y + X, or Y H X Th solutio of th diffrc qutio is obtid by tig th -trsform d usig th giv iitil coditio Y [ Y + y ] + X Y y + X Y y + X y H + X H cos Sic X ʓ{x} ʓ{ cos u}, w hv cos Y y H + Y Y cos H Y + Y cos Hr Y is th ro-iput rspos du to th iitil coditios y Y y H d Y is th forcd rspos du to th iput x cos Y cos H cos cos Y is lrdy i covit form for tig th ivrs, but Y must b xpdd ito prtil frctios s blow. Y cos cos Fctorig of cos * A B B + + cos A cos cos cos DSP-4 Z 59 of 84 Dr. Rvi Bill

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is Discrt-tim ourir Trsform Rviw or discrt-tim priodic sigl x with priod, th ourir sris rprsttio is x + < > < > x, Rviw or discrt-tim LTI systm with priodic iput sigl, y H ( ) < > < > x H r rfrrd to s th

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

page 11 equation (1.2-10c), break the bar over the right side in the middle

page 11 equation (1.2-10c), break the bar over the right side in the middle I. Corrctios Lst Updtd: Ju 00 Complx Vrils with Applictios, 3 rd ditio, A. Dvid Wusch First Pritig. A ook ought for My 007 will proly first pritig With Thks to Christi Hos of Swd pg qutio (.-0c), rk th

More information

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions MAT 8: Clculus II Tst o Chptr 9: qucs d Ifiit ris T-Hom Portio olutios. l l l l 0 0 L'Hôpitl's Rul 0 . Bgi by computig svrl prtil sums to dvlop pttr: 6 7 8 7 6 6 9 9 99 99 Th squc of prtil sums is s follows:,,,,,

More information

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems 0 Th -Trsform Dpt. of Elctroics Eg. -- DH609 Sigls d Systms 0. Th -Trsform Lplc trsform - for cotios tim sigl/systm -trsform - for discrt tim sigl/systm 0. Th -trsform For ipt y H H h with ω rl i.. DTFT

More information

Chapter 9 Infinite Series

Chapter 9 Infinite Series Sctio 9. 77. Cotiud d + d + C Ar lim b lim b b b + b b lim + b b lim + b b 6. () d (b) lim b b d (c) Not tht d c b foud by prts: d ( ) ( ) d + C. b Ar b b lim d lim b b b b lim ( b + ). b dy 7. () π dy

More information

Chapter 5. Chapter 5 125

Chapter 5. Chapter 5 125 Chptr 5 Chptr 5: Itroductio to Digitl Filtrs... 6 5. Itroductio... 6 5.. No rcursiv digitl filtrs FIR... 7 5.. Rcursiv digitl filtr IIR... 8 5. Digitl Filtr Rlistio... 5.. Prlll rlistio... 5.. Cscd rlistio...

More information

National Quali cations

National Quali cations PRINT COPY OF BRAILLE Ntiol Quli ctios AH08 X747/77/ Mthmtics THURSDAY, MAY INSTRUCTIONS TO CANDIDATES Cdidts should tr thir surm, form(s), dt of birth, Scottish cdidt umbr d th m d Lvl of th subjct t

More information

National Quali cations

National Quali cations Ntiol Quli ctios AH07 X77/77/ Mthmtics FRIDAY, 5 MAY 9:00 AM :00 NOON Totl mrks 00 Attmpt ALL qustios. You my us clcultor. Full crdit will b giv oly to solutios which coti pproprit workig. Stt th uits

More information

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC CLSS XI ur I CHPTER.6. Proofs d Simpl pplictios of si d cosi formul Lt C b trigl. y gl w m t gl btw t sids d C wic lis btw 0 d 80. T gls d C r similrly dfid. T sids, C d C opposit to t vrtics C, d will

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

ASSERTION AND REASON

ASSERTION AND REASON ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

More information

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points) Chm 5 Problm St # ANSWER KEY 5 qustios, poits Qutum Mchics & Spctroscopy Prof. Jso Goodpstr Du ridy, b. 6 S th lst pgs for possibly usful costts, qutios d itgrls. Ths will lso b icludd o our futur ms..

