Problem Weight Score Total 100


 Cassandra Paul
 2 years ago
 Views:
Transcription
1 EE 350 EXAM IV 15 December 2010 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score Total 100 Test Form A INSTRUCTIONS 1. You have one hour and fifty minutes to complete this exam. 2. This is a closed book exam. You may use one note sheet. 3. Calculators are not allowed. 4. Solve each part of the problem in the space following the question. If you need more space, continue your solution on the reverse side labeling the page with the question number; for example, Problem 1.2 Continued. NO credit will be given to solutions that do not meet this requirement. 5. DO NOT REMOVE ANY PAGES FROM THIS EXAM. Loose papers will not be accepted and a grade of ZERO will be assigned. 6. The quality of your analysis and evaluation is as important as your answers. Your reasoning must be precise and clear; your complete English sentences should convey what you are doing. To receive credit, you must show your work. 1
2 Problem 1: (25 Points) 1. (9 points) Using the method of Laplace transforms, determine the transfer function H(s) of the active filter in Figure 1, where f(t) is the input and y(t) is the output. Express your answer in the standard form H(s) = b m s m + + b 1 s + b o s n + a n 1 s n a 1 s + a 0. Figure 1: Active RC filter with input voltage f(t) and output voltage y(t). 2
3 2. (9 points) The circuit in Figure 2 has input f(t) and output y(t). Using Laplace transform analysis, determine the zeroinput response of the system given that R = 1/3 Ω, L = 1/4 H, C = 1/2 F, i(0 ) = 3 A, and y(0 ) = 2 V. Figure 2: Passive RLC circuit with output voltage y(t). 3
4 4
5 3. (7 points) In order to determine the partial fraction expansion of the transfer function an engineer used the MATLAB command H(s) = b 1 s + b o s 2 + a 1 s + a 0, >> [r, p, k] = residue([b1, b0], [1, a1, a0]) and obtained r = p = k = [] (a) (3 points) Write down the partial fraction expansion of H(s). (b) (4 points) Specify the numeric values of the parameters b 1, b 0, a 1, and a 0. 5
6 Problem 2: (25 points) 1. (12 points) Determine the closedloop transfer function of the feedback control system in Figure 3, and specify your final answer using the standard form Y (s) R(s) = b m s m + + b 1 s + b o s n + a n 1 s n a 1 s + a 0. Figure 3: Feedback control system with reference input r(t) and controlled output y(t). 6
7 7
8 2. (13 points) Another feedback control system, different from the one considered in part 1, has the closedloop transfer function representation Y (s) R(s) = K 1 s 2 + (K 2 K 1 )s + K 1, where R(s) is the command input, Y (s) is the controlled output, and K 1 and K 2 represent controller gains. (a) (6 points) Choose the controller gains so that the zerostate unitstep response of the closedloop system is underdamped with a natural frequency of 10 rad/sec and a dimensionless damping ratio of 1/2. (b) (7 points) Suppose that K 1 = 8, K 2 = 6, and define the closedloop system error as e(t) = r(t) y(t). For a rampinput r(t) = tu(t), what value does e(t) approach as time increases? 8
9 Problem 3: (25 points) 1. (15 points) A system has the transfer function representation H(s) = (s + 100) (s ) (s ) 2. Construct the Bode magnitude and phase plots using the semilog graphs provided in Figure 4 (a duplicate copy appears in Figure 5). In order to receive credit: In both your magnitude and phase plots, indicate each term separately using dashed lines. Indicate the slope of each straightline segment and the corner frequencies of the final magnitude and phase plots. Do not show the 3 db corrections in the magnitude plot. 9
10 Figure 4: Semilog paper for Bode magnitude and phase plots. 10
11 Figure 5: Semilog paper for Bode magnitude and phase plots. 11
12 2. (10 points) Figure 6 shows the straightline approximation of the magnitude and phase plots of a transfer function H(s). The transfer function H(s) was generated in MATLAB using the script shown below, where the parameters a, b, and c are realvalued constants H1 = tf([1,a], [1,b]) H2 = tf([10], [1,c]) H = series(h1, H2); 20 Magnitude [db] Phase [Deg] frequency [rad/sec] Figure 6: Straightline approximation of the magnitude and phase plot of H(s). 12
