A summary of Modeling and Simulation

Size: px
Start display at page:

Download "A summary of Modeling and Simulation"

Transcription

1 A summary of Modeling and Simulation Text-book: Modeling of dynamic systems Lennart Ljung and Torkel Glad

2 Content What re Models for systems and signals? Basic concepts Types of models How to build a model for a given system? Physical modeling Experimental modeling How to simulate a system? Matlab/Simulink tools Case studies

3 Systems and models Part one Models, p13-78 System is defined d as an object or a collection of objects whose properties we want to study A model of a system is a tool we use to answer questions about the system without having to do an experiment Mental model Verbal model Physical model Mathematical model

4 How to build and validate models Physical modeling: laws of nature Experimental modeling: Identification Any models have a limited domain of validation

5 Types of mathematical models Deterministic & stochastic Dynamic & static Continuous time & discrete time Lumped & distributed Change oriented & discrete event driven

6 Models for systems and signals (Chapter 3) Block diagram models: logical decomposition of the functions of the system and show how the different parts(blocks) influence each other u(t) h(t) u(t) q(t) Tank model (1) h(t) q(t) Bernoulli s law: v(t)=sqrt(2gh(t))

7 Example of Flow dynamic u(t) h(t) q(t) dh () t a 2 h 1 ht () ut () dt = A + A qt () = a 2 ght ()

8 Parameters & Signals Parameters: system parameters & design parameters Signals (variables): external signals: input and disturbance Output signals Internal variables

9 Description of systems stems Differential/difference equations High-order DE Transfer functions Linearization equilibrium point (stationary), Taylor expansion Laplace transform/z-transform First-order DE (define internal variables) state space models Linearization equilibrium point, Taylor expansion State variables

10 Signal descriptions: Time-domain i Deterministic & analytic: u(t)=sin(200t) Deterministic & sampled: {u(n)} Non-deterministic & analytic: u(t)= sin(2t)+w(t) Non-deterministic & sampled: {u(n)} of random variable u(t) stochastic processes (DE sem6)

11 Signal descriptions: Frequency domain Concept of frequency harmonic signals High freq. & low freq. Signals Fourier transform Amplitude spectrum Power Spectrum of a signal is the sqaure of the absolute value of its Fourier transform FFT algorithms (DE 6sem)

12

13 System descriptions: Time-domain i Deffierential/differenece equations ODE (lumped) & PDE (distributed) Linear & nonlinear

14 Effects of system to input signal

15 System descriptions: frequency domain Laplace transform/z-transform Transfer functions for linear lumped ODE Bode plot/nyquist plot

16 Link between time and frequency domain systems Response to input Bode plot Stability pole locations Performance (overshoot, settling time, resonance freq.) pole locations Bandwidth robustness

17 Example Effects of Group Delay The filter has considerable attenuation at ω=0.85π. The group delay at ω=0.25π is about 200 steps, while at ω=0.5π, the group delay is about 50 steps

18 Connection of systems and signals Time-domain: ODE && yt () + 2 yt & () + yt () = ut & () + ut () yk ( ) yk ( 1) + 2 yk ( 2) = uk ( ) uk ( 1) Xt & () = AXt () + BUt () X ( k ) = AX ( k 1) + BU ( k 1) Yt () = CXt () Yk ( ) = CXk ( ) Frequency domain: Y () s s+ + 1 Gs () = = 2 TF U s s s U(s) G(s) Y(s) () Y( z) 1 z Gz ( ) = = 1 2 U( z) 1 z + 2z 1 Gs () = CsII ( A) B

19 Link betwen continuous time and discrete time models Sampling mechanism Aliasing problem See more from Digital control course.

20 Content What re Models for systems and signals? Basic concepts Types of models How to build a model for a given system? Physical modeling Experimental modeling How to simulate a system? Matlab/Simulink tools Case studies

21

22 Physical modeling Part II in textbook pp

23 Principle and Phases Use the knowledge of physics that is relevant to the considered system Phase 1: structure t the problem: decomposition (cause and effect, variables) block diagram Phase 2: formulate subsystems Phase 3: get system model via simplification E l d li th h d b f Example: modeling the head box of a paper machine (pp.85-95)

24 Formulation of physical modeling Conservation laws Mass balance Energy balance Electronics (Kirchhoff s laws) Constitutive relationships

25 Simplification of modeling Principles Neglect small effects (approximation) Separate time constants (T_max/T_min<=10~100, stiffness problem) Aggerate state variables: to merge several similar variables into one variable, which often plays the role of average or total value

26 Some relationships in physics Electrical circuits Mechanical translation Mechanical rotation Flow systems Thermal systems Lagrange modeling method For more, see BRP s lectures.

