Laplace Transforms. Chapter 3. Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France

Size: px
Start display at page:

Download "Laplace Transforms. Chapter 3. Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France"

Transcription

1 Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France Laplace Transforms Dr. M. A. A. Shoukat Choudhury 1

2 Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important process control concepts and techniques. - Examples: Transfer functions Frequency response Control system design Stability analysis Dr. M. A. A. Shoukat Choudhury 2

3 Definition The Laplace transform of a function, f(t), is defined as [ ] () Fs () L ft () f te dt (3-1) = = where F(s) is the symbol for the Laplace transform, L is the Laplace transform operator, and f(t) is some function of time, t. Note: The L operator transforms a time domain function f(t) into an s domain function, F(s). s is a complex variable: s = a + bj, j = 1 0 st Dr. M. A. A. Shoukat Choudhury 3

4 Inverse Laplace Transform, L -1: By definition, the inverse Laplace transform operator, L -1, converts an s-domain function back to the corresponding time domain function: 1 L F( s) f t = Important Properties: Both L and L -1 are linear operators. Thus, () + = + = ax ( s) + by ( s) (3-3) L axt byt al xt bl yt Dr. M. A. A. Shoukat Choudhury 4

5 where: - x(t) and y(t) are arbitrary functions Similarly, - a and b are constants - X ( s) = L x( t) and Y( s) = L y( t) L + = + 1 ax s by s ax t b y t Dr. M. A. A. Shoukat Choudhury 5

6 Laplace Transforms of Common Functions 1. Constant Function Let f(t) = a (a constant). Then from the definition of the Laplace transform in (3-1), L st a st a a a = ae dt = e = 0 = (3-4) s s s 0 0 Dr. M. A. A. Shoukat Choudhury 6

7 2. Step Function The unit step function is widely used in the analysis of process control problems. It is defined as: () S t = 0 fort < 0 1 fort 0 (3-5) Because the step function is a special case of a constant, it follows from (3-4) that () L S t = 1 s (3-6) Dr. M. A. A. Shoukat Choudhury 7

8 3. Derivatives This is a very important transform because derivatives appear in the ODEs we wish to solve. In the text (p.53), it is shown that df L = sf s dt f 0 (3-9) initial condition at t = 0 Similarly, for higher order derivatives: L n d f n n 1 n 2 () 1 s F s s f 0 s f ( 0) n = dt ( n ) 2 1 ( n )... sf 0 f 0 (3-14) Dr. M. A. A. Shoukat Choudhury 8

9 where: - n is an arbitrary positive integer - ( k f ) ( 0) d k f k dt = Special Case: All Initial Conditions are Zero Suppose t ( n ) f 0 = f 0 =... = f 0. L n d f n = dt = n s F s Then In process control problems, we usually assume zero initial conditions. Reason: This corresponds to the nominal steady state when deviation variables are used, as shown in Ch. 4. Dr. M. A. A. Shoukat Choudhury 9

10 4. Exponential Functions Consider bt = e f t where b > 0. Then, bt bt st ( b + s) t L e = e e dt = e dt ( b+ s) t 1 = e = b+ s 0 s+ b 5. Rectangular Pulse Function It is defined by: (3-16) 0 for t < 0 f () t = h for 0 t < tw (3-20) 0 for t tw Dr. M. A. A. Shoukat Choudhury 10

11 h f () t t w Time, t The Laplace transform of the rectangular pulse is given by h s ( ts = e ) F s w 1 (3-22) Dr. M. A. A. Shoukat Choudhury 11

12 6. Impulse Function (or Dirac Delta Function) The impulse function is obtained by taking the limit of the rectangular pulse as its width, t w, goes to zero but holding 1 the area under the pulse constant at one. (i.e., let h = ) t Let, = impulse function w δ ( t) Then, ( t) 1 L δ = Dr. M. A. A. Shoukat Choudhury 12

13 Table 3.1. Laplace Transforms See page 54 of the text. Dr. M. A. A. Shoukat Choudhury 13

14 Laplace Transform Table Dr. M. A. A. Shoukat Choudhury 14

15 Solution of ODEs by Laplace Transforms Procedure: 1. Take the L of both sides of the ODE. 2. Rearrange the resulting algebraic equation in the s domain to solve for the L of the output variable, e.g., Y(s). 3. Perform a partial fraction expansion. 4. Use the L -1 to find y(t) from the expression for Y(s). Dr. M. A. A. Shoukat Choudhury 15

16 Example 3.1 Solve the ODE, dy 5 4y 2 y( 0) 1 (3-26) dt + = = First, take L of both sides of (3-26), 2 5( sy ( s) 1) + 4Y ( s) = s Rearrange, 5s + 2 Y( s) = (3-34) s 5s+ 4 Take L -1, From Table 3.1, () yt 1 5s + 2 = L s( 5s+ 4) 0.8t () = + e yt (3-37) Dr. M. A. A. Shoukat Choudhury 16