More information

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013 Sigls & Systems Chpter 0: The Z-Trsform Adpted from: Lecture otes from MIT, Bighmto Uiversity Dr. Hmid R. Rbiee Fll 03 Lecture 5 Chpter 0 Lecture 6 Chpter 0 Outlie Itroductio to the -Trsform Properties

More information

IX. Ordinary Differential Equations

IX. Ordinary Differential Equations IX. Orir Diffrtil Equtios A iffrtil qutio is qutio tht iclus t lst o rivtiv of uow fuctio. Ths qutios m iclu th uow fuctio s wll s ow fuctios of th sm vribl. Th rivtiv m b of orr thr m b svrl rivtivs prst.

More information

How much air is required by the people in this lecture theatre during this lecture?

How much air is required by the people in this lecture theatre during this lecture? 3 NTEGRATON tgrtio is us to swr qustios rltig to Ar Volum Totl qutity such s: Wht is th wig r of Boig 747? How much will this yr projct cost? How much wtr os this rsrvoir hol? How much ir is rquir y th

More information

LE230: Numerical Technique In Electrical Engineering

LE230: Numerical Technique In Electrical Engineering LE30: Numricl Tchiqu I Elctricl Egirig Lctur : Itroductio to Numricl Mthods Wht r umricl mthods d why do w d thm? Cours outli. Numbr Rprsttio Flotig poit umbr Errors i umricl lysis Tylor Thorm My dvic

More information

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q. LASS XII Q Evlut : Q sc Evlut c Q Evlut: ( ) Q Evlut: Q5 α Evlut: α Q Evlut: Q7 Evlut: { t (t sc )} / Q8 Evlut : ( )( ) Q9 Evlut: Q0 Evlut: Q Evlut : ( ) ( ) Q Evlut : / ( ) Q Evlut: / ( ) Q Evlut : )

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Assoc. Prof. Dr. Bur Kelleci Sprig 8 OUTLINE The Z-Trsform The Regio of covergece for the Z-trsform The Iverse Z-Trsform Geometric

More information

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Hamid R. Rabiee Arman Sepehr Fall 2010

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Hamid R. Rabiee Arman Sepehr Fall 2010 Sigls & Systems Chpter 0: The Z-Trsform Adpted from: Lecture otes from MIT, Bighmto Uiversity Hmid R. Riee Arm Sepehr Fll 00 Lecture 5 Chpter 0 Outlie Itroductio to the -Trsform Properties of the ROC of

More information

ENGI 3424 Appendix Formulæ Page A-01

ENGI 3424 Appendix Formulæ Page A-01 ENGI 344 Appdix Formulæ g A-0 ENGI 344 Egirig Mthmtics ossibilitis or your Formul Shts You my slct itms rom this documt or plcmt o your ormul shts. Howvr, dsigig your ow ormul sht c b vlubl rvisio xrcis

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

Digital Signal Processing. Hossein Mahvash Mohammadi

Digital Signal Processing. Hossein Mahvash Mohammadi Digitl Sigl Procssig Hossi Mhvsh Mohmmdi h.mhvsh@g.ui.c.ir Rfrcs Discrt-Tim Sigl Procssig b Opphim A.V., Schfr R.W, d Editio, Prtic-Hll, 999. Digitl Sigl Procssig with Computr Applictios, P. A. L, W. Furst

More information

Integration by Guessing

Integration by Guessing Itgrtio y Gussig Th computtios i two stdrd itgrtio tchiqus, Sustitutio d Itgrtio y Prts, c strmlid y th Itgrtio y Gussig pproch. This mthod cosists of thr stps: Guss, Diffrtit to chck th guss, d th Adjust

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

Math 1272 Solutions for Fall 2004 Final Exam

Math 1272 Solutions for Fall 2004 Final Exam Mth 272 Solutios for Fll 2004 Fil Exm ) This itgrl pprs i Prolm of th udtd-2002? xm; solutio c foud i tht solutio st (B) 2) O of th first thigs tht should istigtd i plig th itgrtio of rtiol fuctio of polyomils

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Part B: Trasform Mthods Chaptr 3: Discrt-Tim Fourir Trasform (DTFT) 3. Discrt Tim Fourir Trasform (DTFT) 3. Proprtis of DTFT 3.3 Discrt Fourir Trasform (DFT) 3.4 Paddig with Zros ad frqucy Rsolutio 3.5

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Frequency-domain Characteristics of Discrete-time LTI Systems

Frequency-domain Characteristics of Discrete-time LTI Systems requecy-domi Chrcteristics of Discrete-time LTI Systems Prof. Siripog Potisuk LTI System descriptio Previous bsis fuctio: uit smple or DT impulse The iput sequece is represeted s lier combitio of shifted

