Chapter 1 Fundamental Concepts

Size: px
Start display at page:

Download "Chapter 1 Fundamental Concepts"

Transcription

1 Chapter 1 Fundamental Concepts

2 Signals A signal is a pattern of variation of a physical quantity as a function of time, space, distance, position, temperature, pressure, etc. These quantities are usually the independent variables of the function defining the signal A signal encodes information, which is the variation itself

3 Signal Processing Signal processing is the discipline concerned with extracting, analyzing, and manipulating the information carried by signals The processing method depends on the type of signal and on the nature of the information carried by the signal

4 Characterization and Classification of Signals The type of signal depends on the nature of the independent variables and on the value of the function defining the signal For example, the independent variables can be continuous or discrete Likewise, the signal can be a continuous or discrete function of the independent variables

5 Characterization and Classification of Signals Cont d Moreover, the signal can be either a real- valued function or a complex-valued function A signal consisting of a single component is called a scalar or one-dimensional (1-D) signal A signal consisting of multiple components is called a vector or multidimensional (M-D) signal

6 Definition of Function from Calculus y = f() t f : t y = f( t) independent variable dependent variable f () t y domain: set of values that t can take on range: set of values spanned by y

7 Plot or Graph of a Function y = f() t range domain t

8 Continuous-Time (CT) and Discrete-Time (DT) Signals A signal x(t) depending on a continuous temporal variable t will be called a continuous-time time (CT) signal A signal x[n] depending on a discrete temporal variable n will be called a discrete-time time (DT) signal

9 Examples: CT vs. DT Signals xt () xn [ ] t n plot(t,x) stem(n,x)

10 CT Signals: 1-D vs. N-D, Real vs. Complex 1-D, real-valued, CT signal: N-D, real-valued, CT signal: 1-D, complex-valued, CT signal: N-D, complex-valued, CT signal: xt (), t N xt (), t xt (), t N xt (), t

11 DT Signals: 1-D vs. N-D, Real vs. Complex 1-D, real-valued, DT signal: N-D, real-valued, DT signal: 1-D, complex-valued, DT signal: N-D, complex-valued, DT signal: xn [ ], n N xn [ ], n xn [ ], n N xn [ ], n

12 Digital Signals A DT signal whose values belong to a finite set or alphabet Α = { α } 1, α2,, αn is called a digital signal Since computers work with finite-precision arithmetic, only digital signals can be numerically processed Digital Signal Processing (DSP): ECE 464/564 (Liu) and ECE 567 (Lucchese)

13 Digital Signals: 1-D vs. N-D 1-D, real-valued, digital signal: N-D, real-valued, digital signal: xn [ ] Α, N xn [ ] Α, n n Α =,,, N { α α α } 1 2 If, the digital signal is real, if instead at i least one of the α, the digital signal is i complex α

14 Systems A system is any device that can process signals for analysis, synthesis, enhancement, format conversion, recording, transmission, etc. A system is usually mathematically defined by the equation(s) relating input to output signals (I/O characterization) A system may have single or multiple inputs and single or multiple outputs

15 Block Diagram Representation of Single-Input Single-Output (SISO) CT Systems input signal xt () t T output signal yt () = T xt () t { }

16 Block Diagram Representation of Single-Input Single-Output (SISO) DT Systems input signal xn [ ] n T output signal yn [ ] = T xn [ ] n { }

17 A Hybrid SISO System: The Analog to Digital Converter (ADC) Used to convert a CT (analog) signal into a digital signal xt () t ADC yn [ ] n

18 Block Diagram Representation of Multiple-Input Multiple-Output (MIMO) CT Systems

19 Example of 1-D, Real-Valued, Digital Signal: Digital Audio Signal xn [ ] n

20 Example of 1-D, Real-Valued, Digital Signal with a 2-D Domain: A Digital Gray-Level Image n 2 xn [, n] 1 2 [ n, n ] n 1 + [ n1, n2] pixel coordinates

21 Digital Gray-Level Image: Cont d xn [ 1, n2] n 2 n 1

22 Example of 3-D, Real-Valued, Digital Signal with a 2-D Domain: A Digital Color Image n 2 rn [ 1, n2] xn [ 1, n2] = gn [ 1, n2] bn [ 1, n2] 2 [ n, n ] 1 2 n 1

23 Digital Color Image: Cont d rn [ 1, n2] gn [ 1, n2] bn [ 1, n2]

24 Example of 3-D, Real-Valued, Digital Signal with a 3-D Domain: A Digital Color Video Sequence k (temporal axis) n 2 rn [ 1, n2, k] x[ n1, n2, k] = g[ n1, n2, k] bn [ 1, n2, k] k 2 [ n1, n2], n 1

25 Types of input/output representations considered Differential equation (or difference equation) The convolution model The transfer function representation (Fourier transform representation)

26 Examples of 1-D, Real-Valued, CT Signals: Temporal Evolution of Currents and Voltages in Electrical Circuits yt () t

27 Examples of 1-D, Real-Valued, CT Signals: Temporal Evolution of Some Physical Quantities in Mechanical Systems yt () t

28 Continuous-Time (CT) Signals Unit-step function Unit-ramp function 1, t 0 ut () = 0, t < 0 t, t 0 rt () = 0, t < 0

29 Unit-Ramp and Unit-Step Functions: Some Properties xtut () () xt (), t 0 = 0, t < 0 t rt () = u( λ) dλ ut () dr() t dt = (to the exception of t = 0 )

30 A.k.a. the delta function or Dirac distribution It is defined by: The Unit Impulse δ () t = 0, t 0 ε ε δ( λ) dλ = 1, ε > 0 The value is not defined, in particular (0) δ δ (0)

31 The Unit Impulse: Graphical Interpretation A is a very large number

32 The Scaled Impulse Kδ(t) K K () t If, δ is the impulse with area, i.e., K() t = 0, t 0 ε ε Kδ( λ) dλ = K, ε > 0 K

33 Properties of the Delta Function 1) t ut () = δ ( λ) dλ t except t = 0 2) t t ε ε xt () δ( t t) dt= xt ( ) ε > (sifting property)