17 Partial Fraction Expansions Basic idea: Expand a complex expression for Y(s) into simpler terms, each of which appears in the Laplace Transform table. Then you can take the L -1 of both sides of the equation to obtain y(t). Example: Y s = s + 5 ( s+ 1)( s+ 4) Perform a partial fraction expansion (PFE) s + 5 α1 α = + 2 s+ 1 s+ 4 s+ 1 s+ 4 (3-41) (3-42) where coefficients and α have to be determined. α1 2 Dr. M. A. A. Shoukat Choudhury 17

18 To find α 1 : Multiply both sides by s + 1 and let s = -1 s α1 = = s s= 1 To find α 2 : Multiply both sides by s + 4 and let s = -4 s α2 = = s A General PFE s= 4 Consider a general expression, Y s N s = = D s n π i= 1 N s ( s+ b ) i (3-46a) Dr. M. A. A. Shoukat Choudhury 18

19 Here D(s) is an n-th order polynomial with the roots s = b i all being real numbers which are distinct so there are no repeated roots. The PFE is: Y s N s = = n n π = i i= 1 ( s+ b ) i 1 αi s+ b Note: D(s) is called the characteristic polynomial. Special Situations: i (3-46b) Two other types of situations commonly occur when D(s) has: i) Complex roots: e.g., bi = 3± 4j j = 1 ii) Repeated roots (e.g., b = b = ) For these situations, the PFE has a different form. See SEM text (pp ) for details. Dr. M. A. A. Shoukat Choudhury 19

20 Example 3.2 The ODE, &&& y ++ 6&& y+ 11y& + 6y = 1 resulted in the expression Y s = 1 ( ) s s s s The denominator can be factored as ( ) = ( + )( + )( + ), with zero initial conditions (3-40) s s 6s 11s 6 s s 1 s 2 s 3 (3-50) Note: Normally, numerical techniques are required in order to calculate the roots. The PFE for (3-40) is Y s 1 α1 α2 α3 α = = s s+ 1 s+ 2 s+ 3 s s+ 1 s+ 2 s+ 3 (3-51) Dr. M. A. A. Shoukat Choudhury 20

21 Solve for coefficients to get α1 =, α2 =, α3 =, α4 = (For example, find α, by multiplying both sides by s and then setting s = 0.) Substitute numerical values into (3-51): 1/6 1/2 1/2 1/6 Y() s = + s s+ 1 s+ 2 s+ 3 Take L -1 of both sides: L 1 1 1/6 1 1/2 1 1/2 1 1/6 Y s = L + s L s+ 1 L s+ 2 L s+ 3 From Table 3.1, yt e e e t 2t 3t () = + (3-52) Dr. M. A. A. Shoukat Choudhury 21

22 Important Properties of Laplace Transforms 1. Final Value Theorem It can be used to find the steady-state value of a closed loop system (providing that a steady-state value exists. Statement of FVT: lim t = lim sy ( s) yt s 0 providing that the limit exists (is finite) for all Re( s) 0, where Re (s) denotes the real part of complex variable, s. Dr. M. A. A. Shoukat Choudhury 22

23 Example: 2. Time Delay Suppose, Y s = Then, y 5s + 2 s ( 5s+ 4) y( t) (3-34) 5s + 2 = lim = lim 0.5 t = s 0 5 s + 4 Time delays occur due to fluid flow, time required to do an analysis (e.g., gas chromatograph). The delayed signal can be represented as Also, yt ( θ) θ= time delay θs ( θ) = L yt e Y s Dr. M. A. A. Shoukat Choudhury 23

Laplace Transforms Chapter 3

Laplace Transforms Chapter 3 Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important

More information

ChE 6303 Advanced Process Control

ChE 6303 Advanced Process Control ChE 6303 Advanced Process Control Teacher: Dr. M. A. A. Shoukat Choudhury, Email: shoukat@buet.ac.bd Syllabus: 1. SISO control systems: Review of the concepts of process dynamics and control, process models,

More information

Chemical Engineering 436 Laplace Transforms (1)

Chemical Engineering 436 Laplace Transforms (1) Chemical Engineering 436 Laplace Transforms () Why Laplace Transforms?? ) Converts differential equations to algebraic equations- facilitates combination of multiple components in a system to get the total

More information

( ) ( = ) = ( ) ( ) ( )

( ) ( = ) = ( ) ( ) ( ) ( ) Vρ C st s T t 0 wc Ti s T s Q s (8) K T ( s) Q ( s) + Ti ( s) (0) τs+ τs+ V ρ K and τ wc w T (s)g (s)q (s) + G (s)t(s) i G and G are transfer functions and independent of the inputs, Q and T i. Note