13 (a) (3 points) From the MATLAB script, specify the transfer function in terms of the parameters a, b, and c. Express your answer in standard form H(s) = b m s m + + b 1 s + b o s n + a n 1 s n a 1 s + a 0. (b) (2 points) Using Figure 6, specify the numeric value of the DC gain of the system represented by H(s). (c) (5 points) Determine H(s), and specify the numeric values of the parameters a, b, and c. 13
14 Problem 4: (25 points) 1. (13 points) A LTI system has the impulse response function representation h(t) = δ(t) + e t u(t) 2e 2t u(t). (a) (4 points) Determine the transfer function representation of the system and express your answer in the standard form b m s m + + b 1 s + b o H(s) = s n + a n 1 s n a 1 s + a 0 (b) (4 points) Sketch the polezero map of the system transfer function. To receive credit, you must label the axes and clearly specify the location of each pole and zero. 14
15 (c) (2 points) Specify the DC gain and high frequency gain of the system. (d) (3 points) If the system input and output are denoted by f(t) and y(t) respectively, specify the ODE representation of the LTI system. 15
16 2. (12 points) Consider another LTI system, that is different from the one in part 1. The zerostate response of the system to the unitstep input f(t) = u(t) is y(t) = ( 2 2e t 2te t) u(t). For another input, f(t), the observed zerostate response is Determine the input f(t). ȳ(t) = ( 2 3e t + e 3t) u(t). 16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
Problem Weight Total 100
EE 350 Problem Set 3 Cover Sheet Fall 2016 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: Submission deadlines: Turn in the written solutions by 4:00 pm on Tuesday September
More informationEE 380 EXAM II 3 November 2011 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO
EE 380 EXAM II 3 November 2011 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total
More informationGEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels)
GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30Apr14 COURSE: ECE 3084A (Prof. Michaels) NAME: STUDENT #: LAST, FIRST Write your name on the front page
More informationGEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels)
GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 09Dec13 COURSE: ECE 3084A (Prof. Michaels) NAME: STUDENT #: LAST, FIRST Write your name on the front page
More informationIntroduction to Controls
EE 474 Review Exam 1 Name Answer each of the questions. Show your work. Note were essaytype answers are requested. Answer with complete sentences. Incomplete sentences will count heavily against the grade.
More informationEE C128 / ME C134 Final Exam Fall 2014
EE C128 / ME C134 Final Exam Fall 2014 December 19, 2014 Your PRINTED FULL NAME Your STUDENT ID NUMBER Number of additional sheets 1. No computers, no tablets, no connected device (phone etc.) 2. Pocket
More informationEE 16B Final, December 13, Name: SID #:
EE 16B Final, December 13, 2016 Name: SID #: Important Instructions: Show your work. An answer without explanation is not acceptable and does not guarantee any credit. Only the front pages will be scanned
More informationEE C128 / ME C134 Midterm Fall 2014
EE C128 / ME C134 Midterm Fall 2014 October 16, 2014 Your PRINTED FULL NAME Your STUDENT ID NUMBER Number of additional sheets 1. No computers, no tablets, no connected device (phone etc.) 2. Pocket calculator
More informationECE Circuit Theory. Final Examination. December 5, 2008
ECE 212 H1F Pg 1 of 12 ECE 212  Circuit Theory Final Examination December 5, 2008 1. Policy: closed book, calculators allowed. Show all work. 2. Work in the provided space. 3. The exam has 3 problems
More informationECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 119 in the exam: please make sure all are there.
