Lectures 5-8: Fourier Series

Size: px
Start display at page:

Download "Lectures 5-8: Fourier Series"

Transcription

1 cturs 5-8: Fourir Sris PHY6 Rfrcs Jord & Smith Ch.6, Bos Ch.7, Kryszig Ch. Som fu jv pplt dmostrtios r vilbl o th wb. Try puttig Fourir sris pplt ito Googl d lookig t th sits from jhu, Flstd d Mths Oli Gllry.. Itroductio to Fourir Sris Cosidr lgth of strig fid btw rigid supports. Th full bhviour of this systm c b foud by solvig wv qutio prtil diffrtil qutio. W will do this ltr i th cours. For ow w will just rcll th bsic proprtis of wvs of strigs which w lrdy kow: Thr is fudmtl mod of vibrtio. Cll th frqucy of this mod f d th tim priod T. Th thr r vrious hrmoics. Ths hv frqucy f, 3f, 4f, 5f,, f, I prctic, wh pio or guitr or othr strig is hit or pluckd, it dos ot vibrt purly i o mod th displcmt of th strig is ot purly siusoidl, th soud mittd is ot ll of o frqucy. I prctic, o ormlly hrs lrg mout of th fudmtl plus smllr mouts of vrious hrmoics. Th proportios i which th diffrt frqucis r prst vris hc guitr souds diffrt from violi or pio, d violi souds diffrt if it is bowd from if it is pluckd! (S pgs &) Rmmbr tht if th fudmtl frqucy hs frqucy f, its priod T /f. A hrmoic wv of frqucy f will th hv priod T/, but obviously lso rpts with priod T. So if w dd togthr siusoidl wvs of frqucy f, f, 3f, 4f, th rsult is (o-siusoidl) wvform which is priodic with th sm priod T s th fudmtl frqucy, f /T. [E.g. ply with ] Somtims w us th gulr frqucy ω whr th th hrmoic hs ω f /Τ. Th vrious hrmoics r th of th form Asiω t. Illustrtio: siωt.5 siωt.5 si3ωt y (t) siωt+.5 siωt+.5 si3ωt For ll th fuctios bov, th vrg vlu ovr priod is zro. If w dd costt trm, th wvform rmis priodic but its vrg vlu is o logr zro: y (t) + siωt+.5 siωt+.5 si3ωt Phil ightfoot 8/9 ctur 5 - Pg of

2 PHY6 Wht is rlly usful is tht this works i rvrs: Ay priodic fuctio with priod T c b prssd s th sum of costt trm plus hrmoic (si d cosi) curvs of gulr frqucy ω, ω, 3ω,... whr ω /T. i.. w c writ Ft ( ) + ( cosωt+ bsi ωt) + ( cos ωt+ bsi ωt) + K + cos ωt+ bsi ωt whr ω /T. W will ltr prov this rsult mthmticlly, d ltr i th smstr will s tht it c b dducd from th grl solutio of th wv qutio. For ow you my b bl to prsud yourslf of its plusibility by plyig with th vrious wbsits for mpl, th dmostrtios of how squr or trigulr wvforms c b md from sums of hrmoic wvs. Th mor trms i th sum, th closr th pproimtio to th dsird wvform. Hc i grl, ifiit umbr of trms r dd. Why is this usful? d d( t) I lctur 4 w solvd th forcd hrmoic oscilltor qutio ( t) + γ + ω ( t) F cosωt. dt dt Such qutio could dscrib, for mpl, th rspos of lctricl CR circuit to siusoidl drivig voltg. But wht would hpp if w pplid squr wv drivig voltg?? Usig Fourir thory, w would just d to prss th squr wvform s sum of siusoidl trms. Th th rspos would b th sum of th solutios for ch trm (which would ll hv similr form, but ivolv diffrt multipls of ω thus lso hv diffrt mplituds). Throughout physics thr r my similr situtios. Fourir sris ms tht if w c solv problm for siusoidl fuctio th w c solv it for y priodic fuctio! Ad priodic fuctios ppr vrywhr! Empls of priodicity i tim: pulsr, tri of lctricl pulss, th tmprtur vritio ovr 4 hours or th vrg dily tmprtur ovr yr (pproimtly). Empls of priodicity i spc: crystl lttic, rry of mgtic domis, tc. Othr Forms If w wt to work i trms of t ot ω, th formul bcoms t t f ( t) + cos + b si. T T Or similrly for fuctio f() which is priodic i spc with rptitio lgth, w hv + cos + b si. (Ay vlu of T or c b usd, lthough to kp th lgbr stright forwrd, most qustios will st T s or v s mtrs.). Towrds Fidig th Fourir Cofficits To mk thigs sy lt s sy tht th pttr rpts itslf vry mtrs, so. Th Fourir sris c th b prssd mor simply i th form + cos + b si. Now w wt to fid prssios for th cofficits d b. To do this w d two othr bits of prprtory mthmtics Phil ightfoot 8/9 ctur 5 - Pg of