More information

Linear Systems Theory

Linear Systems Theory ME 3253 Linear Systems Theory Review Class Overview and Introduction 1. How to build dynamic system model for physical system? 2. How to analyze the dynamic system? -- Time domain -- Frequency domain (Laplace

More information

Course roadmap. ME451: Control Systems. Example of Laplace transform. Lecture 2 Laplace transform. Laplace transform

Course roadmap. ME451: Control Systems. Example of Laplace transform. Lecture 2 Laplace transform. Laplace transform ME45: Control Systems Lecture 2 Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Transfer function Models for systems electrical mechanical electromechanical Block

More information

20.6. Transfer Functions. Introduction. Prerequisites. Learning Outcomes

20.6. Transfer Functions. Introduction. Prerequisites. Learning Outcomes Transfer Functions 2.6 Introduction In this Section we introduce the concept of a transfer function and then use this to obtain a Laplace transform model of a linear engineering system. (A linear engineering

More information

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 5-1 Road Map of the Lecture V Laplace Transform and Transfer

More information

9.5 The Transfer Function

9.5 The Transfer Function Lecture Notes on Control Systems/D. Ghose/2012 0 9.5 The Transfer Function Consider the n-th order linear, time-invariant dynamical system. dy a 0 y + a 1 dt + a d 2 y 2 dt + + a d n y 2 n dt b du 0u +

More information

Laplace Transform Part 1: Introduction (I&N Chap 13)

Laplace Transform Part 1: Introduction (I&N Chap 13) Laplace Transform Part 1: Introduction (I&N Chap 13) Definition of the L.T. L.T. of Singularity Functions L.T. Pairs Properties of the L.T. Inverse L.T. Convolution IVT(initial value theorem) & FVT (final

More information

Introduction & Laplace Transforms Lectures 1 & 2

Introduction & Laplace Transforms Lectures 1 & 2 Introduction & Lectures 1 & 2, Professor Department of Electrical and Computer Engineering Colorado State University Fall 2016 Control System Definition of a Control System Group of components that collectively

More information

Basic Procedures for Common Problems

Basic Procedures for Common Problems Basic Procedures for Common Problems ECHE 550, Fall 2002 Steady State Multivariable Modeling and Control 1 Determine what variables are available to manipulate (inputs, u) and what variables are available

More information

Name: Solutions Final Exam

Name: Solutions Final Exam Instructions. Answer each of the questions on your own paper. Put your name on each page of your paper. Be sure to show your work so that partial credit can be adequately assessed. Credit will not be given

More information

Laplace Transforms and use in Automatic Control

Laplace Transforms and use in Automatic Control Laplace Transforms and use in Automatic Control P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: P.Santosh Krishna, SYSCON Recap Fourier series Fourier transform: aperiodic Convolution integral

More information

Lecture Discrete dynamic systems

Lecture Discrete dynamic systems Chapter 3 Low-level io Lecture 3.4 Discrete dynamic systems Lecture 3.4 Discrete dynamic systems Suppose that we wish to implement an embedded computer system that behaves analogously to a continuous linear

More information

MODELING OF CONTROL SYSTEMS

MODELING OF CONTROL SYSTEMS 1 MODELING OF CONTROL SYSTEMS Feb-15 Dr. Mohammed Morsy Outline Introduction Differential equations and Linearization of nonlinear mathematical models Transfer function and impulse response function Laplace

More information

ENGIN 211, Engineering Math. Laplace Transforms

ENGIN 211, Engineering Math. Laplace Transforms ENGIN 211, Engineering Math Laplace Transforms 1 Why Laplace Transform? Laplace transform converts a function in the time domain to its frequency domain. It is a powerful, systematic method in solving

More information

f(t)e st dt. (4.1) Note that the integral defining the Laplace transform converges for s s 0 provided f(t) Ke s 0t for some constant K.

f(t)e st dt. (4.1) Note that the integral defining the Laplace transform converges for s s 0 provided f(t) Ke s 0t for some constant K. 4 Laplace transforms 4. Definition and basic properties The Laplace transform is a useful tool for solving differential equations, in particular initial value problems. It also provides an example of integral

More information

EE/ME/AE324: Dynamical Systems. Chapter 7: Transform Solutions of Linear Models

EE/ME/AE324: Dynamical Systems. Chapter 7: Transform Solutions of Linear Models EE/ME/AE324: Dynamical Systems Chapter 7: Transform Solutions of Linear Models The Laplace Transform Converts systems or signals from the real time domain, e.g., functions of the real variable t, to the

More information

Time Response of Systems

Time Response of Systems Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) s-plane Time response p =0 s p =0,p 2 =0 s 2 t p =