ECE37B Final Exam There are 5 problems on this exam and you have 3 hours There are pages 9 in the exam: please make sure all are there. Do not open this exam until told to do so Show all work: Credit
More informationName: 4 sin(2u) 4 sin(1.4)
Common Exam 1 Math 170, Fall, 2014 Name: Instructions For Part I. The first six (6) pages are short answer. You don t need to show work. Partial credit will be rare. 1. (10 pts.) Compute the derivatives.
More informationEE202 Exam II March 3, 2008
EE202 Exam II March 3, 2008 Name: (Please print clearly) Student ID: CIRCLE YOUR DIVISION MORNING 8:30 MWF AFTERNOON 12:30 MWF INSTRUCTIONS There are 12 multiple choice worth 5 points each and there is
More information'XNH8QLYHUVLW\ (GPXQG73UDWWU6FKRRORI(QJLQHHULQJ. EGR 224 Spring Test II. Michael R. Gustafson II
'XNH8QLYHUVLW\ (GPXQG73UDWWU6FKRRORI(QJLQHHULQJ EGR 224 Spring 2017 Test II Michael R. Gustafson II Name (please print) In keeping with the Community Standard, I have neither provided nor received any
More informationTime Response of Systems
Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) splane Time response p =0 s p =0,p 2 =0 s 2 t p =
More informationECE : Linear Circuit Analysis II
Purdue University School of Electrical and Computer Engineering ECE 20200 : Linear Circuit Analysis II Summer 2014 Instructor: Aung Kyi San Instructions: Midterm Examination I July 2, 2014 1. Wait for
More information'XNH8QLYHUVLW\ (GPXQG73UDWWU6FKRRORI(QJLQHHULQJ. EGR 224 Spring Test II. Michael R. Gustafson II
'XNH8QLYHUVLW\ (GPXQG73UDWWU6FKRRORI(QJLQHHULQJ EGR 224 Spring 2018 Test II Michael R. Gustafson II Name (please print) In keeping with the Community Standard, I have neither provided nor received any
More informationEE221 Circuits II. Chapter 14 Frequency Response
EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active
More informationNAME: 13 February 2013 EE301 Signals and Systems Exam 1 Cover Sheet
NAME: February EE Signals and Systems Exam Cover Sheet Test Duration: 75 minutes. Coverage: Chaps., Open Book but Closed Notes. One 8.5 in. x in. crib sheet Calculators NOT allowed. This test contains
More informationEE221 Circuits II. Chapter 14 Frequency Response
EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active
More informationEE202 Exam III April 6, 2017
EE202 Exam III April 6, 207 Name: (Please print clearly.) Student ID: CIRCLE YOUR DIVISION DeCarlo202 DeCarlo2022 7:30 MWF :30 TTH INSTRUCTIONS There are 3 multiple choice worth 5 points each and
More information(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
More informationECE 212H1F Circuit Analysis October 30, :1019: Reza Iravani 02 Reza Iravani 03 Piero Triverio. (Nonprogrammable Calculators Allowed)
Please Print Clearly Last Name: First Name: Student Number: Your Tutorial Section (CIRCLE ONE): 01 Thu. 911 RS211 02 Thu. 911 GB119 03 Tue. 1012 SF2202 04 Tue. 1012 SF3201 05 Tue. 1315 GB304 06 Tue.
More informationVALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year
More informationThis homework will not be collected or graded. It is intended to help you practice for the final exam. Solutions will be posted.
6.003 Homework #14 This homework will not be collected or graded. It is intended to help you practice for the final exam. Solutions will be posted. Problems 1. Neural signals The following figure illustrates
More informationTime Response Analysis (Part II)
Time Response Analysis (Part II). A critically damped, continuoustime, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary
More informationGrades will be determined by the correctness of your answers (explanations are not required).