34 Periodic Signals xt Definition: a signal () is said to be periodic with period, if T xt ( + T) = xt ( ) t xt Notice that () is also periodic with period qt where q is any positive integer is called the fundamental period T

35 Example: The Sinusoid xt () = Acos( ωt+ θ ), t ω θ [ rad / sec] [ rad ] f = ω 2π [1/ sec] = [ Hz]

36 Is the Sum of Periodic Signals Periodic? Let x1( t) and x2( t) be two periodic signals with periods T 1 and T 2, respectively x t + x t Then, the sum is periodic only if 1() 2() the ratio T 1 /T 2 can be written as the ratio q/r of two integers q and r In addition, if r and q are coprime, then T=rT 1 is the fundamental period of x () t + x () t 1 2

37 Time-Shifted Signals

38 Points of Discontinuity xt A continuous-time signal () is said to be + discontinuous at a point t if xt ( 0 0) xt ( 0) where t + and, being a 0 = t0 + ε t 0 = t0 ε ε small positive number xt () t 0 t

39 Continuous Signals xt xt A signal () is continuous at the point if + ( ) ( ) xt = 0 0 t 0 xt If a signal () is continuous at all points t, xt () is said to be a continuous signal

40 Example of Continuous Signal: The Triangular Pulse Function

41 Piecewise-Continuous Signals xt A signal () is said to be piecewise continuous if it is continuous at all t except a finite or countably infinite collection of points, 1,2,3, t i= i

42 Example of Piecewise-Continuous Signal: The Rectangular Pulse Function pτ ( t) = ut ( + τ / 2) ut ( τ / 2)

43 Another Example of Piecewise- Continuous Signal: The Pulse Train Function

44 Derivative of a Continuous-Time Signal xt A signal () is said to be differentiable at a point t 0 if the quantity ( ) ( ) xt + h xt h h 0 0 has limit as 0independent of whether approaches 0 from above ( h > 0) or from below ( h < 0) If the limit exists, () has a derivative at () ( ) ( ) xt t0 dx t x t + h x t 0 0 t t = lim 0 h 0 dt = h h

45 Continuity and Differentiability xt In order for () to be differentiable at a point t 0, it is necessary (but not sufficient) that () be continuous at xt t0 Continuous-time signals that are not continuous at all points (piecewise continuity) cannot be differentiable at all points

46 Generalized Derivative However, piecewise-continuous signals may have a derivative in a generalized sense Suppose that xt () is differentiable at all t except t = t 0 The generalized derivative of xt () is defined to be dx() t dt + + xt ( 0) xt ( 0) δ ( t t0) ordinary derivative of xt () at all t except t = t0

47 Example: Generalized Derivative of the Step Function Definext () = Kut () K K xt The ordinary derivative of () is 0 at all points except t = 0 Therefore, the generalized derivative of () is + K u(0 ) u(0 ) δ ( t 0) = Kδ ( t) xt

48 Another Example of Generalized Derivative Consider the function defined as xt () 2t+ 1, 0 t < 1 1, 1 t < 2 = t + 3, 2 t 3 0, all other t

49 dx() t dt Another Example of Generalized Derivative: Cont d The ordinary derivative of, at all except is dx() t dt t = 0,1,2,3 Its generalized derivative is xt () [ ut ut ] [ ut ut ] = 2 ( ) ( 1) ( 2) ( 3) + x(0 ) x(0 ) δ + + ( t) + x(1 ) x(1 ) δ( t 1) 1 2 t

50 Another Example of Generalized Derivative: Cont d

51 Signals Defined Interval by Interval Consider the signal x (), t t t < t xt () = x (), t t t< t x (), t t t This signal can be expressed in terms of the unit-step function ut () and its time-shifts as [ ] xt () = x() t ut ( t) ut ( t) [ ] + x () t u( t t ) u( t t ) x () t u( t t ), t t 3 3 1

52 Signals Defined Interval by Interval: Cont d By rearranging the terms, we can write xt () = f() tut ( t) + f() tut ( t) + f() tut ( t) where f () t = x () t 1 1 f () t = x () t x () t f () t = x () t x () t 3 3 2

53 Discrete-Time (DT) Signals A discrete-time signal is defined only over integer values We denote such a signal by xn [ ], n = {, 2, 1,0,1,2, }

54 Example: A Discrete-Time Signal Plotted with Matlab Suppose that x[0] = 1, x[1] = 2, x[2] = 1, x[3] = 0, x[4] = 1 n=-2:6; x=[ ]; stem(n,x) xlabel( n ) ylabel( x[n] )

55 Sampling Discrete-time signals are usually obtained by sampling continuous-time signals.. xt () xn [ ] = xt ( ) = xnt ( ) t= nt

56 DT Step and Ramp Functions

57 DT Unit Pulse δ[ n] 1, n = 0 = 0, n 0

58 Periodic DT Signals xn [ ] A DT signal is periodic if there exists a positive integer r such that xn [ + r] = xn [ ] n r is called the period of the signal The fundamental period is the smallest value of r for which the signal repeats

59 Example: Periodic DT Signals Consider the signal The signal is periodic if xn [ ] = Acos( Ω n+ θ ) Acos( Ω ( n+ r) + θ ) = Acos( Ω n+ θ ) Recalling the periodicity of the cosine xn [ ] cos( α) = cos( α + 2 kπ) is periodic if and only if there exists a positive integer r such that Ω r = 2kπ for some integer k or, equivalently, that the DT frequency Ω is such that Ω = 2 kπ / r for some positive integers k and r

60 xn [ ] = A cos( Ω n + θ ) Ω Example: for different values of Ω= π /3, θ = 0 Ω = 1, θ = 0 periodic signal with period r = 6 aperiodic signal (with periodic envelope)

61 DT Rectangular Pulse p [ n] L 1, n= ( L 1)/2,, 1,0,1,,( L 1)/2 = 0, all other n (L must be an odd integer)

62 Digital Signals xn [ ] A digital signal is a DT signal whose values belong to a finite set or alphabet a, a,, an { } 1 2 A CT signal can be converted into a digital signal by cascading the ideal sampler with a quantizer