More information

e st f (t) dt = e st tf(t) dt = L {t f(t)} s

e st f (t) dt = e st tf(t) dt = L {t f(t)} s Additional operational properties How to find the Laplace transform of a function f (t) that is multiplied by a monomial t n, the transform of a special type of integral, and the transform of a periodic

More information

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace Unit : Modeling in the Frequency Domain Part : Engineering 81: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 1, 010 1 Pair Table Unit, Part : Unit,

More information

EE102 Homework 2, 3, and 4 Solutions

EE102 Homework 2, 3, and 4 Solutions EE12 Prof. S. Boyd EE12 Homework 2, 3, and 4 Solutions 7. Some convolution systems. Consider a convolution system, y(t) = + u(t τ)h(τ) dτ, where h is a function called the kernel or impulse response of

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52 1/52 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 2 Laplace Transform I Linear Time Invariant Systems A general LTI system may be described by the linear constant coefficient differential equation: a n d n

More information

Ch 6.2: Solution of Initial Value Problems

Ch 6.2: Solution of Initial Value Problems Ch 6.2: Solution of Initial Value Problems! The Laplace transform is named for the French mathematician Laplace, who studied this transform in 1782.! The techniques described in this chapter were developed

More information

CHEE 319 Tutorial 3 Solutions. 1. Using partial fraction expansions, find the causal function f whose Laplace transform. F (s) F (s) = C 1 s + C 2

CHEE 319 Tutorial 3 Solutions. 1. Using partial fraction expansions, find the causal function f whose Laplace transform. F (s) F (s) = C 1 s + C 2 CHEE 39 Tutorial 3 Solutions. Using partial fraction expansions, find the causal function f whose Laplace transform is given by: F (s) 0 f(t)e st dt (.) F (s) = s(s+) ; Solution: Note that the polynomial

More information

EE Experiment 11 The Laplace Transform and Control System Characteristics

EE Experiment 11 The Laplace Transform and Control System Characteristics EE216:11 1 EE 216 - Experiment 11 The Laplace Transform and Control System Characteristics Objectives: To illustrate computer usage in determining inverse Laplace transforms. Also to determine useful signal

More information

MATHEMATICAL MODELING OF CONTROL SYSTEMS

MATHEMATICAL MODELING OF CONTROL SYSTEMS 1 MATHEMATICAL MODELING OF CONTROL SYSTEMS Sep-14 Dr. Mohammed Morsy Outline Introduction Transfer function and impulse response function Laplace Transform Review Automatic control systems Signal Flow

More information

Time Response Analysis (Part II)

Time Response Analysis (Part II) Time Response Analysis (Part II). A critically damped, continuous-time, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary

More information

Transform Solutions to LTI Systems Part 3

Transform Solutions to LTI Systems Part 3 Transform Solutions to LTI Systems Part 3 Example of second order system solution: Same example with increased damping: k=5 N/m, b=6 Ns/m, F=2 N, m=1 Kg Given x(0) = 0, x (0) = 0, find x(t). The revised

More information

The integrating factor method (Sect. 1.1)

The integrating factor method (Sect. 1.1) The integrating factor method (Sect. 1.1) Overview of differential equations. Linear Ordinary Differential Equations. The integrating factor method. Constant coefficients. The Initial Value Problem. Overview

More information

ACM/CMS 107 Linear Analysis & Applications Fall 2016 Assignment 4: Linear ODEs and Control Theory Due: 5th December 2016

ACM/CMS 107 Linear Analysis & Applications Fall 2016 Assignment 4: Linear ODEs and Control Theory Due: 5th December 2016 ACM/CMS 17 Linear Analysis & Applications Fall 216 Assignment 4: Linear ODEs and Control Theory Due: 5th December 216 Introduction Systems of ordinary differential equations (ODEs) can be used to describe

More information

37. f(t) sin 2t cos 2t 38. f(t) cos 2 t. 39. f(t) sin(4t 5) 40.

37. f(t) sin 2t cos 2t 38. f(t) cos 2 t. 39. f(t) sin(4t 5) 40. 28 CHAPTER 7 THE LAPLACE TRANSFORM EXERCISES 7 In Problems 8 use Definition 7 to find {f(t)} 2 3 4 5 6 7 8 9 f (t),, f (t) 4,, f (t) t,, f (t) 2t,, f (t) sin t,, f (t), cos t, t t t 2 t 2 t t t t t t t

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chapter 1 Fundamental Concepts 1 Signals A signal is a pattern of variation of a physical quantity, often as a function of time (but also space, distance, position, etc). These quantities are usually the

More information

Math Ordinary Differential Equations

Math Ordinary Differential Equations Math 411 - Ordinary Differential Equations Review Notes - 1 1 - Basic Theory A first order ordinary differential equation has the form x = f(t, x) (11) Here x = dx/dt Given an initial data x(t 0 ) = x