6.00 (Fall 20) Final Examination December 9, 20 Name: Kerberos Username: Please circle your section number: Section Time 2 am pm 4 2 pm Grades will be determined by the correctness of your answers (explanations
More informationDynamic circuits: Frequency domain analysis
Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution
More informationEE Experiment 11 The Laplace Transform and Control System Characteristics
EE216:11 1 EE 216  Experiment 11 The Laplace Transform and Control System Characteristics Objectives: To illustrate computer usage in determining inverse Laplace transforms. Also to determine useful signal
More informationProfessor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley
Professor Fearing EE C8 / ME C34 Problem Set 7 Solution Fall Jansen Sheng and Wenjie Chen, UC Berkeley. 35 pts Lag compensation. For open loop plant Gs ss+5s+8 a Find compensator gain Ds k such that the
More informationFourier Methods in Digital Signal Processing Final Exam ME 579, Spring 2015 NAME
Fourier Methods in Digital Signal Processing Final Exam ME 579, Instructions for this CLOSED BOOK EXAM 2 hours long. Monday, May 8th, 810am in ME1051 Answer FIVE Questions, at LEAST ONE from each section.
More informationProblem Set 3: Solution Due on Mon. 7 th Oct. in class. Fall 2013
EE 56: Digital Control Systems Problem Set 3: Solution Due on Mon 7 th Oct in class Fall 23 Problem For the causal LTI system described by the difference equation y k + 2 y k = x k, () (a) By first finding
More information1. (a) (4 points) Four students see this function: f(t) = 7 4t. Which student has written the derivative correctly? Circle the student s name.
Math 170  Spring 016  Common Exam 1 Name: Part 1: Short Answer The first five (5) pages are short answer. You don t need to show work. Partial credit will be rare. When appropriate answers must include
More informationProblem Value Score No/Wrong Rec 3
GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING QUIZ #3 DATE: 21Nov11 COURSE: ECE2025 NAME: GT username: LAST, FIRST (ex: gpburdell3) 3 points 3 points 3 points Recitation
More informationECE301 Fall, 2006 Exam 1 Soluation October 7, Name: Score: / Consider the system described by the differential equation
ECE301 Fall, 2006 Exam 1 Soluation October 7, 2006 1 Name: Score: /100 You must show all of your work for full credit. Calculators may NOT be used. 1. Consider the system described by the differential
More informationFinal Exam December 20, 2011
Final Exam December 20, 2011 Math 420  Ordinary Differential Equations No credit will be given for answers without mathematical or logical justification. Simplify answers as much as possible. Leave solutions
More informationGrades will be determined by the correctness of your answers (explanations are not required).
6.00 (Fall 2011) Final Examination December 19, 2011 Name: Kerberos Username: Please circle your section number: Section Time 2 11 am 1 pm 4 2 pm Grades will be determined by the correctness of your answers
More informationME 475/591 Control Systems Final Exam Fall '99
ME 475/591 Control Systems Final Exam Fall '99 Closed book closed notes portion of exam. Answer 5 of the 6 questions below (20 points total) 1) What is a phase margin? Under ideal circumstances, what does
More informationCYBER EXPLORATION LABORATORY EXPERIMENTS
CYBER EXPLORATION LABORATORY EXPERIMENTS 1 2 Cyber Exploration oratory Experiments Chapter 2 Experiment 1 Objectives To learn to use MATLAB to: (1) generate polynomial, (2) manipulate polynomials, (3)
More informationSourceFree RC Circuit
First Order Circuits SourceFree RC Circuit Initial charge on capacitor q = Cv(0) so that voltage at time 0 is v(0). What is v(t)? Prof Carruthers (ECE @ BU) EK307 Notes Summer 2018 150 / 264 First Order
More informationTest II Michael R. Gustafson II
'XNH8QLYHUVLW\ (GPXQG73UDWWU6FKRRORI(QJLQHHULQJ EGR 224 Spring 2016 Test II Michael R. Gustafson II Name (please print) In keeping with the Community Standard, I have neither provided nor received any
More informationTest 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010
Test 2 SOLUTIONS ENGI 5821: Control Systems I March 15, 2010 Total marks: 20 Name: Student #: Answer each question in the space provided or on the back of a page with an indication of where to find the
More informationEE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation
EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation Tim Davidson Ext. 27352 davidson@mcmaster.ca Objective To use the root locus technique to design a lead compensator for a marginallystable
More informationAutomatic Control (MSc in Mechanical Engineering) Lecturer: Andrea Zanchettin Date: Student ID number... Signature...