63 xn [ ] Time-Shifted Signals If is a DT signal and q is a positive integer xn [ q] xn [ + q] is the q-step right shift of xn [ ] is the q-step left shift of xn [ ]

64 Example of CT System: An RC Circuit Kirchhoff s current law: i () t + i () t = i() t C R

65 RC Circuit: Cont d The v-i law for the capacitor is dv () t dy() t C ic () t = C = C dt dt Whereas for the resistor it is 1 1 ir() t = vc() t = y() t R R

66 RC Circuit: Cont d Constant-coefficient linear differential equation describing the I/O relationship if the circuit dy() t 1 C + y () t = i () t = x () t dt R

67 RC Circuit: Cont d Step response when R=C=1

68 Example of CT System: Car on a Level Surface Newton s s second law of motion: 2 d y() t dy() t M + k () 2 f = x t dt dt xt () yt () where is the drive or braking force applied to the car at time t and is the car s position at time t

69 Car on a Level Surface: Cont d Step response when M=1 and k = 0.1 f

70 Example of CT System: Mass-Spring-Damper System 2 d y() t dy() t M + D + Ky() t = x() t 2 dt dt

71 Mass-Spring-Damper System: Cont d Step response when M=1, K=2, and D=0.5

72 Example of CT System: Simple Pendulum 2 d θ () t I + MgLsin θ ( t) = Lx( t) 2 dt If sin θ ( t) θ ( t) 2 d θ () t I + MgLθ () t = Lx() t 2 dt

73 Basic System Properties: Causality A system is said to be causal if, for any time t 1, the output response at time t 1 resulting from input x(t) does not depend on values of the input for t > t 1. A system is said to be noncausal if it is not causal

74 Example: The Ideal Predictor yt () = xt ( + 1)

75 Example: The Ideal Delay yt () = xt ( 1)

76 Memoryless Systems and Systems with Memory A causal system is memoryless or static if, for any time t 1, the value of the output at time t 1 depends only on the value of the input at time t 1 A causal system that is not memoryless is said to have memory. A system has memory if the output at time t 1 depends in general on the past values of the input x(t) for some range of values of t up to t = t 1

77 Ideal Amplifier/Attenuator RC Circuit yt () = Kxt () 1 yt = e x d t C t (1/ RC )( t τ ) () ( τ) τ, 0 0 Examples

78 Basic System Properties: Additive Systems A system is said to be additive if, for any two inputs x 1 (t) and x 2 (t), the response to the sum of inputs x 1 (t) + x 2 (t) is equal to the sum of the responses to the inputs, assuming no initial energy before the application of the inputs x () t x () t + system 1 2 y () t + y () t 1 2

79 Basic System Properties: Homogeneous Systems A system is said to be homogeneous if, for any input x(t) and any scalar a, the response to the input ax(t) is equal to a times the response to x(t), assuming no energy before the application of the input ax() t system ay() t

80 Basic System Properties: Linearity A system is said to be linear if it is both additive and homogeneous ax () t () + bx t system ay () t + by () t A system that is not linear is said to be nonlinear

81 Example of Nonlinear System: Circuit with a Diode yt () R R + 2 R xt (), whenxt () 0 = 1 2 0, when x( t) 0

82 Example of Nonlinear System: Square-Law Device yt 2 () = x() t

83 Example of Linear System: The Ideal Amplifier yt () = Kxt ()

84 Example of Linear System: A Real Amplifier

85 Basic System Properties: Time Invariance A system is said to be time invariant if, for any input x(t) and any time t 1, the response to the shifted input x(t t 1 ) is equal to y(t t 1 ) where y(t) is the response to x(t) with zero initial energy xt ( ) t system 1 1 yt ( t) A system that is not time invariant is said to be time varying or time variant

86 Examples of Time Varying Systems Amplifier with Time-Varying Gain yt () = txt () First-Order System yt () + at () yt () = bxt ()

87 Basic System Properties: Finite Dimensionality Let x(t) and y(t) be the input and output of a CT system Let x (i) (t) and y (i) (t) denote their i-th derivatives The system is said to be finite dimensional or lumped if, for some positive integer N the N-th derivative of the output at time t is equal to a function of x (i) (t) and y (i) (t) at time t for 0 i N 1

88 Basic System Properties: Finite Dimensionality Cont d The N-th derivative of the output at time t may also depend on the i-th derivative of the input at time t for i N ( N) (1) ( N 1) y t f y t y t y t () = ( (), (),, (), xt x t x t t (1) ( M ) ( ), ( ),, ( ), ) The integer N is called the order of the above I/O differential equation as well as the order or dimension of the system described by such equation

89 Basic System Properties: Finite Dimensionality Cont d A CT system with memory is infinite dimensional if it is not finite dimensional, i.e., if it is not possible to express the N-th derivative of the output in the form indicated above for some positive integer N Example: System with Delay dy() t dt + ay( t 1) = x( t)

90 DT Finite-Dimensional Systems Let x[n] and y[n] be the input and output of a DT system. The system is finite dimensional if, for some positive integer N and nonnegative integer M, y[n] can be written in the form yn [ ] = f( yn [ 1], yn [ 2],, yn [ N], xn [ ], xn [ 1],, xn [ M], n) N is called the order of the I/O difference equation as well as the order or dimension of the system described by such equation

91 Basic System Properties: CT Linear Finite-Dimensional Systems If the N-th derivative of a CT system can be written in the form N 1 M ( N) ( i) ( i) = i + i i= 0 i= 0 y () t a () t y () t b() t x () t then the system is both linear and finite dimensional

92 Basic System Properties: DT Linear Finite-Dimensional Systems If the output of a DT system can be written in the form N 1 M = i + i i= 0 i= 0 yn [ ] a( n) yn [ i] b( nxn ) [ i] then the system is both linear and finite dimensional