More information

Lecture 7: Laplace Transform and Its Applications Dr.-Ing. Sudchai Boonto

Lecture 7: Laplace Transform and Its Applications Dr.-Ing. Sudchai Boonto Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkut s Unniversity of Technology Thonburi Thailand Outline Motivation The Laplace Transform The Laplace Transform

More information

Solution of ODEs using Laplace Transforms. Process Dynamics and Control

Solution of ODEs using Laplace Transforms. Process Dynamics and Control Solution of ODEs using Laplace Transforms Process Dynamics and Control 1 Linear ODEs For linear ODEs, we can solve without integrating by using Laplace transforms Integrate out time and transform to Laplace

More information

Honors Differential Equations

Honors Differential Equations MIT OpenCourseWare http://ocw.mit.edu 8.034 Honors Differential Equations Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. LECTURE 20. TRANSFORM

More information

Lecture 23 Using Laplace Transform to Solve Differential Equations

Lecture 23 Using Laplace Transform to Solve Differential Equations Lecture 23 Using Laplace Transform to Solve Differential Equations /02/20 Laplace transform and Its properties. Definition: L{f (s) 6 F(s) 6 0 e st f(t)dt. () Whether L{f (s) or F(s) is used depends on

More information

LTI Systems (Continuous & Discrete) - Basics

LTI Systems (Continuous & Discrete) - Basics LTI Systems (Continuous & Discrete) - Basics 1. A system with an input x(t) and output y(t) is described by the relation: y(t) = t. x(t). This system is (a) linear and time-invariant (b) linear and time-varying

More information

FINAL EXAM SOLUTIONS, MATH 123

FINAL EXAM SOLUTIONS, MATH 123 FINAL EXAM SOLUTIONS, MATH 23. Find the eigenvalues of the matrix ( 9 4 3 ) So λ = or 6. = λ 9 4 3 λ = ( λ)( 3 λ) + 36 = λ 2 7λ + 6 = (λ 6)(λ ) 2. Compute the matrix inverse: ( ) 3 3 = 3 4 ( 4/3 ) 3. Let

More information

9.2 The Input-Output Description of a System

9.2 The Input-Output Description of a System Lecture Notes on Control Systems/D. Ghose/212 22 9.2 The Input-Output Description of a System The input-output description of a system can be obtained by first defining a delta function, the representation

More information

Math Exam 3 Solutions

Math Exam 3 Solutions Math 6 - Exam 3 Solutions Thursday, July 3rd, 0 Recast the following higher-order differential equations into first order systems If the equation is linear, be sure to give the coefficient matrix At and

More information

The Laplace Transform

The Laplace Transform The Laplace Transform Introduction There are two common approaches to the developing and understanding the Laplace transform It can be viewed as a generalization of the CTFT to include some signals with

More information

Control Systems. Laplace domain analysis

Control Systems. Laplace domain analysis Control Systems Laplace domain analysis L. Lanari outline introduce the Laplace unilateral transform define its properties show its advantages in turning ODEs to algebraic equations define an Input/Output

More information

The Laplace Transform

The Laplace Transform The Laplace Transform Generalizing the Fourier Transform The CTFT expresses a time-domain signal as a linear combination of complex sinusoids of the form e jωt. In the generalization of the CTFT to the

More information

Ordinary Differential Equations. Session 7

Ordinary Differential Equations. Session 7 Ordinary Differential Equations. Session 7 Dr. Marco A Roque Sol 11/16/2018 Laplace Transform Among the tools that are very useful for solving linear differential equations are integral transforms. An

More information

Name: Solutions Exam 3

Name: Solutions Exam 3 Instructions. Answer each of the questions on your own paper. Put your name on each page of your paper. Be sure to show your work so that partial credit can be adequately assessed. Credit will not be given

More information

CHE302 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang

CHE302 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang CHE3 ECTURE V APACE TRANSFORM AND TRANSFER FUNCTION Profeor Dae Ryook Yang Fall Dept. of Chemical and Biological Engineering Korea Univerity CHE3 Proce Dynamic and Control Korea Univerity 5- SOUTION OF

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.6 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

Dr. Ian R. Manchester

Dr. Ian R. Manchester Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus

More information

INTRODUCTION TO TRANSFER FUNCTIONS

INTRODUCTION TO TRANSFER FUNCTIONS INTRODUCTION TO TRANSFER FUNCTIONS The transfer function is the ratio of the output Laplace Transform to the input Laplace Transform assuming zero initial conditions. Many important characteristics of

More information

Chapter 6 The Laplace Transform

Chapter 6 The Laplace Transform Ordinary Differential Equations (Math 2302) 2017-2016 Chapter 6 The Laplace Transform Many practical engineering problems involve mechanical or electrical systems acted on by discontinuous or impulsive

More information

Math 341 Fall 2008 Friday December 12

Math 341 Fall 2008 Friday December 12 FINAL EXAM: Differential Equations Math 341 Fall 2008 Friday December 12 c 2008 Ron Buckmire 1:00pm-4:00pm Name: Directions: Read all problems first before answering any of them. There are 17 pages in

More information

We shall finally briefly discuss the generalization of the solution methods to a system of n first order differential equations.