27 Newton s 2law m a = F 27

28 Newton s 2 law for Rotation J dω/dt = τ

29 DC motor with Permanent Magnet 29

30 Electro-Mechanical Energy Conversion Chassis or basket Voice coil S N Cone Force produced by current: F = Bl I (ved fastholdt svingspole) F: Kraften på membranen B: magnetfelt L: svingspolens trådelængde I: strømmen Surround Input Dust cap Electro Magnetic force (EMF) and back EMF S N Magnet Suspension Current produced by membrane velocity: emf = Bl v emf: modelektromotorisk kraft v: membranens hastighed

31 Block Diagram: Loudspeaker U in (t) + 1/L i(t) F(t) + a(t) v(t) x(t) e Bl 1/m m - - R e + + v(t) Bl + + r m 1/c m

32 Thermal systems, Head flow, modelling of geometric problems (for DE5); mm DE5.ppt Time and Frequency Response of 1. and 2. order systems (for M5); mm M5.ppt Linearization; mm ppt Linearization: solution of exercise; mm5 soulution.ppt

33 Lagrange modeling method Generalized coordinate Kinetic energy T Potential energy V External forces along ggerneralized coordinator Q

34 Experimental modeling (nonparametric identification) Part III in textbook pp Estimation of transient response Estimation of transfer function

35 Estimation of transient response (direct method) Transient responses: impulse response, step response Arrange experiment (input signal) Curve fitting, range scaling, time constant Transient analysis is easy and most widely used Potential problem: poor accuracy due to disturbances and measurement errors etc.

36 Estimation of transient response (Correlation analysis) Need knowledge of stochastic processes(sem6) Procedure: Collect data y(k), u(k), k=1,2,.,n Substract sample means from each signal: N N 1 1 y( k) = y( k) y( t), u( k) = u( k) u( t), N N t= 1 t= 1 yt () = gut ( k) + vt () Form signal via whitening filter L(q) (polynomial, lease square): Impulse response: y ( k) = L( q) y( k), u ( k) = L( q) u( k) F F Rˆ ( τ ) 1 1 g where R y tu t u t N N N N yfuf ˆ N ˆ 2 ˆ τ = y ˆ ( τ ) = ( ) ( τ), λ = ( ) FuF yf F N F λ N t 1 N N = t= 1 k = 0 k

37 Estimation of transient response Basic properties: (Correlation analysis) Quick insight into time constants and time delays Mo special inputs are required. Poor SNR can be compensated by longer dtata recordes Limitation: input u(t) is uncorrelated with disturbance v(t). This method won t work properly when the dtata are collected from a system under output feedback y () t = g kut ( k) + vt () k = 0

38 Estimation of transfer functions (frequency analysis -1) Direct frequency analysis (Bode plot) H(ejω) = H(ejω) e<h(ejω) Input x(n) and output y(n) relationship Y(ejω) = H(ejω) X(ejω) <Y(ejω) = <H(ejω) + <X(ejω)

39 Estimation of transfer functions Advantages (frequency analysis -2) Easy to use and requires no complicated data processing Requires no strustural t assumptions other than it being linear Easy to concentrate on freq. Ranges of special interest Disadvantages Graphic result (Bode plot) Need long time of experimentation

40 Estimation of transfer functions (Fourier analysis -1) Principle: Y( jω) N N jωkt T ω k= 1 k= 1 Y ( jω) = T y( kt) e, U ( j ) = T u( kt) e T G N Y ( jω) = U T T ( jω ) ( jω) jωkt G( jω ) = U ( j Ω ) T T jωt jωt 0 T 0 Y ( jω ) = y( t) e dt, U ( jω ) = u( t) e dt T ˆ Y ( ) ( ) T jω G jω = U ( jω) T Evaluation: 2 cc u g VN ( jωω ) GN ( jω) G( jω) +, U ( jω) U ( jω) where system y() t = g( τ) u( t τ) dτ + v() t input lim itation : u( t) cu 0 system property : τ g( τ) dτ = cg 0 N N

41 Estimation of transfer functions Advantages: (Fourier analysis -2) Easy and efficient to use (FFT) Good estimation of G(jw) at frequencies where the input has pure sinusoids Disadvantages: The estimation is wildly fluctuating graph, which only gives a rough picture of the true frequency domain (see Fig8.13, pp.209)

42 Estimation of transfer functions (Spectra analysis -1) Principle: R ( k) = g( k)* R ( k) R ( k) = g( k)* g( k)* R ( k) yu uu yy uu Φ ω = ω Φ ω Φ ω = ω Φ ω +Φ ω 2 yu ( ) G( ) uu ( ) yy ( ) G( ) uu ( ) vv( ) Spectra estimation (Black-Tukey s spectral estimate) - Window function N N 1 Ryu ( k ) = yt ( + k ) ut ( ) N γ t= 1 γ N Φ yu ( ω ) = wγ ( k ) Ryu ( k ) e k = γ Estimation: jωk 1 N N Ruu ( k) = u( t+ k) u( t) N Φ γ uu γ t= 1 N ( ω ) = wγ ( kr ) uu ( ke ) k = γ γ γ ˆ Φyu ( ω) Φyu ( ω) N ( ) γ γ G jω = Φ γ vv =Φyy ( ω ) γ Φ ( ω ) Φ ( ω ) uu uu 2 j ω k