93 Basic System Properties: Linear Time-Invariant Finite-Dimensional Systems For a CT system it must be a () t = a and b() t = b iand t i i i i And, similarly, for a DT system a ( n) = a and b( n) = b iand n i i i i

94 About the Order of Differential and Difference Equations Some authors define the order as N Some as ( M, N) Some others as max( M, N)

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chapter 1 Fundamental Concepts 1 Signals A signal is a pattern of variation of a physical quantity, often as a function of time (but also space, distance, position, etc). These quantities are usually the

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chaper 1 Fundamenal Conceps 1 Signals A signal is a paern of variaion of a physical quaniy, ofen as a funcion of ime (bu also space, disance, posiion, ec). These quaniies are usually he independen variables

More information

Lecture 2. Introduction to Systems (Lathi )

Lecture 2. Introduction to Systems (Lathi ) Lecture 2 Introduction to Systems (Lathi 1.6-1.8) Pier Luigi Dragotti Department of Electrical & Electronic Engineering Imperial College London URL: www.commsp.ee.ic.ac.uk/~pld/teaching/ E-mail: p.dragotti@imperial.ac.uk

More information

Noise - irrelevant data; variability in a quantity that has no meaning or significance. In most cases this is modeled as a random variable.

Noise - irrelevant data; variability in a quantity that has no meaning or significance. In most cases this is modeled as a random variable. 1.1 Signals and Systems Signals convey information. Systems respond to (or process) information. Engineers desire mathematical models for signals and systems in order to solve design problems efficiently

More information

Analog Signals and Systems and their properties

Analog Signals and Systems and their properties Analog Signals and Systems and their properties Main Course Objective: Recall course objectives Understand the fundamentals of systems/signals interaction (know how systems can transform or filter signals)

More information

Lecture 2 ELE 301: Signals and Systems

Lecture 2 ELE 301: Signals and Systems Lecture 2 ELE 301: Signals and Systems Prof. Paul Cuff Princeton University Fall 2011-12 Cuff (Lecture 2) ELE 301: Signals and Systems Fall 2011-12 1 / 70 Models of Continuous Time Signals Today s topics:

More information

1.4 Unit Step & Unit Impulse Functions

1.4 Unit Step & Unit Impulse Functions 1.4 Unit Step & Unit Impulse Functions 1.4.1 The Discrete-Time Unit Impulse and Unit-Step Sequences Unit Impulse Function: δ n = ቊ 0, 1, n 0 n = 0 Figure 1.28: Discrete-time Unit Impulse (sample) 1 [n]

More information

Module 1: Signals & System

Module 1: Signals & System Module 1: Signals & System Lecture 6: Basic Signals in Detail Basic Signals in detail We now introduce formally some of the basic signals namely 1) The Unit Impulse function. 2) The Unit Step function

More information

Chapter 3 Convolution Representation

Chapter 3 Convolution Representation Chapter 3 Convolution Representation DT Unit-Impulse Response Consider the DT SISO system: xn [ ] System yn [ ] xn [ ] = δ[ n] If the input signal is and the system has no energy at n = 0, the output yn

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 1

06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 1 IV. Continuous-Time Signals & LTI Systems [p. 3] Analog signal definition [p. 4] Periodic signal [p. 5] One-sided signal [p. 6] Finite length signal [p. 7] Impulse function [p. 9] Sampling property [p.11]

More information

University Question Paper Solution

University Question Paper Solution Unit 1: Introduction University Question Paper Solution 1. Determine whether the following systems are: i) Memoryless, ii) Stable iii) Causal iv) Linear and v) Time-invariant. i) y(n)= nx(n) ii) y(t)=

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

Signals and Systems Chapter 2

Signals and Systems Chapter 2 Signals and Systems Chapter 2 Continuous-Time Systems Prof. Yasser Mostafa Kadah Overview of Chapter 2 Systems and their classification Linear time-invariant systems System Concept Mathematical transformation

More information

Cosc 3451 Signals and Systems. What is a system? Systems Terminology and Properties of Systems

Cosc 3451 Signals and Systems. What is a system? Systems Terminology and Properties of Systems Cosc 3451 Signals and Systems Systems Terminology and Properties of Systems What is a system? an entity that manipulates one or more signals to yield new signals (often to accomplish a function) can be

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Representation of Signals in Terms of Frequency Components Consider the CT signal defined by N xt () = Acos( ω t+ θ ), t k = 1 k k k The frequencies `present

More information

Solving a RLC Circuit using Convolution with DERIVE for Windows

Solving a RLC Circuit using Convolution with DERIVE for Windows Solving a RLC Circuit using Convolution with DERIVE for Windows Michel Beaudin École de technologie supérieure, rue Notre-Dame Ouest Montréal (Québec) Canada, H3C K3 mbeaudin@seg.etsmtl.ca - Introduction

More information

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE)

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) 1. For the signal shown in Fig. 1, find x(2t + 3). i. Fig. 1 2. What is the classification of the systems? 3. What are the Dirichlet s conditions of Fourier

More information

Lecture 1 From Continuous-Time to Discrete-Time

Lecture 1 From Continuous-Time to Discrete-Time Lecture From Continuous-Time to Discrete-Time Outline. Continuous and Discrete-Time Signals and Systems................. What is a signal?................................2 What is a system?.............................

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Fourier Series Representation of Periodic Signals Let x(t) be a CT periodic signal with period T, i.e., xt ( + T) = xt ( ), t R Example: the rectangular

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

DIGITAL SIGNAL PROCESSING UNIT 1 SIGNALS AND SYSTEMS 1. What is a continuous and discrete time signal? Continuous time signal: A signal x(t) is said to be continuous if it is defined for all time t. Continuous

More information

AC&ST AUTOMATIC CONTROL AND SYSTEM THEORY SYSTEMS AND MODELS. Claudio Melchiorri

AC&ST AUTOMATIC CONTROL AND SYSTEM THEORY SYSTEMS AND MODELS. Claudio Melchiorri C. Melchiorri (DEI) Automatic Control & System Theory 1 AUTOMATIC CONTROL AND SYSTEM THEORY SYSTEMS AND MODELS Claudio Melchiorri Dipartimento di Ingegneria dell Energia Elettrica e dell Informazione (DEI)

More information

ECE 301 Division 1 Exam 1 Solutions, 10/6/2011, 8-9:45pm in ME 1061.