We shall finally briefly discuss the generalization of the solution methods to a system of n first order differential equations. George Alogoskoufis, Dynamic Macroeconomic Theory, 2015 Mathematical Annex 1 Ordinary Differential Equations In this mathematical annex, we define and analyze the solution of first and second order linear

More information

Chapter 6: The Laplace Transform. Chih-Wei Liu

Chapter 6: The Laplace Transform. Chih-Wei Liu Chapter 6: The Laplace Transform Chih-Wei Liu Outline Introduction The Laplace Transform The Unilateral Laplace Transform Properties of the Unilateral Laplace Transform Inversion of the Unilateral Laplace

More information

ENGI 9420 Lecture Notes 1 - ODEs Page 1.01

ENGI 9420 Lecture Notes 1 - ODEs Page 1.01 ENGI 940 Lecture Notes - ODEs Page.0. Ordinary Differential Equations An equation involving a function of one independent variable and the derivative(s) of that function is an ordinary differential equation

More information

Matemáticas II: Segundo del Grado en Ingeniería Aeroespacial

Matemáticas II: Segundo del Grado en Ingeniería Aeroespacial Matemáticas II: Segundo del Grado en Ingeniería Aeroespacial Sergio Blanes, Dolors Roselló Ecuaciones diferenciales y transformadas de Laplace con aplicaciones L.M. Sánchez, M.P. Legua Ref.: 211-798 Capítulo

More information

Definition of the Laplace transform. 0 x(t)e st dt

Definition of the Laplace transform. 0 x(t)e st dt Definition of the Laplace transform Bilateral Laplace Transform: X(s) = x(t)e st dt Unilateral (or one-sided) Laplace Transform: X(s) = 0 x(t)e st dt ECE352 1 Definition of the Laplace transform (cont.)

More information

I Laplace transform. I Transfer function. I Conversion between systems in time-, frequency-domain, and transfer

I Laplace transform. I Transfer function. I Conversion between systems in time-, frequency-domain, and transfer EE C128 / ME C134 Feedback Control Systems Lecture Chapter 2 Modeling in the Frequency Domain Alexandre Bayen Department of Electrical Engineering & Computer Science University of California Berkeley Lecture

More information

HIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS IV: Variable Coefficient Nonhomogeneous Case

HIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS IV: Variable Coefficient Nonhomogeneous Case HIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS IV: Variable Coefficient Nonhomogeneous Case David Levermore Department of Mathematics University of Maryland 15 March 2009 Because the presentation

More information

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communications Systems 2: Fourier Representations Jie Liang School of Engineering Science Simon Fraser University 1 Outline Chap 2.1 2.5: Signal Classifications Fourier Transform Dirac Delta Function

More information

ELG 3150 Introduction to Control Systems. TA: Fouad Khalil, P.Eng., Ph.D. Student

ELG 3150 Introduction to Control Systems. TA: Fouad Khalil, P.Eng., Ph.D. Student ELG 350 Introduction to Control Systems TA: Fouad Khalil, P.Eng., Ph.D. Student fkhalil@site.uottawa.ca My agenda for this tutorial session I will introduce the Laplace Transforms as a useful tool for

More information

Identification Methods for Structural Systems

Identification Methods for Structural Systems Prof. Dr. Eleni Chatzi System Stability Fundamentals Overview System Stability Assume given a dynamic system with input u(t) and output x(t). The stability property of a dynamic system can be defined from

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations for Engineers and Scientists Gregg Waterman Oregon Institute of Technology c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

Math 353 Lecture Notes Week 6 Laplace Transform: Fundamentals

Math 353 Lecture Notes Week 6 Laplace Transform: Fundamentals Math 353 Lecture Notes Week 6 Laplace Transform: Fundamentals J. Wong (Fall 217) October 7, 217 What did we cover this week? Introduction to the Laplace transform Basic theory Domain and range of L Key

More information

Solutions to Math 53 Math 53 Practice Final

Solutions to Math 53 Math 53 Practice Final Solutions to Math 5 Math 5 Practice Final 20 points Consider the initial value problem y t 4yt = te t with y 0 = and y0 = 0 a 8 points Find the Laplace transform of the solution of this IVP b 8 points

More information

MAE 105 Introduction to Mathematical Physics HOMEWORK 1. Due on Thursday October 1st 2015