43 Estimation of transfer functions Advantages: (Spectra analysis -2) Common method for signals and systems Only assume system is linear, and requires no specific input Adjusting the window size usually leads to a good picture Disadvantages: Graphic result (Bode plot) This method won t work properly when the dtata are collected from a system under output feedback

44 Experimental modeling (parametric identification) Chapter 9 in textbook pp Estimation of Tailor-made model Estimation of ready-made model

45 Parametric models Tailor-made model: constructed from basic physical principles. i Unknown parameters have physical interpretation (grey-box) Ready-made model: describe the properties of the input-output t t relationships without any physical interpretation (black- box)

46 Tailor-made model identification Can be done by conventional physical experimentation ti and measurement methods, e.g., Estimate the time constant using step response Esitmate the DC-gain usinf steady response

47 Ready-made models Box-Jenkins (BJ) model Output error (OE) model B(q)/F(q) B(q)/F(q) C(q)/D(q) ARMAX model C(q) ARX model B(q) 1/A(q) B(q) 1/A(q)

48 Ready-made model identification System identification (IRS7) P Summary on p Chapt 10 system identification as a tool for model building...

49 Content What re Models for systems and signals? Basic concepts Types of models How to build a model for a given system? Physical modeling Experimental modeling How to simulate a system? Matlab/Simulink tools Case studies

50 Part IV Simulation and model use Simulation Block diagram Matlab/Simulink, Labview Numerical methods (DE 6sem), p Model validation and use

51 Content What re Models for systems and signals? Basic concepts Types of models How to build a model for a given system? Physical modeling Experimental modeling How to simulate a system? Matlab/Simulink li tools Case studies BeoSound 9000 sledge control

Lecture 1: Introduction to System Modeling and Control. Introduction Basic Definitions Different Model Types System Identification

Lecture 1: Introduction to System Modeling and Control. Introduction Basic Definitions Different Model Types System Identification Lecture 1: Introduction to System Modeling and Control Introduction Basic Definitions Different Model Types System Identification What is Mathematical Model? A set of mathematical equations (e.g., differential

More information

Euler-lagrange method 11/6/2008 1

Euler-lagrange method 11/6/2008 1 Euler-lagrange method 11/6/2008 1 Preface Motivation EL Method Generalized coordinate Lagrangian Euler-Lagrange equation Illustrative Examples Conclusion 11/6/2008 2 Preface What re Models for systems

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

Index. Index. More information. in this web service Cambridge University Press

Index. Index. More information.  in this web service Cambridge University Press A-type elements, 4 7, 18, 31, 168, 198, 202, 219, 220, 222, 225 A-type variables. See Across variable ac current, 172, 251 ac induction motor, 251 Acceleration rotational, 30 translational, 16 Accumulator,

More information

Identification of Linear Systems

Identification of Linear Systems Identification of Linear Systems Johan Schoukens http://homepages.vub.ac.be/~jschouk Vrije Universiteit Brussel Department INDI /67 Basic goal Built a parametric model for a linear dynamic system from

More information

Laplace Transforms Chapter 3

Laplace Transforms Chapter 3 Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important

More information

Chapter 6: Nonparametric Time- and Frequency-Domain Methods. Problems presented by Uwe

Chapter 6: Nonparametric Time- and Frequency-Domain Methods. Problems presented by Uwe System Identification written by L. Ljung, Prentice Hall PTR, 1999 Chapter 6: Nonparametric Time- and Frequency-Domain Methods Problems presented by Uwe System Identification Problems Chapter 6 p. 1/33

More information

Introduction to Feedback Control

Introduction to Feedback Control Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

AC&ST AUTOMATIC CONTROL AND SYSTEM THEORY SYSTEMS AND MODELS. Claudio Melchiorri

AC&ST AUTOMATIC CONTROL AND SYSTEM THEORY SYSTEMS AND MODELS. Claudio Melchiorri C. Melchiorri (DEI) Automatic Control & System Theory 1 AUTOMATIC CONTROL AND SYSTEM THEORY SYSTEMS AND MODELS Claudio Melchiorri Dipartimento di Ingegneria dell Energia Elettrica e dell Informazione (DEI)