ECE 301 Division 1 Exam 1 Solutions, 10/6/2011, 8-9:45pm in ME 1061. ECE 301 Division 1 Exam 1 Solutions, 10/6/011, 8-9:45pm in ME 1061. Your ID will be checked during the exam. Please bring a No. pencil to fill out the answer sheet. This is a closed-book exam. No calculators

More information

Solutions to Problems in Chapter 4

Solutions to Problems in Chapter 4 Solutions to Problems in Chapter 4 Problems with Solutions Problem 4. Fourier Series of the Output Voltage of an Ideal Full-Wave Diode Bridge Rectifier he nonlinear circuit in Figure 4. is a full-wave

More information

Signals and Systems Lecture Notes

Signals and Systems Lecture Notes Dr. Mahmoud M. Al-Husari Signals and Systems Lecture Notes This set of lecture notes are never to be considered as a substitute to the textbook recommended by the lecturer. ii Contents Preface v 1 Introduction

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

Chapter 2 Time-Domain Representations of LTI Systems

Chapter 2 Time-Domain Representations of LTI Systems Chapter 2 Time-Domain Representations of LTI Systems 1 Introduction Impulse responses of LTI systems Linear constant-coefficients differential or difference equations of LTI systems Block diagram representations

More information

UNIT 1. SIGNALS AND SYSTEM

UNIT 1. SIGNALS AND SYSTEM Page no: 1 UNIT 1. SIGNALS AND SYSTEM INTRODUCTION A SIGNAL is defined as any physical quantity that changes with time, distance, speed, position, pressure, temperature or some other quantity. A SIGNAL

More information

Sampling and Discrete Time. Discrete-Time Signal Description. Sinusoids. Sampling and Discrete Time. Sinusoids An Aperiodic Sinusoid.

Sampling and Discrete Time. Discrete-Time Signal Description. Sinusoids. Sampling and Discrete Time. Sinusoids An Aperiodic Sinusoid. Sampling and Discrete Time Discrete-Time Signal Description Sampling is the acquisition of the values of a continuous-time signal at discrete points in time. x t discrete-time signal. ( ) is a continuous-time

More information

School of Engineering Faculty of Built Environment, Engineering, Technology & Design

School of Engineering Faculty of Built Environment, Engineering, Technology & Design Module Name and Code : ENG60803 Real Time Instrumentation Semester and Year : Semester 5/6, Year 3 Lecture Number/ Week : Lecture 3, Week 3 Learning Outcome (s) : LO5 Module Co-ordinator/Tutor : Dr. Phang

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 [E2.5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 EEE/ISE PART II MEng. BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: 2:00 hours There are FOUR

More information

EE 224 Signals and Systems I Review 1/10

EE 224 Signals and Systems I Review 1/10 EE 224 Signals and Systems I Review 1/10 Class Contents Signals and Systems Continuous-Time and Discrete-Time Time-Domain and Frequency Domain (all these dimensions are tightly coupled) SIGNALS SYSTEMS

More information

Analog vs. discrete signals

Analog vs. discrete signals Analog vs. discrete signals Continuous-time signals are also known as analog signals because their amplitude is analogous (i.e., proportional) to the physical quantity they represent. Discrete-time signals

More information

Lecture A1 : Systems and system models

Lecture A1 : Systems and system models Lecture A1 : Systems and system models Jan Swevers July 2006 Aim of this lecture : Understand the process of system modelling (different steps). Define the class of systems that will be considered in this

More information

Interconnection of LTI Systems

Interconnection of LTI Systems EENG226 Signals and Systems Chapter 2 Time-Domain Representations of Linear Time-Invariant Systems Interconnection of LTI Systems Prof. Dr. Hasan AMCA Electrical and Electronic Engineering Department (ee.emu.edu.tr)

More information

A system that is both linear and time-invariant is called linear time-invariant (LTI).

A system that is both linear and time-invariant is called linear time-invariant (LTI). The Cooper Union Department of Electrical Engineering ECE111 Signal Processing & Systems Analysis Lecture Notes: Time, Frequency & Transform Domains February 28, 2012 Signals & Systems Signals are mapped

More information

Digital Filters Ying Sun

Digital Filters Ying Sun Digital Filters Ying Sun Digital filters Finite impulse response (FIR filter: h[n] has a finite numbers of terms. Infinite impulse response (IIR filter: h[n] has infinite numbers of terms. Causal filter:

More information

Review of Frequency Domain Fourier Series: Continuous periodic frequency components

Review of Frequency Domain Fourier Series: Continuous periodic frequency components Today we will review: Review of Frequency Domain Fourier series why we use it trig form & exponential form how to get coefficients for each form Eigenfunctions what they are how they relate to LTI systems

More information

Introduction to Signals and Systems Lecture #4 - Input-output Representation of LTI Systems Guillaume Drion Academic year

Introduction to Signals and Systems Lecture #4 - Input-output Representation of LTI Systems Guillaume Drion Academic year Introduction to Signals and Systems Lecture #4 - Input-output Representation of LTI Systems Guillaume Drion Academic year 2017-2018 1 Outline Systems modeling: input/output approach of LTI systems. Convolution

More information

LINEAR SYSTEMS. J. Elder PSYC 6256 Principles of Neural Coding

LINEAR SYSTEMS. J. Elder PSYC 6256 Principles of Neural Coding LINEAR SYSTEMS Linear Systems 2 Neural coding and cognitive neuroscience in general concerns input-output relationships. Inputs Light intensity Pre-synaptic action potentials Number of items in display

More information

Lecture 2 Discrete-Time LTI Systems: Introduction

Lecture 2 Discrete-Time LTI Systems: Introduction Lecture 2 Discrete-Time LTI Systems: Introduction Outline 2.1 Classification of Systems.............................. 1 2.1.1 Memoryless................................. 1 2.1.2 Causal....................................