MAE 105 Introduction to Mathematical Physics HOMEWORK 1. Due on Thursday October 1st 2015 MAE 5 Introduction to Mathematical Physics HOMEWORK Due on Thursday October st 25 PROBEM : Evaluate the following integrals (where n =, 2, 3,... is an integer) and show all your steps: (a) x nπx We use

More information

The Laplace Transform

The Laplace Transform C H A P T E R 6 The Laplace Transform Many practical engineering problems involve mechanical or electrical systems acted on by discontinuous or impulsive forcing terms. For such problems the methods described

More information

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang CHBE3 ECTURE V APACE TRANSFORM AND TRANSFER FUNCTION Profeor Dae Ryook Yang Spring 8 Dept. of Chemical and Biological Engineering 5- Road Map of the ecture V aplace Tranform and Tranfer function Definition

More information

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi System Stability - 26 March, 2014

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi System Stability - 26 March, 2014 Prof. Dr. Eleni Chatzi System Stability - 26 March, 24 Fundamentals Overview System Stability Assume given a dynamic system with input u(t) and output x(t). The stability property of a dynamic system can

More information

Numerical Methods. Equations and Partial Fractions. Jaesung Lee

Numerical Methods. Equations and Partial Fractions. Jaesung Lee Numerical Methods Equations and Partial Fractions Jaesung Lee Solving linear equations Solving linear equations Introduction Many problems in engineering reduce to the solution of an equation or a set

More information

Control System. Contents

Control System. Contents Contents Chapter Topic Page Chapter- Chapter- Chapter-3 Chapter-4 Introduction Transfer Function, Block Diagrams and Signal Flow Graphs Mathematical Modeling Control System 35 Time Response Analysis of

More information

ODEs Cathal Ormond 1

ODEs Cathal Ormond 1 ODEs Cathal Ormond 2 1. Separable ODEs Contents 2. First Order ODEs 3. Linear ODEs 4. 5. 6. Chapter 1 Separable ODEs 1.1 Definition: An ODE An Ordinary Differential Equation (an ODE) is an equation whose

More information

Math 3313: Differential Equations Laplace transforms

Math 3313: Differential Equations Laplace transforms Math 3313: Differential Equations Laplace transforms Thomas W. Carr Department of Mathematics Southern Methodist University Dallas, TX Outline Introduction Inverse Laplace transform Solving ODEs with Laplace

More information

Boyce/DiPrima/Meade 11 th ed, Ch 1.1: Basic Mathematical Models; Direction Fields

Boyce/DiPrima/Meade 11 th ed, Ch 1.1: Basic Mathematical Models; Direction Fields Boyce/DiPrima/Meade 11 th ed, Ch 1.1: Basic Mathematical Models; Direction Fields Elementary Differential Equations and Boundary Value Problems, 11 th edition, by William E. Boyce, Richard C. DiPrima,

More information

Linear Variable coefficient equations (Sect. 2.1) Review: Linear constant coefficient equations

Linear Variable coefficient equations (Sect. 2.1) Review: Linear constant coefficient equations Linear Variable coefficient equations (Sect. 2.1) Review: Linear constant coefficient equations. The Initial Value Problem. Linear variable coefficients equations. The Bernoulli equation: A nonlinear equation.

More information

Third In-Class Exam Solutions Math 246, Professor David Levermore Thursday, 3 December 2009 (1) [6] Given that 2 is an eigenvalue of the matrix

Third In-Class Exam Solutions Math 246, Professor David Levermore Thursday, 3 December 2009 (1) [6] Given that 2 is an eigenvalue of the matrix Third In-Class Exam Solutions Math 26, Professor David Levermore Thursday, December 2009 ) [6] Given that 2 is an eigenvalue of the matrix A 2, 0 find all the eigenvectors of A associated with 2. Solution.

More information

Differential and Difference LTI systems

Differential and Difference LTI systems Signals and Systems Lecture: 6 Differential and Difference LTI systems Differential and difference linear time-invariant (LTI) systems constitute an extremely important class of systems in engineering.

More information

Ma 221 Final Exam Solutions 5/14/13

Ma 221 Final Exam Solutions 5/14/13 Ma 221 Final Exam Solutions 5/14/13 1. Solve (a) (8 pts) Solution: The equation is separable. dy dx exy y 1 y0 0 y 1e y dy e x dx y 1e y dy e x dx ye y e y dy e x dx ye y e y e y e x c The last step comes

More information

MathQuest: Differential Equations

MathQuest: Differential Equations MathQuest: Differential Equations Laplace Tranforms 1. True or False The Laplace transform method is the only way to solve some types of differential equations. (a) True, and I am very confident (b) True,

More information

JUST THE MATHS UNIT NUMBER LAPLACE TRANSFORMS 3 (Differential equations) A.J.Hobson

JUST THE MATHS UNIT NUMBER LAPLACE TRANSFORMS 3 (Differential equations) A.J.Hobson JUST THE MATHS UNIT NUMBER 16.3 LAPLACE TRANSFORMS 3 (Differential equations) by A.J.Hobson 16.3.1 Examples of solving differential equations 16.3.2 The general solution of a differential equation 16.3.3

More information

25. Chain Rule. Now, f is a function of t only. Expand by multiplication:

25. Chain Rule. Now, f is a function of t only. Expand by multiplication: 25. Chain Rule The Chain Rule is present in all differentiation. If z = f(x, y) represents a two-variable function, then it is plausible to consider the cases when x and y may be functions of other variable(s).