3 () Avrg Vlu of Fuctio Cosidr fuctio y f(). Th vrg vlu of th fuctio b btw d b is dfid to b d. b Gomtriclly this ms tht th r udr th curv f() btw d b is qul to th r of rctgl of width (b-) d hight qul to this vrg vlu. Not tht whil vrg vlus c b foud by vlutig th bov itgrl, somtims thy c b idtifid mor quickly from symmtry cosidrtios, sktch grph d commo ss! Two prticulrly importt rsults r: Th vrg vlu of si or cosi fuctio ovr priod is zro: si si cos d d d. Th vrg vlu of cos or si ovr priod is ½: si d cos d. PHY6 Actully both ths rsults c b grlizd. It is sily show tht: si cos d d d si cos d d for Hc si d cos d d si d cos d ( ) Not: W hv writt ll th itgrls ovr [, ] but y itrvl of width c b usd,.g. [, ], [3., 5.], tc. (b) Orthogolity (Proofs i th Appdi) Sis d cosis hv importt proprty clld orthogolity : Th product of two diffrt si or cosi fuctios, itgrtd ovr priod, givs zro: si cosmd for ll, m Agi w c itgrt ovr y priod. si si m d cos cos m d for ll m Equippd with ths rsults w c ow fid th Fourir cofficits 3. Fourir Cofficits Drivtio Erlir w sid y fuctio f() with priod c b writt + cos + b si. Tk this qutio d itgrt both sids ovr priod (y priod): + + d d cos d b si d Clrly o th RHS th oly o-zro trm is th trm: d d ( ) hc w fid d. i.. / is th vrg vlu of th fuctio f(). Phil ightfoot 8/9 ctur 5 - Pg 3 of

4 PHY6 Now tk th origil qutio gi, multiply both sids by cos, th itgrt ovr priod: + + cos d cos d coscos d b si cos d O th RHS, this tim oly th trm survivs s it is th oly trm whr (s Orthogolity.) cos d cos cos d cos d hc cos d. Th mthod for fidig th cofficits should thus b clr. To fid grl prssio for w c tk th qutio, multiply both sids by cosm, th itgrt ovr priod: + + cosmd cosmd coscosmd b si cosmd O th RHS, oly th m trm survivs th itgrtio: cosmd m cos md m hc m cosmd. I similr wy, multiplyig both sids by sim, th itgrtig ovr priod w gt: b m si m d 4. Summry of Rsults A fuctio f() with priod c b prssd s + cos + b si whr d, cos d, b si d. Th mor grl prssio from pg c b writt s:- A fuctio f() with priod c b prssd s + cos + b si whr d, cos d, b si d. Not ) Th formul for c b obtid from th formul for just by sttig. ) Th itgrls bov r writt ovr [, ] d [, ] but y covit itrvl of width o priod my b usd, d this will b dpdt o th tur of th fuctio (s mpls d Phil s Problms). 3) Th qutios c b sily dptd to work with othr vribls or priodicitis. For mpl, for fuctio priodic i tim with priod T just rplc by t d by T. d 4) A fw books us th ltrtiv form Ft () + dcos( ω t+ θ ) d fid vlus of d d θ. 5. Empls Empl Fid Fourir sris for th squr wv show. W hv < < Th priod is. < < 3 Usig our formul for th cofficits w hv: ( ) + f d [ ] d d Phil ightfoot 8/9 ctur 5 - Pg 4 of

5 cos d () cos + () cos d d si cos d PHY6 So ll th cofficits r zro for. b si d () si d + () si d cos si d cos cos cos cos b So wh odd ; cos - so b odd So wh v ; cos so b v Th stdrd Fourir sris prssio is + cos + b si So th rsultig sris is: + si + si 3 + si ) odd si Thik: Aftr rchig your swr, sk yourslf: is this rsult ssibl? - Dos th trm / look lik pproprit vlu for th vrg vlu of th fuctio ovr priod? - Would w pct this fuctio to b md mily of sis or of cosis? (S ltr for symmtry). - I wht proportios would w pct to fid th fudmtl d th vrious hrmoics? (You c lso try chckig your swr by buildig th sris t or ) Empl Fid Fourir sris of th fuctio show: Agi th priod is. But this tim it is sist to work with th rg [-, ]. N.B. If w wtd w could us th rg [,] d gt th sm swr, but it would b mor fiddly. Btw - d, f() is stright li with grdit d Y-itrcpt of. So w c writ f() + < <. ( ) ( ) f d d ( ) cos d ( + )cos d cos d + cos d W must itgrt cos d by prts: udv uv vdu so st u d cos d dv Phil ightfoot 8/9 ctur 5 - Pg 5 of