More information

Continuous-time Signals. (AKA analog signals)

Continuous-time Signals. (AKA analog signals) Continuous-time Signals (AKA analog signals) I. Analog* Signals review Goals: - Common test signals used in system analysis - Signal operations and properties: scaling, shifting, periodicity, energy and

More information

Discussion Section #2, 31 Jan 2014

Discussion Section #2, 31 Jan 2014 Discussion Section #2, 31 Jan 2014 Lillian Ratliff 1 Unit Impulse The unit impulse (Dirac delta) has the following properties: { 0, t 0 δ(t) =, t = 0 ε ε δ(t) = 1 Remark 1. Important!: An ordinary function

More information

Question Paper Code : AEC11T02

Question Paper Code : AEC11T02 Hall Ticket No Question Paper Code : AEC11T02 VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Affiliated to JNTUH, Hyderabad Four Year B. Tech III Semester Tutorial Question Bank 2013-14 (Regulations: VCE-R11)

More information

Laplace Transforms Chapter 3

Laplace Transforms Chapter 3 Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important

More information

LECTURE NOTES DIGITAL SIGNAL PROCESSING III B.TECH II SEMESTER (JNTUK R 13)

LECTURE NOTES DIGITAL SIGNAL PROCESSING III B.TECH II SEMESTER (JNTUK R 13) LECTURE NOTES ON DIGITAL SIGNAL PROCESSING III B.TECH II SEMESTER (JNTUK R 13) FACULTY : B.V.S.RENUKA DEVI (Asst.Prof) / Dr. K. SRINIVASA RAO (Assoc. Prof) DEPARTMENT OF ELECTRONICS AND COMMUNICATIONS

More information

e jωt y (t) = ω 2 Ke jωt K =

e jωt y (t) = ω 2 Ke jωt K = BME 171, Sec 2: Homework 2 Solutions due Tue, Sep 16 by 5pm 1. Consider a system governed by the second-order differential equation a d2 y(t) + b dy(t) where a, b and c are nonnegative real numbers. (a)

More information

Introduction to DSP Time Domain Representation of Signals and Systems

Introduction to DSP Time Domain Representation of Signals and Systems Introduction to DSP Time Domain Representation of Signals and Systems Dr. Waleed Al-Hanafy waleed alhanafy@yahoo.com Faculty of Electronic Engineering, Menoufia Univ., Egypt Digital Signal Processing (ECE407)

More information

Communication Signals (Haykin Sec. 2.4 and Ziemer Sec Sec. 2.4) KECE321 Communication Systems I

Communication Signals (Haykin Sec. 2.4 and Ziemer Sec Sec. 2.4) KECE321 Communication Systems I Communication Signals (Haykin Sec..4 and iemer Sec...4-Sec..4) KECE3 Communication Systems I Lecture #3, March, 0 Prof. Young-Chai Ko 년 3 월 일일요일 Review Signal classification Phasor signal and spectra Representation

More information

信號與系統 Signals and Systems

信號與系統 Signals and Systems Spring 2010 信號與系統 Signals and Systems Chapter SS-2 Linear Time-Invariant Systems Feng-Li Lian NTU-EE Feb10 Jun10 Figures and images used in these lecture notes are adopted from Signals & Systems by Alan

More information

Chapter 2: Time-Domain Representations of Linear Time-Invariant Systems. Chih-Wei Liu

Chapter 2: Time-Domain Representations of Linear Time-Invariant Systems. Chih-Wei Liu Chapter : Time-Domain Representations of Linear Time-Invariant Systems Chih-Wei Liu Outline Characteristics of Systems Described by Differential and Difference Equations Block Diagram Representations State-Variable

More information

Final Exam 14 May LAST Name FIRST Name Lab Time

Final Exam 14 May LAST Name FIRST Name Lab Time EECS 20n: Structure and Interpretation of Signals and Systems Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA BERKELEY Final Exam 14 May 2005 LAST Name FIRST Name Lab

More information

COMP Signals and Systems. Dr Chris Bleakley. UCD School of Computer Science and Informatics.

COMP Signals and Systems. Dr Chris Bleakley. UCD School of Computer Science and Informatics. COMP 40420 2. Signals and Systems Dr Chris Bleakley UCD School of Computer Science and Informatics. Scoil na Ríomheolaíochta agus an Faisnéisíochta UCD. Introduction 1. Signals 2. Systems 3. System response

More information

Linear dynamical systems with inputs & outputs

Linear dynamical systems with inputs & outputs EE263 Autumn 215 S. Boyd and S. Lall Linear dynamical systems with inputs & outputs inputs & outputs: interpretations transfer function impulse and step responses examples 1 Inputs & outputs recall continuous-time

More information

Review of Analog Signal Analysis

Review of Analog Signal Analysis Review of Analog Signal Analysis Chapter Intended Learning Outcomes: (i) Review of Fourier series which is used to analyze continuous-time periodic signals (ii) Review of Fourier transform which is used

More information

EC Signals and Systems

EC Signals and Systems UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS Continuous time signals (CT signals), discrete time signals (DT signals) Step, Ramp, Pulse, Impulse, Exponential 1. Define Unit Impulse Signal [M/J 1], [M/J

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52 1/52 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 2 Laplace Transform I Linear Time Invariant Systems A general LTI system may be described by the linear constant coefficient differential equation: a n d n

More information

16.30 Estimation and Control of Aerospace Systems

16.30 Estimation and Control of Aerospace Systems 16.30 Estimation and Control of Aerospace Systems Topic 5 addendum: Signals and Systems Aeronautics and Astronautics Massachusetts Institute of Technology Fall 2010 (MIT) Topic 5 addendum: Signals, Systems

More information

信號與系統 Signals and Systems

信號與系統 Signals and Systems Spring 2015 信號與系統 Signals and Systems Chapter SS-2 Linear Time-Invariant Systems Feng-Li Lian NTU-EE Feb15 Jun15 Figures and images used in these lecture notes are adopted from Signals & Systems by Alan