More information

EL1820 Modeling of Dynamical Systems

EL1820 Modeling of Dynamical Systems EL1820 Modeling of Dynamical Systems Lecture 10 - System identification as a model building tool Experiment design Examination and prefiltering of data Model structure selection Model validation Lecture

More information

Time Response of Systems

Time Response of Systems Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) s-plane Time response p =0 s p =0,p 2 =0 s 2 t p =

More information

Non-parametric identification

Non-parametric identification Non-parametric Non-parametric Transient Step-response using Spectral Transient Correlation Frequency function estimate Spectral System Identification, SSY230 Non-parametric 1 Non-parametric Transient Step-response

More information

Lecture Note #6 (Chap.10)

Lecture Note #6 (Chap.10) System Modeling and Identification Lecture Note #6 (Chap.) CBE 7 Korea University Prof. Dae Ryook Yang Chap. Model Approximation Model approximation Simplification, approximation and order reduction of

More information

Nonlinear Losses in Electro-acoustical Transducers Wolfgang Klippel, Daniel Knobloch

Nonlinear Losses in Electro-acoustical Transducers Wolfgang Klippel, Daniel Knobloch The Association of Loudspeaker Manufacturers & Acoustics International (ALMA) Nonlinear Losses in Electro-acoustical Transducers Wolfgang Klippel, Daniel Knobloch Institute of Acoustics and Speech Communication

More information

Process Control & Instrumentation (CH 3040)

Process Control & Instrumentation (CH 3040) First-order systems Process Control & Instrumentation (CH 3040) Arun K. Tangirala Department of Chemical Engineering, IIT Madras January - April 010 Lectures: Mon, Tue, Wed, Fri Extra class: Thu A first-order

More information

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2)

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2) E.5 Signals & Linear Systems Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & ) 1. Sketch each of the following continuous-time signals, specify if the signal is periodic/non-periodic,

More information

EL1820 Modeling of Dynamical Systems

EL1820 Modeling of Dynamical Systems EL1820 Modeling of Dynamical Systems Lecture 9 - Parameter estimation in linear models Model structures Parameter estimation via prediction error minimization Properties of the estimate: bias and variance

More information

MAE143A Signals & Systems, Final Exam - Wednesday March 16, 2005

MAE143A Signals & Systems, Final Exam - Wednesday March 16, 2005 MAE13A Signals & Systems, Final Exam - Wednesday March 16, 5 Instructions This quiz is open book. You may use whatever written materials you choose including your class notes and the textbook. You may

More information

Basic Procedures for Common Problems

Basic Procedures for Common Problems Basic Procedures for Common Problems ECHE 550, Fall 2002 Steady State Multivariable Modeling and Control 1 Determine what variables are available to manipulate (inputs, u) and what variables are available

More information

MODELING OF CONTROL SYSTEMS

MODELING OF CONTROL SYSTEMS 1 MODELING OF CONTROL SYSTEMS Feb-15 Dr. Mohammed Morsy Outline Introduction Differential equations and Linearization of nonlinear mathematical models Transfer function and impulse response function Laplace

More information

Fourier Methods in Digital Signal Processing Final Exam ME 579, Spring 2015 NAME

Fourier Methods in Digital Signal Processing Final Exam ME 579, Spring 2015 NAME Fourier Methods in Digital Signal Processing Final Exam ME 579, Instructions for this CLOSED BOOK EXAM 2 hours long. Monday, May 8th, 8-10am in ME1051 Answer FIVE Questions, at LEAST ONE from each section.

More information

System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang

System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang 1-1 Course Description Emphases Delivering concepts and Practice Programming Identification Methods using Matlab Class

More information

Review of Linear Time-Invariant Network Analysis

Review of Linear Time-Invariant Network Analysis D1 APPENDIX D Review of Linear Time-Invariant Network Analysis Consider a network with input x(t) and output y(t) as shown in Figure D-1. If an input x 1 (t) produces an output y 1 (t), and an input x

More information

EE 224 Signals and Systems I Review 1/10

EE 224 Signals and Systems I Review 1/10 EE 224 Signals and Systems I Review 1/10 Class Contents Signals and Systems Continuous-Time and Discrete-Time Time-Domain and Frequency Domain (all these dimensions are tightly coupled) SIGNALS SYSTEMS

More information

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 18: State Feedback Tracking and State Estimation Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 18:

More information

( ) ( = ) = ( ) ( ) ( )

( ) ( = ) = ( ) ( ) ( ) ( ) Vρ C st s T t 0 wc Ti s T s Q s (8) K T ( s) Q ( s) + Ti ( s) (0) τs+ τs+ V ρ K and τ wc w T (s)g (s)q (s) + G (s)t(s) i G and G are transfer functions and independent of the inputs, Q and T i. Note

More information

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42 Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 Open-Loop