More information

Higher-order ordinary differential equations

Higher-order ordinary differential equations Higher-order ordinary differential equations 1 A linear ODE of general order n has the form a n (x) dn y dx n +a n 1(x) dn 1 y dx n 1 + +a 1(x) dy dx +a 0(x)y = f(x). If f(x) = 0 then the equation is called

More information

School of Mechanical Engineering Purdue University. ME375 Dynamic Response - 1

School of Mechanical Engineering Purdue University. ME375 Dynamic Response - 1 Dynamic Response of Linear Systems Linear System Response Superposition Principle Responses to Specific Inputs Dynamic Response of f1 1st to Order Systems Characteristic Equation - Free Response Stable

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS ORDINARY DIFFERENTIAL EQUATIONS GABRIEL NAGY Mathematics Department, Michigan State University, East Lansing, MI, 4884 NOVEMBER 9, 7 Summary This is an introduction to ordinary differential equations We

More information

The Laplace Transform

The Laplace Transform The Laplace Transform Syllabus ECE 316, Spring 2015 Final Grades Homework (6 problems per week): 25% Exams (midterm and final): 50% (25:25) Random Quiz: 25% Textbook M. Roberts, Signals and Systems, 2nd

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 [E2.5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 EEE/ISE PART II MEng. BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: 2:00 hours There are FOUR

More information

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response .. AERO 422: Active Controls for Aerospace Vehicles Dynamic Response Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. . Previous Class...........

More information

Ordinary Differential Equation Theory

Ordinary Differential Equation Theory Part I Ordinary Differential Equation Theory 1 Introductory Theory An n th order ODE for y = y(t) has the form Usually it can be written F (t, y, y,.., y (n) ) = y (n) = f(t, y, y,.., y (n 1) ) (Implicit

More information

Course Background. Loosely speaking, control is the process of getting something to do what you want it to do (or not do, as the case may be).

Course Background. Loosely speaking, control is the process of getting something to do what you want it to do (or not do, as the case may be). ECE4520/5520: Multivariable Control Systems I. 1 1 Course Background 1.1: From time to frequency domain Loosely speaking, control is the process of getting something to do what you want it to do (or not

More information

Formulation of Linear Constant Coefficient ODEs

Formulation of Linear Constant Coefficient ODEs E E 380 Linear Control Systems Supplementary Reading Methods for Solving Linear Constant Coefficient ODEs In this note, we present two methods for solving linear constant coefficient ordinary differential

More information

Review of Linear Time-Invariant Network Analysis

Review of Linear Time-Invariant Network Analysis D1 APPENDIX D Review of Linear Time-Invariant Network Analysis Consider a network with input x(t) and output y(t) as shown in Figure D-1. If an input x 1 (t) produces an output y 1 (t), and an input x

More information

Mathematics 3 Differential Calculus

Mathematics 3 Differential Calculus Differential Calculus 3-1a A derivative function defines the slope described by the original function. Example 1 (FEIM): Given: y(x) = 3x 3 2x 2 + 7. What is the slope of the function y(x) at x = 4? y

More information

The z-transform Part 2

The z-transform Part 2 http://faculty.kfupm.edu.sa/ee/muqaibel/ The z-transform Part 2 Dr. Ali Hussein Muqaibel The material to be covered in this lecture is as follows: Properties of the z-transform Linearity Initial and final

More information

Analysis and Design of Control Systems in the Time Domain

Analysis and Design of Control Systems in the Time Domain Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.

More information

The formulas for derivatives are particularly useful because they reduce ODEs to algebraic expressions. Consider the following ODE d 2 dx + p d

The formulas for derivatives are particularly useful because they reduce ODEs to algebraic expressions. Consider the following ODE d 2 dx + p d Solving ODEs using Fourier Transforms The formulas for derivatives are particularly useful because they reduce ODEs to algebraic expressions. Consider the following ODE d 2 dx + p d 2 dx + q f (x) R(x)

More information

The Discrete-time Fourier Transform

The Discrete-time Fourier Transform The Discrete-time Fourier Transform Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline Representation of Aperiodic signals: The

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chapter 1 Fundamental Concepts Signals A signal is a pattern of variation of a physical quantity as a function of time, space, distance, position, temperature, pressure, etc. These quantities are usually

More information