6 PHY6 So du d d v cos d si. So cos d si si si + cos d (s p.3 vrg vlu) Goig bck to, cos d Now lt s fid th b cofficits. ( + )cos d + cos d (s p.3 vrg vlu) b si d ( + )si d si d + si d W must itgrt si d by prts: udv uv vdu so st u d si d dv So du d d v si d cos. So si d cos cos d cos + si Goig bck to b b si d si d + si d cos + si + ( ) b cos + si cos + si cos( ) + si( ) Rmmbr tht cos( ) cos( ) d si( ) si( ) So b cos si cos +. Wht will b b for diffrt vlus of? 3 4 cos ( ) cos () cos3 ( ) cos 4 () Hc + + si si + si 3 si ( ) + si Nots ) Whr fuctio hs discotiuitis, th Fourir Sris covrgs to th midpoit of th jump (.g. i mpl t,, tc th sris hs vlu ½). ) I grl th lowst frqucy trms provid th mi shp, th highr hrmoics dd th dtil. Wh fuctios hv discotiuitis, mor highr hrmoics r dd. Hc i both th bov mpls th trms drop off quit slowly. I grl, for smoothr fuctios th trms drop off fstr. Phil ightfoot 8/9 ctur 5 - Pg 6 of

7 6. Ev d Odd Fuctios PHY6 For v fuctio, f (-) f () i.. th grph y f() hs rflctiol symmtry i th y-is. For odd fuctio, f o (-) - f o () i.. th grph y f() hs 8º rottiol symmtry bout th origi. Ay sum of v fuctios is lso v fuctio. Hc cos is lwys v fuctio. Thrfor th Fourir sris of v fuctio cotis oly cosi trms. Similrly, th Fourir sris of odd fuctio cotis oly si trms. It is cptiolly usful to rmmbr this! E.g. if you r skd to fid th Fourir sris of fuctio which is v, you c immditly stt tht b for ll, mig tht thr will b o si trms. You should lso rmmbr th followig fcts (sily vrifid lgbriclly or by sktchig grphs): Th product of v fuctio d v fuctio is v Th product of odd fuctio d odd fuctio is v Th product of v fuctio d odd fuctio is odd Empl 3 Fid Fourir sris of th fuctio show: Th priod is. As discussd rlir w c itgrt ovr y full priod.g. / or / Th fuctio is v d c b writt f() for 3. Thrfor thr will b o si trms 4 4 (b for ll ) d I fl lik itgrtig btw d. Th sris will hv form + cos whr d d cos d. So 3 / 4 3 / d [ ] 4 / 4 d / 4 cos d 3 / 4 / 4 cos d si 3 / 4 / 4 6 (si ) (si ) (si ) (si ) (si ) (si ) 4 4 Eprssio for is ot vry prtty d sy to mk mistks with. Writ out tbl to hlp with ssigmt of cofficits. Phil ightfoot 8/9 ctur 5 - Pg 7 of

8 (si ) (si ) (si ) (si ) PHY (si ) (si ) (si ) (si ) (si ) (si ) (si ) (si ) (si ) (si ) (si ) (si ) So cos + cos cos Hlf-Rg Sris Somtims w wt to fid Fourir sris rprsttio of fuctio which is vlid just ovr som rstrictd itrvl. W could do this i th orml wy d th stt tht th fuctio is oly vlid ovr spcific itrvl. Howvr, th fct tht w c do this llows us to us clvr trick tht rducs th complity of problm. W will study this by cosidrig th followig mpl: Empl 4 Cosidr guitr strig of lgth which is big pluckd. (Not o pplictio: If strig ws rlsd from this positio, fidig this Fourir sris would b crucil stp i dtrmiig th displcmt of th strig t ll subsqut tims s ltr i cours.) W could, s bfor, pply th Fourir sris to prtd ifiit sris of pluckd strigs d th sy tht th prssio ws oly vlid btw d. Howvr this sris would coti both si d cosi trms s thr is ithr v or odd symmtry, d so would tk gs to solv. Thr is much mor clvr wy to procd. Not tht w r oly told th form of th fuctio o th itrvl [, ]. All tht mttrs is tht th sris corrspods to th giv fuctio i th giv itrvl. Wht hpps outsid th giv itrvl is irrlvt. Th wy to tckl such problm is to cosidr rtificil fuctio which coicids with th giv fuctio ovr th giv itrvl, but tds it d is priodic. Clrly w could do this i ifiit umbr of diffrt wys, howvr i th prvious sctio, w obsrvd tht th Fourir sris of odd d v fuctios r prticulrly simpl. It is thrfor ssibl to choos odd or v rtificil fuctio! If th origil fuctio is dfid o th rg [, ] th thr r lwys odd d v rtificil fuctios with priod. I this cs ths look lik: Ths fuctios r clld th odd tsio d v tsio rspctivly. Thir corrspodig Fourir sris r clld th hlf-rg si sris d hlf-rg cosi sris. Thory W sw rlir tht for fuctio with priod th Fourir sris is:- + cos + b si, whr cos d, b si d I this cs w hv fuctio of priod so th formul bcom + cos + b si, whr cos d, b si d Phil ightfoot 8/9 ctur 5 - Pg 8 of