More information

Singular Value Decomposition Analysis

Singular Value Decomposition Analysis Singular Value Decomposition Analysis Singular Value Decomposition Analysis Introduction Introduce a linear algebra tool: singular values of a matrix Motivation Why do we need singular values in MIMO control

More information

ET3-7: Modelling II(V) Electrical, Mechanical and Thermal Systems

ET3-7: Modelling II(V) Electrical, Mechanical and Thermal Systems ET3-7: Modelling II(V) Electrical, Mechanical and Thermal Systems Agenda of the Day 1. Resume of lesson I 2. Basic system models. 3. Models of basic electrical system elements 4. Application of Matlab/Simulink

More information

CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version

CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version Norman S. Nise California State Polytechnic University, Pomona John Wiley fir Sons, Inc. Contents PREFACE, vii 1. INTRODUCTION, 1

More information

Chapter 7. Digital Control Systems

Chapter 7. Digital Control Systems Chapter 7 Digital Control Systems 1 1 Introduction In this chapter, we introduce analysis and design of stability, steady-state error, and transient response for computer-controlled systems. Transfer functions,

More information

School of Engineering Faculty of Built Environment, Engineering, Technology & Design

School of Engineering Faculty of Built Environment, Engineering, Technology & Design Module Name and Code : ENG60803 Real Time Instrumentation Semester and Year : Semester 5/6, Year 3 Lecture Number/ Week : Lecture 3, Week 3 Learning Outcome (s) : LO5 Module Co-ordinator/Tutor : Dr. Phang

More information

Control Systems Lab - SC4070 System Identification and Linearization

Control Systems Lab - SC4070 System Identification and Linearization Control Systems Lab - SC4070 System Identification and Linearization Dr. Manuel Mazo Jr. Delft Center for Systems and Control (TU Delft) m.mazo@tudelft.nl Tel.:015-2788131 TU Delft, February 13, 2015 (slides

More information

Analysis of Discrete-Time Systems

Analysis of Discrete-Time Systems TU Berlin Discrete-Time Control Systems 1 Analysis of Discrete-Time Systems Overview Stability Sensitivity and Robustness Controllability, Reachability, Observability, and Detectabiliy TU Berlin Discrete-Time

More information

Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries

Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries . AERO 632: of Advance Flight Control System. Preliminaries Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. Preliminaries Signals & Systems Laplace

More information

FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY

FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai - 625 020. An ISO 9001:2008 Certified Institution DEPARTMENT OF ELECTRONICS AND COMMUNICATION

More information

Analysis of Discrete-Time Systems

Analysis of Discrete-Time Systems TU Berlin Discrete-Time Control Systems TU Berlin Discrete-Time Control Systems 2 Stability Definitions We define stability first with respect to changes in the initial conditions Analysis of Discrete-Time

More information

Matlab software tools for model identification and data analysis 11/12/2015 Prof. Marcello Farina

Matlab software tools for model identification and data analysis 11/12/2015 Prof. Marcello Farina Matlab software tools for model identification and data analysis 11/12/2015 Prof. Marcello Farina Model Identification and Data Analysis (Academic year 2015-2016) Prof. Sergio Bittanti Outline Data generation

More information

AMJAD HASOON Process Control Lec4.

AMJAD HASOON Process Control Lec4. Multiple Inputs Control systems often have more than one input. For example, there can be the input signal indicating the required value of the controlled variable and also an input or inputs due to disturbances

More information

Time Response Analysis (Part II)

Time Response Analysis (Part II) Time Response Analysis (Part II). A critically damped, continuous-time, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary

More information

Analysis and Synthesis of Single-Input Single-Output Control Systems

Analysis and Synthesis of Single-Input Single-Output Control Systems Lino Guzzella Analysis and Synthesis of Single-Input Single-Output Control Systems l+kja» \Uja>)W2(ja»\ um Contents 1 Definitions and Problem Formulations 1 1.1 Introduction 1 1.2 Definitions 1 1.2.1 Systems

More information

Laplace Transforms. Chapter 3. Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France

Laplace Transforms. Chapter 3. Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France Laplace Transforms Dr. M. A. A. Shoukat Choudhury 1 Laplace Transforms Important analytical

More information

Aspects of Continuous- and Discrete-Time Signals and Systems

Aspects of Continuous- and Discrete-Time Signals and Systems Aspects of Continuous- and Discrete-Time Signals and Systems C.S. Ramalingam Department of Electrical Engineering IIT Madras C.S. Ramalingam (EE Dept., IIT Madras) Networks and Systems 1 / 45 Scaling the

More information

Dynamic circuits: Frequency domain analysis

Dynamic circuits: Frequency domain analysis Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution

More information

Control System Design

Control System Design ELEC4410 Control System Design Lecture 19: Feedback from Estimated States and Discrete-Time Control Design Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science