Automatic Control (MSc in Mechanical Engineering) Lecturer: Andrea Zanchettin Date: 29..23 Given and family names......................solutions...................... Student ID number..........................
More informationUniversity of Toronto Faculty of Applied Science and Engineering. ECE212H1F  Circuit Analysis. Final Examination December 16, :30am  noon
, LAST name: First name: Student ID: University of Toronto Faculty of Applied Science and Engineering ECE212H1F  Circuit Analysis Final Examination December 16, 2017 9:30am  noon Guidelines: Exam type:
More informationAPPLICATIONS FOR ROBOTICS
Version: 1 CONTROL APPLICATIONS FOR ROBOTICS TEX d: Feb. 17, 214 PREVIEW We show that the transfer function and conditions of stability for linear systems can be studied using Laplace transforms. Table
More informationDEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING RUTGERS UNIVERSITY
DEPARTMENT OF EECTRICA AND COMPUTER ENGINEERING RUTGERS UNIVERSITY 330:222 Principles of Electrical Engineering II Spring 2002 Exam 1 February 19, 2002 SOUTION NAME OF STUDENT: Student ID Number (last
More informationEE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2
EE 4: Introduction to Microelectronic Circuits Spring 8: Midterm Venkat Anantharam 3/9/8 Total Time Allotted : min Total Points:. This is a closed book exam. However, you are allowed to bring two pages
More informationEECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16
EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16 Instructions: Write your name and section number on all pages Closed book, closed notes; Computers and cell phones are not allowed You can use
More informationEE301 Signals and Systems Spring 2016 Exam 2 Thursday, Mar. 31, Cover Sheet
EE301 Signals and Systems Spring 2016 Exam 2 Thursday, Mar. 31, 2016 Cover Sheet Test Duration: 75 minutes. Coverage: Chapter 4, Hmwks 67 Open Book but Closed Notes. One 8.5 in. x 11 in. crib sheet Calculators
More informationNew Mexico State University Klipsch School of Electrical Engineering. EE312  Signals and Systems I Fall 2017 Exam #1
New Mexico State University Klipsch School of Electrical Engineering EE312  Signals and Systems I Fall 2017 Exam #1 Name: Prob. 1 Prob. 2 Prob. 3 Prob. 4 Total / 30 points / 20 points / 25 points / 25
More informationECE 3793 Matlab Project 3 Solution
ECE 3793 Matlab Project 3 Solution Spring 27 Dr. Havlicek. (a) In text problem 9.22(d), we are given X(s) = s + 2 s 2 + 7s + 2 4 < Re {s} < 3. The following Matlab statements determine the partial fraction
More informationCHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System
CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages
More informationProblem Value
GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 2May05 COURSE: ECE2025 NAME: GT #: LAST, FIRST (ex: gtz123a) Recitation Section: Circle the date & time when
More informationNAME: 20 February 2014 EE301 Signals and Systems Exam 1 Cover Sheet
NAME: February 4 EE Signals and Systems Exam Cover Sheet Test Duration: 75 minutes. Coverage: Chaps., Open Book but Closed Notes. One 8.5 in. x in. crib sheet Calculators NOT allowed. This test contains
More informationFrequency Response part 2 (I&N Chap 12)
Frequency Response part 2 (I&N Chap 12) Introduction & TFs Decibel Scale & Bode Plots Resonance Scaling Filter Networks Applications/Design Frequency response; based on slides by J. Yan Slide 3.1 Example
More information6.003 (Fall 2011) Quiz #3 November 16, 2011
6.003 (Fall 2011) Quiz #3 November 16, 2011 Name: Kerberos Username: Please circle your section number: Section Time 2 11 am 3 1 pm 4 2 pm Grades will be determined by the correctness of your answers (explanations
More informationEE 3054: Signals, Systems, and Transforms Summer It is observed of some continuoustime LTI system that the input signal.