More information

terms of discrete sequences can only take values that are discrete as opposed to

terms of discrete sequences can only take values that are discrete as opposed to Diol Bgyoko () OWER SERIES Diitio Sris lik ( ) r th sm o th trms o discrt sqc. Th trms o discrt sqcs c oly tk vls tht r discrt s opposd to cotios, i.., trms tht r sch tht th mric vls o two cosctivs os

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Lectures 5-8: Fourier Series

Lectures 5-8: Fourier Series cturs 5-8: Fourir Sris PHY6 Rfrcs Jord & Smith Ch.6, Bos Ch.7, Kryszig Ch. Som fu jv pplt dmostrtios r vilbl o th wb. Try puttig Fourir sris pplt ito Googl d lookig t th sits from jhu, Flstd d Mths Oli

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Emil Olteanu-The plane rotation operator as a matrix function THE PLANE ROTATION OPERATOR AS A MATRIX FUNCTION. by Emil Olteanu

Emil Olteanu-The plane rotation operator as a matrix function THE PLANE ROTATION OPERATOR AS A MATRIX FUNCTION. by Emil Olteanu Emil Oltu-Th pl rottio oprtor s mtri fuctio THE PLNE ROTTON OPERTOR S MTRX UNTON b Emil Oltu bstrct ormlism i mthmtics c offr m simplifictios, but it is istrumt which should b crfull trtd s it c sil crt

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

2.1.1 Definition The Z-transform of a sequence x [n] is simply defined as (2.1) X re x k re x k r

2.1.1 Definition The Z-transform of a sequence x [n] is simply defined as (2.1) X re x k re x k r Z-Trsforms. INTRODUCTION TO Z-TRANSFORM The Z-trsform is coveiet d vluble tool for represetig, lyig d desigig discrete-time sigls d systems. It plys similr role i discrete-time systems to tht which Lplce

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

DIGITAL SIGNAL PROCESSING LECTURE 5

DIGITAL SIGNAL PROCESSING LECTURE 5 DIGITAL SIGNAL PROCESSING LECTURE 5 Fll K8-5 th Semester Thir Muhmmd tmuhmmd_7@yhoo.com Cotet d Figures re from Discrete-Time Sigl Processig, e by Oppeheim, Shfer, d Buck, 999- Pretice Hll Ic. The -Trsform

More information

. Determine these to one correct decimal accuracy using the bisection method: (a) 2. The following equations all have a root in the interval ( 0,1.

. Determine these to one correct decimal accuracy using the bisection method: (a) 2. The following equations all have a root in the interval ( 0,1. PROBLEMS Us grhic rrsttio to dtrmi th zros of th followig fuctios to o corrct dciml : ( 4 4si ; (b ; (c ( ; (d 4 8 ; ( ; (f ; (g t I ordr to obti grhicl solutio of f ( o th itrvl [,b], ty th followig sttmts

More information

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space Mish Kumr Mishr D.B.OhU Ktoch It. J. Comp. Tch. Appl. Vol ( 33-37 Som Commo Fi Poit Thorms for Pir of No psiv Mppigs i Grliz Epotil Cov Mtric Spc D.B.Oh Mish Kumr Mishr U Ktoch (Rsrch scholr Drvii Uivrsit

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

Chapter 8 Approximation Methods, Hueckel Theory

Chapter 8 Approximation Methods, Hueckel Theory Witr 3 Chm 356: Itroductory Qutum Mchics Chptr 8 Approimtio Mthods, ucl Thory... 8 Approimtio Mthods... 8 Th Lir Vritiol Pricipl... mpl Lir Vritios... 3 Chptr 8 Approimtio Mthods, ucl Thory Approimtio

More information

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property Lier Time-Ivrit Bsic Properties LTI The Commuttive Property The Distributive Property The Associtive Property Ti -6.4 / Chpter Covolutio y ] x ] ] x ]* ] x ] ] y] y ( t ) + x( τ ) h( t τ ) dτ x( t) * h(

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

EE Control Systems LECTURE 11

EE Control Systems LECTURE 11 Updtd: Tudy, Octor 8, EE 434 - Cotrol Sytm LECTUE Copyright FL Lwi 999 All right rrvd BEEFTS OF FEEBACK Fdc i uivrl cocpt tht ppr i turl ytm, itrctio of pci, d iologicl ytm icludig th ic cll d mucl cotrol