9 b b Rmmbrig lso tht f ( ) d f ( ) d, w gt th followig rsults: b Hlf-rg cosi sris: + cos, whr cos d. Hlf-rg si sris: b si, whr b si d. Not : Th rsultig sris is oly vlid ovr th spcifid itrvl! Empl 5 Fid Fourir sris which rprsts th displcmt y(), btw d, of th pluckd strig show. PHY6 t us choos to fid th hlf-rg si sris. d < < W hv y( ) ( ) d < < / m d m d m So bm dsi Y( ) d si d ( )si + / Usig itgrtio by prts, it c b show tht th rsult is: b 8d m si m for m odd for m v So for < < w hv 8d Y( ) si si si si Work out th full solutio for yourslf. This qustio is swrd i Phil s problms. 8. Furthr Rsults ) Compl Sris. For th wvs o strigs w d rl stdig wvs. But i som othr rs of physics, spcilly solid stt physics, it is mor covit to cosidr compl or ruig wvs. Rmmbr tht: ik ik ik ik i ik ik cos k ( + ); si k ( ) ( ) i Th compl form of th Fourir sris c b drivd by ssumig solutio of th form f ) i ( c d th by vlutig th cofficits s i sctio 3, tkig th prssio d multiplyig both sids by -im d itgrtig ovr priod: im i im d c d c i( m) i For mth itgrl vishs. For m th itgrl givs. Hc c d Compl Fourir Sris for fuctio of priod : Th mor grl prssio c b writt s:- A fuctio f() with priod c b prssd s:- d i i ( c whr c d f ) i i / c whr c d Phil ightfoot 8/9 ctur 5 - Pg 9 of

10 t s hv look t mpl of compl Fourir sris. PHY6 Empl 6 Fid th compl Fourir sris for f() i th rg - < < if th rpt priod is 4. c i / i / d d th priod is 4. So w c writ c d. 4 Itgrtio by prts c 4 i i i + d u dv uv v du with u d dv i / d so du d d i 4 i 4 i i i i v i i i i + C i i + i i i + i i i i i i ( + ) + ( ) Sic i i i i i i i i i th C ( + ) + ( ) It is kow tht sic i i + i cos + isi d i cos isi th i i i i i si so w sy C cos si cos i cos ( ) d ( ) i i C cos So ( ) d sic i i c th ( ) i b) Prsvl s Thorm Cosidr gi th Fourir sris + cos + b si. Squr both sids th itgrt ovr priod: [ ] d cos b si d + + Th RHS will giv both squrd trms d cross trm. Wh w itgrt, ll th cross trms will vish. All th squrs of th cosis d sis itgrt to giv (hlf th priod). Hc 4 [ ] d + [ + b ] Th rgy i vibrtig strig or lctricl sigl is proportiol to itgrl lik [ f ) ] d (. Hc Prsvl s thorm tlls us tht th totl rgy i vibrtig systm is qul to th sum of th rgis i th idividul mods. Tk from PHY Phil ightfoot 8/9 ctur 5 - Pg of

11 Appdi: Orthogolity PHY6 At fudmtl mthmticl lvl, th rso th Fourir sris works th rso y priodic fuctio c b prssd s sum of si d cosi fuctios is tht sis d cosis r orthogol. I grl, st of fuctios u (), u (),, u (), is sid to b orthogol o th itrvl [, b] if b m u ( ) um ( ) d (whr c is costt). c m Hr w will prov tht fuctio si, cosm, tc r orthogol o th itrvl [, ].. si cosmd si( + m) si( m) d [Usig si( + b) si( b) si cosb] cos( ) cos( ) + m + m + m m Hc si cosmd for m.. si si md cos( m) cos( + m) d [Usig cos( b) cos( + b) si si b] si( ) si( ) m m m m Hc si si md for m. 3. cos cosmd cos( + m) + cos( m) d [Usig cos( b) + cos( + b) cos cosb] si( ) si( ) + m + m + m m Hc cos cos m d for m. For m th itgrls bcoms:. si cos si cos d d 4. si d ( cos) d si 3. cos d ( + cos) d + si For m th first two itgrls bcom d d th third bcoms d Not. Similr rsults c b provd for fuctio of priodicity.. Th rsults ( ) r sy to rmmbr: A itgrls ovr sis d cosis ovr full priod giv zro, ulss th itgrd is squr i which cs th itgrl is lwys qul to hlf th rg of th itgrl. Phil ightfoot 8/9 ctur 5 - Pg of