EE 34: Signals, Systems, and Transforms Summer 7 Test No notes, closed book. Show your work. Simplify your answers. 3. It is observed of some continuoustime LTI system that the input signal = 3 u(t) produces
More informationThe Cooper Union Department of Electrical Engineering ECE111 Signal Processing & Systems Analysis Final May 4, 2012
The Cooper Union Department of Electrical Engineering ECE111 Signal Processing & Systems Analysis Final May 4, 2012 Time: 3 hours. Close book, closed notes. No calculators. Part I: ANSWER ALL PARTS. WRITE
More informationAutomatic Control A. A.A. 2016/2017 July 7, Corso di Laurea Magistrale in Ingegneria Meccanica. Prof. Luca Bascetta.
Corso di Laurea Magistrale in Ingegneria Meccanica Automatic Control A Prof. Luca Bascetta A.A. 2016/2017 July 7, 2017 Name: Surname: University ID number: Signature: This file consists of 8 pages (including
More informationELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques [] For the following system, Design a compensator such
More informationPhysics 1252 Exam #3E (MakeUp)
Physics 1252 Exam #3E (MakeUp) Instructions: This is a closedbook, closednotes exam. You are allowed to use a clean printout of your formula sheet, any scientific calculator, and a ruler. Do not write
More informationECE202 FINAL April 30, 2018 CIRCLE YOUR DIVISION
ECE 202 Final, Spring 8 ECE202 FINAL April 30, 208 Name: (Please print clearly.) Student Email: CIRCLE YOUR DIVISION DeCarlo 7:308:30 DeCarlo:302:45 2025 202 INSTRUCTIONS There are 34 multiple choice
More informationECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, Name:
ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, 205 Name:. The quiz is closed book, except for one 2sided sheet of handwritten notes. 2. Turn off
More informationECE 202 Fall 2013 Final Exam
ECE 202 Fall 2013 Final Exam December 12, 2013 Circle your division: Division 0101: Furgason (8:30 am) Division 0201: Bermel (9:30 am) Name (Last, First) Purdue ID # There are 18 multiple choice problems
More informationNAME: ht () 1 2π. Hj0 ( ) dω Find the value of BW for the system having the following impulse response.
University of California at Berkeley Department of Electrical Engineering and Computer Sciences Professor J. M. Kahn, EECS 120, Fall 1998 Final Examination, Wednesday, December 16, 1998, 58 pm NAME: 1.
More informationDEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010
[E2.5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 EEE/ISE PART II MEng. BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: 2:00 hours There are FOUR
More informationECE382/ME482 Spring 2005 Homework 1 Solution February 10,
ECE382/ME482 Spring 25 Homework 1 Solution February 1, 25 1 Solution to HW1 P2.33 For the system shown in Figure P2.33 on p. 119 of the text, find T(s) = Y 2 (s)/r 1 (s). Determine a relationship that
More informationECE2210 Final given: Fall 13
ECE22 Final given: Fall 3. (23 pts) a) Draw the asymptotic Bode plot (the straightline approximation) of the transfer function below. Accurately draw it on the graph provided. You must show the steps
More informationÜbersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3.. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid 
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open
More information8 sin 3 V. For the circuit given, determine the voltage v for all time t. Assume that no energy is stored in the circuit before t = 0.