More information

3.2 Complex Sinusoids and Frequency Response of LTI Systems

3.2 Complex Sinusoids and Frequency Response of LTI Systems 3. Introduction. A signal can be represented as a weighted superposition of complex sinusoids. x(t) or x[n]. LTI system: LTI System Output = A weighted superposition of the system response to each complex

More information

LTI Systems (Continuous & Discrete) - Basics

LTI Systems (Continuous & Discrete) - Basics LTI Systems (Continuous & Discrete) - Basics 1. A system with an input x(t) and output y(t) is described by the relation: y(t) = t. x(t). This system is (a) linear and time-invariant (b) linear and time-varying

More information

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Spring 2018 Exam #1

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Spring 2018 Exam #1 New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Spring 2018 Exam #1 Name: Prob. 1 Prob. 2 Prob. 3 Prob. 4 Total / 30 points / 20 points / 25 points /

More information

Lecture 1 Signals. notation and meaning. common signals. size of a signal. qualitative properties of signals. impulsive signals

Lecture 1 Signals. notation and meaning. common signals. size of a signal. qualitative properties of signals. impulsive signals EE102 spring 2002 Handout #2 Lecture 1 Signals notation and meaning common signals size of a signal qualitative properties of signals impulsive signals 1 1 Signals a signal is a function of time, e.g.,

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-04 COURSE: ECE-2025 NAME: GT #: LAST, FIRST Recitation Section: Circle the date & time when your Recitation

More information

Chapter 3. Discrete-Time Systems

Chapter 3. Discrete-Time Systems Chapter 3 Discrete-Time Systems A discrete-time system can be thought of as a transformation or operator that maps an input sequence {x[n]} to an output sequence {y[n]} {x[n]} T(. ) {y[n]} By placing various

More information

Modeling and Simulation Revision IV D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N

Modeling and Simulation Revision IV D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N Modeling and Simulation Revision IV D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N 2 0 1 7 Modeling Modeling is the process of representing the behavior of a real

More information

Signals and Systems Laboratory with MATLAB

Signals and Systems Laboratory with MATLAB Signals and Systems Laboratory with MATLAB Alex Palamides Anastasia Veloni @ CRC Press Taylor &. Francis Group Boca Raton London NewYork CRC Press is an imprint of the Taylor & Francis Group, an informa

More information

Introduction to Modern Control MT 2016

Introduction to Modern Control MT 2016 CDT Autonomous and Intelligent Machines & Systems Introduction to Modern Control MT 2016 Alessandro Abate Lecture 2 First-order ordinary differential equations (ODE) Solution of a linear ODE Hints to nonlinear

More information

Chapter 2: Linear systems & sinusoids OVE EDFORS DEPT. OF EIT, LUND UNIVERSITY

Chapter 2: Linear systems & sinusoids OVE EDFORS DEPT. OF EIT, LUND UNIVERSITY Chapter 2: Linear systems & sinusoids OVE EDFORS DEPT. OF EIT, LUND UNIVERSITY Learning outcomes After this lecture, the student should understand what a linear system is, including linearity conditions,

More information

Modeling and Analysis of Systems Lecture #3 - Linear, Time-Invariant (LTI) Systems. Guillaume Drion Academic year

Modeling and Analysis of Systems Lecture #3 - Linear, Time-Invariant (LTI) Systems. Guillaume Drion Academic year Modeling and Analysis of Systems Lecture #3 - Linear, Time-Invariant (LTI) Systems Guillaume Drion Academic year 2015-2016 1 Outline Systems modeling: input/output approach and LTI systems. Convolution

More information

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communications Systems 2: Fourier Representations Jie Liang School of Engineering Science Simon Fraser University 1 Outline Chap 2.1 2.5: Signal Classifications Fourier Transform Dirac Delta Function

More information

MEDE2500 Tutorial Nov-7

MEDE2500 Tutorial Nov-7 (updated 2016-Nov-4,7:40pm) MEDE2500 (2016-2017) Tutorial 3 MEDE2500 Tutorial 3 2016-Nov-7 Content 1. The Dirac Delta Function, singularity functions, even and odd functions 2. The sampling process and

More information

Convolution. Define a mathematical operation on discrete-time signals called convolution, represented by *. Given two discrete-time signals x 1, x 2,

Convolution. Define a mathematical operation on discrete-time signals called convolution, represented by *. Given two discrete-time signals x 1, x 2, Filters Filters So far: Sound signals, connection to Fourier Series, Introduction to Fourier Series and Transforms, Introduction to the FFT Today Filters Filters: Keep part of the signal we are interested

More information

16.362: Signals and Systems: 1.0

16.362: Signals and Systems: 1.0 16.362: Signals and Systems: 1.0 Prof. K. Chandra ECE, UMASS Lowell September 1, 2016 1 Background The pre-requisites for this course are Calculus II and Differential Equations. A basic understanding of

More information

Lecture 1: Introduction Introduction

Lecture 1: Introduction Introduction Module 1: Signals in Natural Domain Lecture 1: Introduction Introduction The intent of this introduction is to give the reader an idea about Signals and Systems as a field of study and its applications.

More information

Laplace Transform Part 1: Introduction (I&N Chap 13)

Laplace Transform Part 1: Introduction (I&N Chap 13) Laplace Transform Part 1: Introduction (I&N Chap 13) Definition of the L.T. L.T. of Singularity Functions L.T. Pairs Properties of the L.T. Inverse L.T. Convolution IVT(initial value theorem) & FVT (final

More information

Differential and Difference LTI systems

Differential and Difference LTI systems Signals and Systems Lecture: 6 Differential and Difference LTI systems Differential and difference linear time-invariant (LTI) systems constitute an extremely important class of systems in engineering.