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points) Chm 5 Problm St # ANSWER KEY 5 qustios, poits Qutum Mchics & Spctroscopy Prof. Jso Goodpstr Du ridy, b. 6 S th lst pgs for possibly usful costts, qutios d itgrls. Ths will lso b icludd o our futur ms..

More information

PHY226 Topic 4 Fourier series (Lectures 5-8) Online Problems

PHY226 Topic 4 Fourier series (Lectures 5-8) Online Problems PHY6 PHY6 Topic Fourier series (ectures 5-8. Itroductio to Fourier series pge. Why re they useful? pge 3.3 Towrds fidig the Fourier coefficiets pge. Averge vlue of fuctio pge 5.5 Orthogolity pge 5.6 Fourier

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

ASSERTION AND REASON

ASSERTION AND REASON ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

More information

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is Discrt-tim ourir Trsform Rviw or discrt-tim priodic sigl x with priod, th ourir sris rprsttio is x + < > < > x, Rviw or discrt-tim LTI systm with priodic iput sigl, y H ( ) < > < > x H r rfrrd to s th

More information

National Quali cations

National Quali cations Ntiol Quli ctios AH07 X77/77/ Mthmtics FRIDAY, 5 MAY 9:00 AM :00 NOON Totl mrks 00 Attmpt ALL qustios. You my us clcultor. Full crdit will b giv oly to solutios which coti pproprit workig. Stt th uits

More information

National Quali cations

National Quali cations PRINT COPY OF BRAILLE Ntiol Quli ctios AH08 X747/77/ Mthmtics THURSDAY, MAY INSTRUCTIONS TO CANDIDATES Cdidts should tr thir surm, form(s), dt of birth, Scottish cdidt umbr d th m d Lvl of th subjct t

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Integration by Guessing

Integration by Guessing Itgrtio y Gussig Th computtios i two stdrd itgrtio tchiqus, Sustitutio d Itgrtio y Prts, c strmlid y th Itgrtio y Gussig pproch. This mthod cosists of thr stps: Guss, Diffrtit to chck th guss, d th Adjust

More information

IX. Ordinary Differential Equations

IX. Ordinary Differential Equations IX. Orir Diffrtil Equtios A iffrtil qutio is qutio tht iclus t lst o rivtiv of uow fuctio. Ths qutios m iclu th uow fuctio s wll s ow fuctios of th sm vribl. Th rivtiv m b of orr thr m b svrl rivtivs prst.

More information

How much air is required by the people in this lecture theatre during this lecture?

How much air is required by the people in this lecture theatre during this lecture? 3 NTEGRATON tgrtio is us to swr qustios rltig to Ar Volum Totl qutity such s: Wht is th wig r of Boig 747? How much will this yr projct cost? How much wtr os this rsrvoir hol? How much ir is rquir y th

More information

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC CLSS XI ur I CHPTER.6. Proofs d Simpl pplictios of si d cosi formul Lt C b trigl. y gl w m t gl btw t sids d C wic lis btw 0 d 80. T gls d C r similrly dfid. T sids, C d C opposit to t vrtics C, d will

More information

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q. LASS XII Q Evlut : Q sc Evlut c Q Evlut: ( ) Q Evlut: Q5 α Evlut: α Q Evlut: Q7 Evlut: { t (t sc )} / Q8 Evlut : ( )( ) Q9 Evlut: Q0 Evlut: Q Evlut : ( ) ( ) Q Evlut : / ( ) Q Evlut: / ( ) Q Evlut : )

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

Chapter 9 Infinite Series

Chapter 9 Infinite Series Sctio 9. 77. Cotiud d + d + C Ar lim b lim b b b + b b lim + b b lim + b b 6. () d (b) lim b b d (c) Not tht d c b foud by prts: d ( ) ( ) d + C. b Ar b b lim d lim b b b b lim ( b + ). b dy 7. () π dy

More information

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya LECTURE NOTES OF ENGINEERING MATHEMATICS III Su Cod: MAT) Vtusoutio.i COURSE CONTENT ) Numric Aysis ) Fourir Sris ) Fourir Trsforms & Z-trsforms ) Prti Diffrti Equtios 5) Lir Agr 6) Ccuus of Vritios Tt