For the circuit given, determine the voltage v for all time t. Assume that no energy is stored in the circuit before t = 0. Spring 2015, Exam #5, Problem #1 4t Answer: e tut 8 sin 3 V 1 For the circuit
More informationPoles and Zeros and Transfer Functions
Poles and Zeros and Transfer Functions Transfer Function: Considerations: Factorization: A transfer function is defined as the ratio of the Laplace transform of the output to the input with all initial
More informationEECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Thu. May 4, 25 58 pm Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 4 2 4 3 6 4 8 5 3
More informationUNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN BIOMEDICAL ENGINEERING SEMESTER 1 EXAMINATION 2017/2018 ADVANCED BIOMECHATRONIC SYSTEMS
ENG0016 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN BIOMEDICAL ENGINEERING SEMESTER 1 EXAMINATION 2017/2018 ADVANCED BIOMECHATRONIC SYSTEMS MODULE NO: BME6003 Date: Friday 19 January 2018
More informationFeedback Control part 2
Overview Feedback Control part EGR 36 April 19, 017 Concepts from EGR 0 Open and closedloop control Everything before chapter 7 are openloop systems Transient response Design criteria Translate criteria
More informationModule 03 Modeling of Dynamical Systems
Module 03 Modeling of Dynamical Systems Ahmad F. Taha EE 3413: Analysis and Desgin of Control Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha February 2, 2016 Ahmad F. Taha
More informationR10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1
Code No: R06 R0 SET  II B. Tech II Semester Regular Examinations April/May 03 CONTROL SYSTEMS (Com. to EEE, ECE, EIE, ECC, AE) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry
More informationCONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version
CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version Norman S. Nise California State Polytechnic University, Pomona John Wiley fir Sons, Inc. Contents PREFACE, vii 1. INTRODUCTION, 1
More informationEE202 Exam III April 13, 2015
EE202 Exam III April 3, 205 Name: (Please print clearly.) Student ID: CIRCLE YOUR DIVISION DeCarlo7:308:30 Furgason 3:304:30 DeCarlo:302:30 202 2022 2023 INSTRUCTIONS There are 2 multiple choice
More informationECE2210 Final given: Spring 08
ECE Final given: Spring 0. Note: feel free to show answers & work right on the schematic 1. (1 pts) The ammeter, A, reads 30 ma. a) The power dissipated by R is 0.7 W, what is the value of R. Assume that
More informationEE 213 BASIC CIRCUIT ANALYSIS LAB MANUAL
EE 213 BASIC CIRCUIT ANALYSIS LAB MANUAL EE 213 Fall 2009 LABORATORY #1 INTRODUCTION TO MATLAB INTRODUCTION The purpose of this laboratory is to introduce you to Matlab and to illustrate some of its circuit
More informationNew Mexico State University Klipsch School of Electrical Engineering. EE312  Signals and Systems I Spring 2018 Exam #1
New Mexico State University Klipsch School of Electrical Engineering EE312  Signals and Systems I Spring 2018 Exam #1 Name: Prob. 1 Prob. 2 Prob. 3 Prob. 4 Total / 30 points / 20 points / 25 points /
More informationEE202 Exam III April 10, 2008
EE202 Exam III April 10, 2008 Name: (Please print clearly) Student ID: CIRCLE YOUR DIVISION Morning 8:30 MWF Afternoon 12:30 MWF INSTRUCTIONS There are 13 multiple choice worth 5 points each and there
More informationEECE 2150 Circuits and Signals, Biomedical Applications Final Exam Section 3
EECE 2150 Circuits and Signals, Biomedical Applications Final Exam Section 3 Instructions: Closed book, closed notes; Computers and cell phones are not allowed You may use the equation sheet provided but
More informationLab 3: Poles, Zeros, and Time/Frequency Domain Response
ECEN 33 Linear Systems Spring 2 2 P. Mathys Lab 3: Poles, Zeros, and Time/Frequency Domain Response of CT Systems Introduction Systems that are used for signal processing are very often characterized