More information

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya LECTURE NOTES OF ENGINEERING MATHEMATICS III Su Cod: MAT) Vtusoutio.i COURSE CONTENT ) Numric Aysis ) Fourir Sris ) Fourir Trsforms & Z-trsforms ) Prti Diffrti Equtios 5) Lir Agr 6) Ccuus of Vritios Tt

More information

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca**

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca** ERDO-MARANDACHE NUMBER b Tbrc* Tt Tbrc** *Trslv Uvrsty of Brsov, Computr cc Dprtmt **Uvrsty of Mchstr, Computr cc Dprtmt Th strtg pot of ths rtcl s rprstd by rct work of Fch []. Bsd o two symptotc rsults

More information

ELEG 5173L Digital Signal Processing Ch. 2 The Z-Transform

ELEG 5173L Digital Signal Processing Ch. 2 The Z-Transform Deprtmet of Electricl Egieerig Uiversity of Arkss ELEG 573L Digitl Sigl Processig Ch. The Z-Trsform Dr. Jigxi Wu wuj@urk.edu OUTLINE The Z-Trsform Properties Iverse Z-Trsform Z-Trsform of LTI system Z-TRANSFORM

More information

EC1305 SIGNALS & SYSTEMS

EC1305 SIGNALS & SYSTEMS EC35 SIGNALS & SYSTES DEPT/ YEAR/ SE: IT/ III/ V PREPARED BY: s. S. TENOZI/ Lcturr/ECE SYLLABUS UNIT I CLASSIFICATION OF SIGNALS AND SYSTES Cotiuous Tim Sigals (CT Sigals Discrt Tim Sigals (DT Sigals Stp

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

The Propagation Series

The Propagation Series //009 Th Progtio Sris rst /0 Th Progtio Sris Q: You rlir sttd tht sigl flow grhs r hlful i (cout m ) thr wys. I ow udrstd th first wy: Wy - Sigl flow grhs rovid us with grhicl ms of solvig lrg systms of

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

Unit 1. Extending the Number System. 2 Jordan School District

Unit 1. Extending the Number System. 2 Jordan School District Uit Etedig the Number System Jord School District Uit Cluster (N.RN. & N.RN.): Etedig Properties of Epoets Cluster : Etedig properties of epoets.. Defie rtiol epoets d eted the properties of iteger epoets

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2]

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2] QUESTION PAPER WITH SOLUTION OF JEE ADVANCED - 6 7. Lt P (HELD ON d MAY SUNDAY 6) FEEL THE POWER OF OUR KNOWLEDGE & EXPERIENCE Our Top clss IITi fculty tm promiss to giv you uthtic swr ky which will b

More information

The Propagation Series

The Propagation Series /9/009 Th Progtio Sris.doc /8 Th Progtio Sris Q: You rlir sttd tht sigl flow grhs r hlful i (cout m ) thr wys. I ow udrstd th first wy: Wy - Sigl flow grhs rovid us with grhicl ms of solvig lrg systms

More information

Lectures 2 & 3 - Population ecology mathematics refresher

Lectures 2 & 3 - Population ecology mathematics refresher Lcturs & - Poultio cology mthmtics rrshr To s th mov ito vloig oultio mols, th olloig mthmtics crisht is suli I i out r mthmtics ttook! Eots logrithms i i q q q q q q ( tims) / c c c c ) ( ) ( Clculus

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1 NOD6 (\Dt\04\Kot\J-Advced\SMP\Mths\Uit#0\NG\Prt-\0.Determits\0.Theory.p65. INTRODUCTION : If the equtios x + b 0, x + b 0 re stisfied by the sme vlue of x, the b b 0. The expressio b b is clled determit

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

A Single-Integral Representation for the Green Function of Steady Ship Flow in Water of Finite Depth

A Single-Integral Representation for the Green Function of Steady Ship Flow in Water of Finite Depth A Sigl-Itgrl Rprsttio for th Gr uctio of Stdy Ship low i Wtr of iit Dpth Thi Nguy & Xio-Bo Ch Costl Systs Sttio, P City, L 7 (USA x: --85-- Eil: NguyTC@csc.vy.il Rsrch Dprtt, BV, 7bis, Plc ds Rflts, 9

More information

FOURIER ANALYSIS Signals and System Analysis

FOURIER ANALYSIS Signals and System Analysis FOURIER ANALYSIS Isc Nwo Whi ligh cosiss of sv compos J Bpis Josph Fourir Bor: Mrch 768 i Auxrr, Bourgog, Frc Did: 6 My 83 i Pris, Frc Fourir Sris A priodic sigl of priod T sisfis ft f for ll f f for ll