More information

Chapter 8 Approximation Methods, Hueckel Theory

Chapter 8 Approximation Methods, Hueckel Theory Witr 3 Chm 356: Itroductory Qutum Mchics Chptr 8 Approimtio Mthods, ucl Thory... 8 Approimtio Mthods... 8 Th Lir Vritiol Pricipl... mpl Lir Vritios... 3 Chptr 8 Approimtio Mthods, ucl Thory Approimtio

More information

Lectures 2 & 3 - Population ecology mathematics refresher

Lectures 2 & 3 - Population ecology mathematics refresher Lcturs & - Poultio cology mthmtics rrshr To s th mov ito vloig oultio mols, th olloig mthmtics crisht is suli I i out r mthmtics ttook! Eots logrithms i i q q q q q q ( tims) / c c c c ) ( ) ( Clculus

More information

terms of discrete sequences can only take values that are discrete as opposed to

terms of discrete sequences can only take values that are discrete as opposed to Diol Bgyoko () OWER SERIES Diitio Sris lik ( ) r th sm o th trms o discrt sqc. Th trms o discrt sqcs c oly tk vls tht r discrt s opposd to cotios, i.., trms tht r sch tht th mric vls o two cosctivs os

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

LE230: Numerical Technique In Electrical Engineering

LE230: Numerical Technique In Electrical Engineering LE30: Numricl Tchiqu I Elctricl Egirig Lctur : Itroductio to Numricl Mthods Wht r umricl mthods d why do w d thm? Cours outli. Numbr Rprsttio Flotig poit umbr Errors i umricl lysis Tylor Thorm My dvic

More information

page 11 equation (1.2-10c), break the bar over the right side in the middle

page 11 equation (1.2-10c), break the bar over the right side in the middle I. Corrctios Lst Updtd: Ju 00 Complx Vrils with Applictios, 3 rd ditio, A. Dvid Wusch First Pritig. A ook ought for My 007 will proly first pritig With Thks to Christi Hos of Swd pg qutio (.-0c), rk th

More information

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions MAT 8: Clculus II Tst o Chptr 9: qucs d Ifiit ris T-Hom Portio olutios. l l l l 0 0 L'Hôpitl's Rul 0 . Bgi by computig svrl prtil sums to dvlop pttr: 6 7 8 7 6 6 9 9 99 99 Th squc of prtil sums is s follows:,,,,,

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

Topic 4 Fourier Series. Today

Topic 4 Fourier Series. Today Topic 4 Fourier Series Toy Wves with repetig uctios Sigl geertor Clssicl guitr Pio Ech istrumet is plyig sigle ote mile C 6Hz) st hrmoic hrmoic 3 r hrmoic 4 th hrmoic 6Hz 5Hz 783Hz 44Hz A sigle ote will

More information

Emil Olteanu-The plane rotation operator as a matrix function THE PLANE ROTATION OPERATOR AS A MATRIX FUNCTION. by Emil Olteanu

Emil Olteanu-The plane rotation operator as a matrix function THE PLANE ROTATION OPERATOR AS A MATRIX FUNCTION. by Emil Olteanu Emil Oltu-Th pl rottio oprtor s mtri fuctio THE PLNE ROTTON OPERTOR S MTRX UNTON b Emil Oltu bstrct ormlism i mthmtics c offr m simplifictios, but it is istrumt which should b crfull trtd s it c sil crt

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) Awr: = ( + )(y + ) Diff prtilly w.r.to & y hr p & q y p = (y + ) ;

More information

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point:

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point: roic Oscilltor Pottil W r ow goig to stuy solutios to t TIS for vry usful ottil tt of t roic oscilltor. I clssicl cics tis is quivlt to t block srig robl or tt of t ulu (for sll oscilltios bot of wic r

More information

Section 5.1/5.2: Areas and Distances the Definite Integral

Section 5.1/5.2: Areas and Distances the Definite Integral Scto./.: Ars d Dstcs th Dt Itgrl Sgm Notto Prctc HW rom Stwrt Ttook ot to hd p. #,, 9 p. 6 #,, 9- odd, - odd Th sum o trms,,, s wrtt s, whr th d o summto Empl : Fd th sum. Soluto: Th Dt Itgrl Suppos w

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) = ( + )(y + ) Diff prtilly w.r.to & y hr p & q p = (y + ) ; q = ( +

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

IIT JEE MATHS MATRICES AND DETERMINANTS

IIT JEE MATHS MATRICES AND DETERMINANTS IIT JEE MTHS MTRICES ND DETERMINNTS THIRUMURUGN.K PGT Mths IIT Trir 978757 Pg. Lt = 5, th () =, = () = -, = () =, = - (d) = -, = -. Lt sw smmtri mtri of odd th quls () () () - (d) o of ths. Th vlu of th