More information

LTI Systems (Continuous & Discrete) - Basics

LTI Systems (Continuous & Discrete) - Basics LTI Systems (Continuous & Discrete) - Basics 1. A system with an input x(t) and output y(t) is described by the relation: y(t) = t. x(t). This system is (a) linear and time-invariant (b) linear and time-varying

More information

(a) Find the transfer function of the amplifier. Ans.: G(s) =

(a) Find the transfer function of the amplifier. Ans.: G(s) = 126 INTRDUCTIN T CNTR ENGINEERING 10( s 1) (a) Find the transfer function of the amplifier. Ans.: (. 02s 1)(. 001s 1) (b) Find the expected percent overshoot for a step input for the closed-loop system

More information

Outline. Classical Control. Lecture 2

Outline. Classical Control. Lecture 2 Outline Outline Outline Review of Material from Lecture 2 New Stuff - Outline Review of Lecture System Performance Effect of Poles Review of Material from Lecture System Performance Effect of Poles 2 New

More information

The Johns Hopkins University Department of Electrical and Computer Engineering Introduction to Linear Systems Fall 2002.

The Johns Hopkins University Department of Electrical and Computer Engineering Introduction to Linear Systems Fall 2002. The Johns Hopkins University Department of Electrical and Computer Engineering 505.460 Introduction to Linear Systems Fall 2002 Final exam Name: You are allowed to use: 1. Table 3.1 (page 206) & Table

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels)

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels) GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-14 COURSE: ECE 3084A (Prof. Michaels) NAME: STUDENT #: LAST, FIRST Write your name on the front page

More information

Each problem is worth 25 points, and you may solve the problems in any order.

Each problem is worth 25 points, and you may solve the problems in any order. EE 120: Signals & Systems Department of Electrical Engineering and Computer Sciences University of California, Berkeley Midterm Exam #2 April 11, 2016, 2:10-4:00pm Instructions: There are four questions

More information

ECE 636: Systems identification

ECE 636: Systems identification ECE 636: Systems identification Lectures 7 8 onparametric identification (continued) Important distributions: chi square, t distribution, F distribution Sampling distributions ib i Sample mean If the variance

More information

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017

More information

Problem Weight Score Total 100

Problem Weight Score Total 100 EE 350 EXAM IV 15 December 2010 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total

More information

Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 7: Feedback and the Root Locus method Readings: Jacopo Tani Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 2, 2018 J. Tani, E. Frazzoli (ETH) Lecture 7:

More information

Advanced Process Control Tutorial Problem Set 2 Development of Control Relevant Models through System Identification

Advanced Process Control Tutorial Problem Set 2 Development of Control Relevant Models through System Identification Advanced Process Control Tutorial Problem Set 2 Development of Control Relevant Models through System Identification 1. Consider the time series x(k) = β 1 + β 2 k + w(k) where β 1 and β 2 are known constants

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chapter 1 Fundamental Concepts 1 Signals A signal is a pattern of variation of a physical quantity, often as a function of time (but also space, distance, position, etc). These quantities are usually the

More information

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

DESIGN OF CMOS ANALOG INTEGRATED CIRCUITS

DESIGN OF CMOS ANALOG INTEGRATED CIRCUITS DESIGN OF CMOS ANALOG INEGRAED CIRCUIS Franco Maloberti Integrated Microsistems Laboratory University of Pavia Discrete ime Signal Processing F. Maloberti: Design of CMOS Analog Integrated Circuits Discrete

More information

Some solutions of the written exam of January 27th, 2014

Some solutions of the written exam of January 27th, 2014 TEORIA DEI SISTEMI Systems Theory) Prof. C. Manes, Prof. A. Germani Some solutions of the written exam of January 7th, 0 Problem. Consider a feedback control system with unit feedback gain, with the following

More information

YTÜ Mechanical Engineering Department

YTÜ Mechanical Engineering Department YTÜ Mechanical Engineering Department Lecture of Special Laboratory of Machine Theory, System Dynamics and Control Division Coupled Tank 1 Level Control with using Feedforward PI Controller Lab Date: Lab

More information

School of Mechanical Engineering Purdue University. ME375 Dynamic Response - 1

School of Mechanical Engineering Purdue University. ME375 Dynamic Response - 1 Dynamic Response of Linear Systems Linear System Response Superposition Principle Responses to Specific Inputs Dynamic Response of f1 1st to Order Systems Characteristic Equation - Free Response Stable

More information

Table of Laplacetransform

Table of Laplacetransform Appendix Table of Laplacetransform pairs 1(t) f(s) oct), unit impulse at t = 0 a, a constant or step of magnitude a at t = 0 a s t, a ramp function e- at, an exponential function s + a sin wt, a sine fun

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 20) Final Examination December 9, 20 Name: Kerberos Username: Please circle your section number: Section Time 2 am pm 4 2 pm Grades will be determined by the correctness of your answers (explanations