More informationVALLIAMMAI ENGINEERING COLLEGE
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK V SEMESTER IC650 CONTROL SYSTEMS Regulation 203 Academic Year 207 8 Prepared
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the splane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
More informationECE382/ME482 Spring 2005 Homework 6 Solution April 17, (s/2 + 1) s(2s + 1)[(s/8) 2 + (s/20) + 1]
ECE382/ME482 Spring 25 Homework 6 Solution April 17, 25 1 Solution to HW6 P8.17 We are given a system with open loop transfer function G(s) = 4(s/2 + 1) s(2s + 1)[(s/8) 2 + (s/2) + 1] (1) and unity negative
More informationMAE143 B  Linear Control  Spring 2018 Midterm, May 3rd
MAE143 B  Linear Control  Spring 2018 Midterm, May 3rd Instructions: 1. This exam is open book. You can consult any printed or written material of your liking. 2. You have 70 minutes. 3. Most questions
More informationMAE143 A  Signals and Systems  Winter 11 Midterm, February 2nd
MAE43 A  Signals and Systems  Winter Midterm, February 2nd Instructions (i) This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may
More informationCh 6.4: Differential Equations with Discontinuous Forcing Functions
Ch 6.4: Differential Equations with Discontinuous Forcing Functions! In this section focus on examples of nonhomogeneous initial value problems in which the forcing function is discontinuous. Example 1:
More informationEC Control Systems Question bank
MODULE I Topic Question mark Automatic control & modeling, Transfer function Write the merits and demerits of open loop and closed loop Month &Year May 12 Regula tion Compare open loop system with closed
More informationINSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad
INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad  500 043 Electrical and Electronics Engineering TUTORIAL QUESTION BAN Course Name : CONTROL SYSTEMS Course Code : A502 Class : III
More informationLaplace Transform Part 1: Introduction (I&N Chap 13)
Laplace Transform Part 1: Introduction (I&N Chap 13) Definition of the L.T. L.T. of Singularity Functions L.T. Pairs Properties of the L.T. Inverse L.T. Convolution IVT(initial value theorem) & FVT (final
More informationDigital Control Systems
Digital Control Systems Lecture Summary #4 This summary discussed some graphical methods their use to determine the stability the stability margins of closed loop systems. A. Nyquist criterion Nyquist
More informationME 375 EXAM #1 Friday, March 13, 2015 SOLUTION
ME 375 EXAM #1 Friday, March 13, 2015 SOLUTION PROBLEM 1 A system is made up of a homogeneous disk (of mass m and outer radius R), particle A (of mass m) and particle B (of mass m). The disk is pinned
More informationI Laplace transform. I Transfer function. I Conversion between systems in time, frequencydomain, and transfer
EE C128 / ME C134 Feedback Control Systems Lecture Chapter 2 Modeling in the Frequency Domain Alexandre Bayen Department of Electrical Engineering & Computer Science University of California Berkeley Lecture
More informationME 375 FINAL EXAM Wednesday, May 6, 2009
ME 375 FINAL EXAM Wedneday, May 6, 9 Diviion Meckl :3 / Adam :3 (circle one) Name_ Intruction () Thi i a cloed book examination, but you are allowed three ingleided 8.5 crib heet. A calculator i NOT allowed.
More informationReview of Linear TimeInvariant Network Analysis
D1 APPENDIX D Review of Linear TimeInvariant Network Analysis Consider a network with input x(t) and output y(t) as shown in Figure D1. If an input x 1 (t) produces an output y 1 (t), and an input x
More informationHomework Assignment 3
ECE382/ME482 Fall 2008 Homework 3 Solution October 20, 2008 1 Homework Assignment 3 Assigned September 30, 2008. Due in lecture October 7, 2008. Note that you must include all of your work to obtain full
More information