More information

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013 Fourir Sris nd Prsvl s Rlion Çğy Cndn Dc., 3 W sudy h m problm EE 3 M, Fll3- in som dil o illusr som conncions bwn Fourir sris, Prsvl s rlion nd RMS vlus. Q. ps h signl sin is h inpu o hlf-wv rcifir circui

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca**

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca** ERDO-MARANDACHE NUMBER b Tbrc* Tt Tbrc** *Trslv Uvrsty of Brsov, Computr cc Dprtmt **Uvrsty of Mchstr, Computr cc Dprtmt Th strtg pot of ths rtcl s rprstd by rct work of Fch []. Bsd o two symptotc rsults

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

Chem 4502 Prof. Doreen Leopold 10/18/2017 Name (Please print) Quantum Chemistry and Spectroscopy Exam 2 (100 points, 50 minutes, 13 questions)

Chem 4502 Prof. Doreen Leopold 10/18/2017 Name (Please print) Quantum Chemistry and Spectroscopy Exam 2 (100 points, 50 minutes, 13 questions) Chm 5 Prof. Dor Lopold ANSWER KEY /8/7 Nm Pls prit Qutum Chmistry d Spctroscopy Em poits, 5 miuts, qustios Pls chck hr if you would prfr your grdd m to b rturd to you dirctly rthr th big icludd mog lphbtizd

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space Mish Kumr Mishr D.B.OhU Ktoch It. J. Comp. Tch. Appl. Vol ( 33-37 Som Commo Fi Poit Thorms for Pir of No psiv Mppigs i Grliz Epotil Cov Mtric Spc D.B.Oh Mish Kumr Mishr U Ktoch (Rsrch scholr Drvii Uivrsit

More information

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9 Lctur contnts Bloch thorm -vctor Brillouin zon Almost fr-lctron modl Bnds ffctiv mss Hols Trnsltionl symmtry: Bloch thorm On-lctron Schrödingr qution ch stt cn ccommo up to lctrons: If Vr is priodic function:

More information

Multi-Section Coupled Line Couplers

Multi-Section Coupled Line Couplers /0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DEFNTE NTEGRATON EXERCSE - CHECK YOUR GRASP. ( ) d [ ] d [ ] d d ƒ( ) ƒ '( ) [ ] [ ] 8 5. ( cos )( c)d 8 ( cos )( c)d + 8 ( cos )( c) d 8 ( cos )( c) d sic + cos 8 is lwys posiiv f() d ( > ) ms f() is

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

The Propagation Series

The Propagation Series //009 Th Progtio Sris rst /0 Th Progtio Sris Q: You rlir sttd tht sigl flow grhs r hlful i (cout m ) thr wys. I ow udrstd th first wy: Wy - Sigl flow grhs rovid us with grhicl ms of solvig lrg systms of

More information

The Propagation Series

The Propagation Series /9/009 Th Progtio Sris.doc /8 Th Progtio Sris Q: You rlir sttd tht sigl flow grhs r hlful i (cout m ) thr wys. I ow udrstd th first wy: Wy - Sigl flow grhs rovid us with grhicl ms of solvig lrg systms

More information

PREPARATORY MATHEMATICS FOR ENGINEERS

PREPARATORY MATHEMATICS FOR ENGINEERS CIVE 690 This qusti ppr csists f 6 pritd pgs, ch f which is idtifid by th Cd Numbr CIVE690 FORMULA SHEET ATTACHED UNIVERSITY OF LEEDS Jury 008 Emiti fr th dgr f BEg/ MEg Civil Egirig PREPARATORY MATHEMATICS

More information

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1 NOD6 (\Dt\04\Kot\J-Advced\SMP\Mths\Uit#0\NG\Prt-\0.Determits\0.Theory.p65. INTRODUCTION : If the equtios x + b 0, x + b 0 re stisfied by the sme vlue of x, the b b 0. The expressio b b is clled determit

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

FOURIER ANALYSIS Signals and System Analysis

FOURIER ANALYSIS Signals and System Analysis FOURIER ANALYSIS Isc Nwo Whi ligh cosiss of sv compos J Bpis Josph Fourir Bor: Mrch 768 i Auxrr, Bourgog, Frc Did: 6 My 83 i Pris, Frc Fourir Sris A priodic sigl of priod T sisfis ft f for ll f f for ll

More information

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000 Highr Mthmtics UNIT Mthmtics HSN000 This documnt ws producd spcilly for th HSN.uk.nt wbsit, nd w rquir tht ny copis or drivtiv works ttribut th work to Highr Still Nots. For mor dtils bout th copyright