More information

YTÜ Mechanical Engineering Department

YTÜ Mechanical Engineering Department YTÜ Mechanical Engineering Department Lecture of Special Laboratory of Machine Theory, System Dynamics and Control Division Coupled Tank 1 Level Control with using Feedforward PI Controller Lab Report

More information

Introduction to Modern Control MT 2016

Introduction to Modern Control MT 2016 CDT Autonomous and Intelligent Machines & Systems Introduction to Modern Control MT 2016 Alessandro Abate Lecture 2 First-order ordinary differential equations (ODE) Solution of a linear ODE Hints to nonlinear

More information

7.2 Controller tuning from specified characteristic polynomial

7.2 Controller tuning from specified characteristic polynomial 192 Finn Haugen: PID Control 7.2 Controller tuning from specified characteristic polynomial 7.2.1 Introduction The subsequent sections explain controller tuning based on specifications of the characteristic

More information

LECTURE 12 Sections Introduction to the Fourier series of periodic signals

LECTURE 12 Sections Introduction to the Fourier series of periodic signals Signals and Systems I Wednesday, February 11, 29 LECURE 12 Sections 3.1-3.3 Introduction to the Fourier series of periodic signals Chapter 3: Fourier Series of periodic signals 3. Introduction 3.1 Historical

More information

Core Concepts Review. Orthogonality of Complex Sinusoids Consider two (possibly non-harmonic) complex sinusoids

Core Concepts Review. Orthogonality of Complex Sinusoids Consider two (possibly non-harmonic) complex sinusoids Overview of Continuous-Time Fourier Transform Topics Definition Compare & contrast with Laplace transform Conditions for existence Relationship to LTI systems Examples Ideal lowpass filters Relationship

More information

ELEG 305: Digital Signal Processing

ELEG 305: Digital Signal Processing ELEG 305: Digital Signal Processing Lecture : Design of Digital IIR Filters (Part I) Kenneth E. Barner Department of Electrical and Computer Engineering University of Delaware Fall 008 K. E. Barner (Univ.

More information

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequency-domain analysis and control design (15 pt) Given is a

More information

13. Power Spectrum. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if.

13. Power Spectrum. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if jt X ( ) = xte ( ) dt, (3-) then X ( ) represents its energy spectrum. his follows from Parseval

More information

EC Signals and Systems

EC Signals and Systems UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS Continuous time signals (CT signals), discrete time signals (DT signals) Step, Ramp, Pulse, Impulse, Exponential 1. Define Unit Impulse Signal [M/J 1], [M/J

More information

INTRODUCTION TO DIGITAL CONTROL

INTRODUCTION TO DIGITAL CONTROL ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a linear-time-invariant

More information

14 - Gaussian Stochastic Processes

14 - Gaussian Stochastic Processes 14-1 Gaussian Stochastic Processes S. Lall, Stanford 211.2.24.1 14 - Gaussian Stochastic Processes Linear systems driven by IID noise Evolution of mean and covariance Example: mass-spring system Steady-state

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 2011) Final Examination December 19, 2011 Name: Kerberos Username: Please circle your section number: Section Time 2 11 am 1 pm 4 2 pm Grades will be determined by the correctness of your answers

More information

ECE317 : Feedback and Control

ECE317 : Feedback and Control ECE317 : Feedback and Control Lecture : Steady-state error Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling Analysis Design Laplace

More information

Course roadmap. ME451: Control Systems. Example of Laplace transform. Lecture 2 Laplace transform. Laplace transform

Course roadmap. ME451: Control Systems. Example of Laplace transform. Lecture 2 Laplace transform. Laplace transform ME45: Control Systems Lecture 2 Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Transfer function Models for systems electrical mechanical electromechanical Block

More information

Solutions to Problems in Chapter 4

Solutions to Problems in Chapter 4 Solutions to Problems in Chapter 4 Problems with Solutions Problem 4. Fourier Series of the Output Voltage of an Ideal Full-Wave Diode Bridge Rectifier he nonlinear circuit in Figure 4. is a full-wave

More information

Course Summary. The course cannot be summarized in one lecture.