More information

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point:

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point: roic Oscilltor Pottil W r ow goig to stuy solutios to t TIS for vry usful ottil tt of t roic oscilltor. I clssicl cics tis is quivlt to t block srig robl or tt of t ulu (for sll oscilltios bot of wic r

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

IIT JEE MATHS MATRICES AND DETERMINANTS

IIT JEE MATHS MATRICES AND DETERMINANTS IIT JEE MTHS MTRICES ND DETERMINNTS THIRUMURUGN.K PGT Mths IIT Trir 978757 Pg. Lt = 5, th () =, = () = -, = () =, = - (d) = -, = -. Lt sw smmtri mtri of odd th quls () () () - (d) o of ths. Th vlu of th

More information

Problem Session (3) for Chapter 4 Signal Modeling

Problem Session (3) for Chapter 4 Signal Modeling Pobm Sssio fo Cht Sig Modig Soutios to Pobms....5. d... Fid th Pdé oimtio of scod-od to sig tht is giv by [... ] T i.. d so o. I oth wods usig oimtio of th fom b b b H fid th cofficits b b b d. Soutio

More information

PREPARATORY MATHEMATICS FOR ENGINEERS

PREPARATORY MATHEMATICS FOR ENGINEERS CIVE 690 This qusti ppr csists f 6 pritd pgs, ch f which is idtifid by th Cd Numbr CIVE690 FORMULA SHEET ATTACHED UNIVERSITY OF LEEDS Jury 008 Emiti fr th dgr f BEg/ MEg Civil Egirig PREPARATORY MATHEMATICS

More information

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) Awr: = ( + )(y + ) Diff prtilly w.r.to & y hr p & q y p = (y + ) ;

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

Systems in Transform Domain Frequency Response Transfer Function Introduction to Filters

Systems in Transform Domain Frequency Response Transfer Function Introduction to Filters LTI Discrt-Tim Systms i Trasform Domai Frqucy Rspos Trasfr Fuctio Itroductio to Filtrs Taia Stathai 811b t.stathai@imprial.ac.u Frqucy Rspos of a LTI Discrt-Tim Systm Th wll ow covolutio sum dscriptio

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) = ( + )(y + ) Diff prtilly w.r.to & y hr p & q p = (y + ) ; q = ( +

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Representation of linear operators by Gabor multipliers

Representation of linear operators by Gabor multipliers Rprsttio of lir oprtors Rprsttio of lir oprtors by Gbor multiplirs Ptr C Gibso, Michl P Lmourux, Gry F Mrgrv ABSTRACT W cosidr cotiuous vrsio of Gbor multiplirs: oprtors cosistig of short-tim Fourir trsform,

More information

Discrete-Time Signals & Systems

Discrete-Time Signals & Systems Chpter 2 Discrete-Time Sigls & Systems 清大電機系林嘉文 cwli@ee.thu.edu.tw 03-57352 Discrete-Time Sigls Sigls re represeted s sequeces of umbers, clled smples Smple vlue of typicl sigl or sequece deoted s x =

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

VI. FIR digital filters

VI. FIR digital filters www.jtuworld.com www.jtuworld.com Digital Sigal Procssig 6 Dcmbr 24, 29 VI. FIR digital filtrs (No chag i 27 syllabus). 27 Syllabus: Charactristics of FIR digital filtrs, Frqucy rspos, Dsig of FIR digital

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

The z Transform. The Discrete LTI System Response to a Complex Exponential

The z Transform. The Discrete LTI System Response to a Complex Exponential The Trsform The trsform geerlies the Discrete-time Forier Trsform for the etire complex ple. For the complex vrible is sed the ottio: jω x+ j y r e ; x, y Ω rg r x + y {} The Discrete LTI System Respose

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

DFT: Discrete Fourier Transform

DFT: Discrete Fourier Transform : Discrt Fourir Trasform Cogruc (Itgr modulo m) I this sctio, all lttrs stad for itgrs. gcd m, = th gratst commo divisor of ad m Lt d = gcd(,m) All th liar combiatios r s m of ad m ar multils of d. a b

More information

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering Lcur No Lcur-6-9 Ar rdig his lsso, you will lr ou Fourir sris xpsio rigoomric d xpoil Propris o Fourir Sris Rspos o lir sysm Normlizd powr i Fourir xpsio Powr spcrl dsiy Ec o rsr ucio o PSD. FOURIER SERIES

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information