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1 G( x)] = θp( R) + ( θ R)[1 G( R)] pg 15, problm 6: dmnd of

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems 0 Th -Trsform Dpt. of Elctroics Eg. -- DH609 Sigls d Systms 0. Th -Trsform Lplc trsform - for cotios tim sigl/systm -trsform - for discrt tim sigl/systm 0. Th -trsform For ipt y H H h with ω rl i.. DTFT

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

Chapter 5. Chapter 5 125

Chapter 5. Chapter 5 125 Chptr 5 Chptr 5: Itroductio to Digitl Filtrs... 6 5. Itroductio... 6 5.. No rcursiv digitl filtrs FIR... 7 5.. Rcursiv digitl filtr IIR... 8 5. Digitl Filtr Rlistio... 5.. Prlll rlistio... 5.. Cscd rlistio...

More information

Math 3B Midterm Review

Math 3B Midterm Review Mth 3B Midterm Review Writte by Victori Kl vtkl@mth.ucsb.edu SH 643u Office Hours: R 11:00 m - 1:00 pm Lst updted /15/015 Here re some short otes o Sectios 7.1-7.8 i your ebook. The best idictio of wht

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Par B: rasform Mhods Profssor E. Ambikairaah UNSW, Ausralia Chapr : Fourir Rprsaio of Sigal. Fourir Sris. Fourir rasform.3 Ivrs Fourir rasform.4 Propris.4. Frqucy Shif.4. im Shif.4.3 Scalig.4.4 Diffriaio

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

1. Stefan-Boltzmann law states that the power emitted per unit area of the surface of a black

1. Stefan-Boltzmann law states that the power emitted per unit area of the surface of a black Stf-Boltzm lw stts tht th powr mttd pr ut r of th surfc of blck body s proportol to th fourth powr of th bsolut tmprtur: 4 S T whr T s th bsolut tmprtur d th Stf-Boltzm costt= 5 4 k B 3 5c h ( Clcult 5

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Fourier Series. Topic 4 Fourier Series. sin. sin. Fourier Series. Fourier Series. Fourier Series. sin. b n. a n. sin

Fourier Series. Topic 4 Fourier Series. sin. sin. Fourier Series. Fourier Series. Fourier Series. sin. b n. a n. sin Topic Fourier Series si Fourier Series Music is more th just pitch mplitue it s lso out timre. The richess o sou or ote prouce y musicl istrumet is escrie i terms o sum o umer o istict requecies clle hrmoics.

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 71: Eqution (.3) should rd B( R) = θ R 1 x= [1 G( x)] pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering Lcur No Lcur-6-9 Ar rdig his lsso, you will lr ou Fourir sris xpsio rigoomric d xpoil Propris o Fourir Sris Rspos o lir sysm Normlizd powr i Fourir xpsio Powr spcrl dsiy Ec o rsr ucio o PSD. FOURIER SERIES

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

Lesson 4 Linear Algebra

Lesson 4 Linear Algebra Lesso Lier Algebr A fmily of vectors is lierly idepedet if oe of them c be writte s lier combitio of fiitely my other vectors i the collectio. Cosider m lierly idepedet equtios i ukows:, +, +... +, +,

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

MTH 146 Class 16 Notes

MTH 146 Class 16 Notes MTH 46 Clss 6 Notes 0.4- Cotiued Motivtio: We ow cosider the rc legth of polr curve. Suppose we wish to fid the legth of polr curve curve i terms of prmetric equtios s: r f where b. We c view the cos si

More information

IV. The z-transform and realization of digital filters

IV. The z-transform and realization of digital filters www.tuworld.com www.tuworld.com Digitl Sigl Procssig 4 Dcmbr 6, 9 IV. Th -trsform d rlitio of digitl filtrs 7 Syllbus: Rviw of -trsforms, Applictios of -trsforms, Solutio of diffrc qutios of digitl filtrs,

More information

Math 1272 Solutions for Fall 2004 Final Exam

Math 1272 Solutions for Fall 2004 Final Exam Mth 272 Solutios for Fll 2004 Fil Exm ) This itgrl pprs i Prolm of th udtd-2002? xm; solutio c foud i tht solutio st (B) 2) O of th first thigs tht should istigtd i plig th itgrtio of rtiol fuctio of polyomils

More information

ENGI 3424 Appendix Formulæ Page A-01

ENGI 3424 Appendix Formulæ Page A-01 ENGI 344 Appdix Formulæ g A-0 ENGI 344 Egirig Mthmtics ossibilitis or your Formul Shts You my slct itms rom this documt or plcmt o your ormul shts. Howvr, dsigig your ow ormul sht c b vlubl rvisio xrcis

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information