Course Summary. The course cannot be summarized in one lecture. Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: Steady-State Error Unit 7: Root Locus Techniques

More information

R10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1

R10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1 Code No: R06 R0 SET - II B. Tech II Semester Regular Examinations April/May 03 CONTROL SYSTEMS (Com. to EEE, ECE, EIE, ECC, AE) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry

More information

ELEC2400 Signals & Systems

ELEC2400 Signals & Systems ELEC2400 Signals & Systems Chapter 7. Z-Transforms Brett Ninnes brett@newcastle.edu.au. School of Electrical Engineering and Computer Science The University of Newcastle Slides by Juan I. Yu (jiyue@ee.newcastle.edu.au

More information

Computer Aided Control Design

Computer Aided Control Design Computer Aided Control Design Project-Lab 3 Automatic Control Basic Course, EL1000/EL1100/EL1120 Revised August 18, 2008 Modified version of laboration developed by Håkan Fortell and Svante Gunnarsson

More information

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Modeling and Analysis of Dynamic Systems by Dr. Guillaume Ducard Fall 2016 Institute for Dynamic Systems and Control ETH Zurich, Switzerland based on script from: Prof. Dr. Lino Guzzella 1/33 Outline 1

More information

Introduction & Laplace Transforms Lectures 1 & 2

Introduction & Laplace Transforms Lectures 1 & 2 Introduction & Lectures 1 & 2, Professor Department of Electrical and Computer Engineering Colorado State University Fall 2016 Control System Definition of a Control System Group of components that collectively

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chapter 1 Fundamental Concepts Signals A signal is a pattern of variation of a physical quantity as a function of time, space, distance, position, temperature, pressure, etc. These quantities are usually

More information

3 Fourier Series Representation of Periodic Signals

3 Fourier Series Representation of Periodic Signals 65 66 3 Fourier Series Representation of Periodic Signals Fourier (or frequency domain) analysis constitutes a tool of great usefulness Accomplishes decomposition of broad classes of signals using complex

More information

D(s) G(s) A control system design definition

D(s) G(s) A control system design definition R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure

More information

ECE 636: Systems identification

ECE 636: Systems identification ECE 636: Systems identification Lectures 3 4 Random variables/signals (continued) Random/stochastic vectors Random signals and linear systems Random signals in the frequency domain υ ε x S z + y Experimental

More information

School of Mechanical Engineering Purdue University. ME375 Feedback Control - 1

School of Mechanical Engineering Purdue University. ME375 Feedback Control - 1 Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

Iterative Controller Tuning Using Bode s Integrals

Iterative Controller Tuning Using Bode s Integrals Iterative Controller Tuning Using Bode s Integrals A. Karimi, D. Garcia and R. Longchamp Laboratoire d automatique, École Polytechnique Fédérale de Lausanne (EPFL), 05 Lausanne, Switzerland. email: alireza.karimi@epfl.ch

More information

Laplace Transform Part 1: Introduction (I&N Chap 13)

Laplace Transform Part 1: Introduction (I&N Chap 13) Laplace Transform Part 1: Introduction (I&N Chap 13) Definition of the L.T. L.T. of Singularity Functions L.T. Pairs Properties of the L.T. Inverse L.T. Convolution IVT(initial value theorem) & FVT (final

More information

LOPE3202: Communication Systems 10/18/2017 2

LOPE3202: Communication Systems 10/18/2017 2 By Lecturer Ahmed Wael Academic Year 2017-2018 LOPE3202: Communication Systems 10/18/2017 We need tools to build any communication system. Mathematics is our premium tool to do work with signals and systems.

More information

CDS 101/110: Lecture 3.1 Linear Systems

CDS 101/110: Lecture 3.1 Linear Systems CDS /: Lecture 3. Linear Systems Goals for Today: Revist and motivate linear time-invariant system models: Summarize properties, examples, and tools Convolution equation describing solution in response

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Discrete-Time Signal Processing

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Discrete-Time Signal Processing Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.34: Discrete-Time Signal Processing OpenCourseWare 006 ecture 8 Periodogram Reading: Sections 0.6 and 0.7

More information

STABILITY ANALYSIS. Asystemmaybe stable, neutrallyormarginallystable, or unstable. This can be illustrated using cones: Stable Neutral Unstable

STABILITY ANALYSIS. Asystemmaybe stable, neutrallyormarginallystable, or unstable. This can be illustrated using cones: Stable Neutral Unstable ECE4510/5510: Feedback Control Systems. 5 1 STABILITY ANALYSIS 5.1: Bounded-input bounded-output (BIBO) stability Asystemmaybe stable, neutrallyormarginallystable, or unstable. This can be illustrated

More information

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3.. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid -

More information

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21-211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21-211 1 / 39 Feedback

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67 1/67 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 6 Mathematical Representation of Physical Systems II State Variable Models for Dynamic Systems u 1 u 2 u ṙ. Internal Variables x 1, x 2 x n y 1 y 2. y m Figure

More information

Solving a RLC Circuit using Convolution with DERIVE for Windows

Solving a RLC Circuit using Convolution with DERIVE for Windows Solving a RLC Circuit using Convolution with DERIVE for Windows Michel Beaudin École de technologie supérieure, rue Notre-Dame Ouest Montréal (Québec) Canada, H3C K3 mbeaudin@seg.etsmtl.ca - Introduction

More information