More information

ECE 301: Signals and Systems. Course Notes. Prof. Shreyas Sundaram. School of Electrical and Computer Engineering Purdue University

ECE 301: Signals and Systems. Course Notes. Prof. Shreyas Sundaram. School of Electrical and Computer Engineering Purdue University ECE 301: Signals and Systems Course Notes Prof. Shreyas Sundaram School of Electrical and Computer Engineering Purdue University ii Acknowledgments These notes very closely follow the book: Signals and

More information

NAME: 13 February 2013 EE301 Signals and Systems Exam 1 Cover Sheet

NAME: 13 February 2013 EE301 Signals and Systems Exam 1 Cover Sheet NAME: February EE Signals and Systems Exam Cover Sheet Test Duration: 75 minutes. Coverage: Chaps., Open Book but Closed Notes. One 8.5 in. x in. crib sheet Calculators NOT allowed. This test contains

More information

MAE143A Signals & Systems - Homework 1, Winter 2014 due by the end of class Thursday January 16, 2014.

MAE143A Signals & Systems - Homework 1, Winter 2014 due by the end of class Thursday January 16, 2014. MAE43A Signals & Systems - Homework, Winter 4 due by the end of class Thursday January 6, 4. Question Time shifting [Chaparro Question.5] Consider a finite-support signal and zero everywhere else. Part

More information

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n.

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n. ECE 3 Fall Division Homework Solutions Problem. Reconstruction of a continuous-time signal from its samples. Consider the following periodic signal, depicted below: {, if n t < n +, for any integer n,

More information

Basic concepts in DT systems. Alexandra Branzan Albu ELEC 310-Spring 2009-Lecture 4 1

Basic concepts in DT systems. Alexandra Branzan Albu ELEC 310-Spring 2009-Lecture 4 1 Basic concepts in DT systems Alexandra Branzan Albu ELEC 310-Spring 2009-Lecture 4 1 Readings and homework For DT systems: Textbook: sections 1.5, 1.6 Suggested homework: pp. 57-58: 1.15 1.16 1.18 1.19

More information

Review of Fourier Transform

Review of Fourier Transform Review of Fourier Transform Fourier series works for periodic signals only. What s about aperiodic signals? This is very large & important class of signals Aperiodic signal can be considered as periodic

More information

Digital Signal Processing Lecture 3 - Discrete-Time Systems

Digital Signal Processing Lecture 3 - Discrete-Time Systems Digital Signal Processing - Discrete-Time Systems Electrical Engineering and Computer Science University of Tennessee, Knoxville August 25, 2015 Overview 1 2 3 4 5 6 7 8 Introduction Three components of

More information

2. Time-Domain Analysis of Continuous- Time Signals and Systems

2. Time-Domain Analysis of Continuous- Time Signals and Systems 2. Time-Domain Analysis of Continuous- Time Signals and Systems 2.1. Continuous-Time Impulse Function (1.4.2) 2.2. Convolution Integral (2.2) 2.3. Continuous-Time Impulse Response (2.2) 2.4. Classification

More information

Systems & Signals 315

Systems & Signals 315 1 / 15 Systems & Signals 315 Lecture 13: Signals and Linear Systems Dr. Herman A. Engelbrecht Stellenbosch University Dept. E & E Engineering 2 Maart 2009 Outline 2 / 15 1 Signal Transmission through a

More information

Aspects of Continuous- and Discrete-Time Signals and Systems

Aspects of Continuous- and Discrete-Time Signals and Systems Aspects of Continuous- and Discrete-Time Signals and Systems C.S. Ramalingam Department of Electrical Engineering IIT Madras C.S. Ramalingam (EE Dept., IIT Madras) Networks and Systems 1 / 45 Scaling the

More information

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case.

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case. s of the Fourier Theorem (Sect. 1.3. The Fourier Theorem: Continuous case. : Using the Fourier Theorem. The Fourier Theorem: Piecewise continuous case. : Using the Fourier Theorem. The Fourier Theorem:

More information

Linear Systems. ! Textbook: Strum, Contemporary Linear Systems using MATLAB.

Linear Systems. ! Textbook: Strum, Contemporary Linear Systems using MATLAB. Linear Systems LS 1! Textbook: Strum, Contemporary Linear Systems using MATLAB.! Contents 1. Basic Concepts 2. Continuous Systems a. Laplace Transforms and Applications b. Frequency Response of Continuous

More information

Discrete-Time Signals & Systems

Discrete-Time Signals & Systems Chapter 2 Discrete-Time Signals & Systems 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 2-1-1 Discrete-Time Signals: Time-Domain Representation (1/10) Signals

More information

ECE 301 Fall 2011 Division 1. Homework 1 Solutions.

ECE 301 Fall 2011 Division 1. Homework 1 Solutions. ECE 3 Fall 2 Division. Homework Solutions. Reading: Course information handout on the course website; textbook sections.,.,.2,.3,.4; online review notes on complex numbers. Problem. For each discrete-time

More information

Discrete-Time David Johns and Ken Martin University of Toronto

Discrete-Time David Johns and Ken Martin University of Toronto Discrete-Time David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 40 Overview of Some Signal Spectra x c () t st () x s () t xn

More information

NAME: 20 February 2014 EE301 Signals and Systems Exam 1 Cover Sheet

NAME: 20 February 2014 EE301 Signals and Systems Exam 1 Cover Sheet NAME: February 4 EE Signals and Systems Exam Cover Sheet Test Duration: 75 minutes. Coverage: Chaps., Open Book but Closed Notes. One 8.5 in. x in. crib sheet Calculators NOT allowed. This test contains

More information

Chapter 6: The Laplace Transform. Chih-Wei Liu

Chapter 6: The Laplace Transform. Chih-Wei Liu Chapter 6: The Laplace Transform Chih-Wei Liu Outline Introduction The Laplace Transform The Unilateral Laplace Transform Properties of the Unilateral Laplace Transform Inversion of the Unilateral Laplace

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A Classification of systems : Continuous and Discrete

More information

Lecture 9 Infinite Impulse Response Filters

Lecture 9 Infinite Impulse Response Filters Lecture 9 Infinite Impulse Response Filters Outline 9 Infinite Impulse Response Filters 9 First-Order Low-Pass Filter 93 IIR Filter Design 5 93 CT Butterworth filter design 5 93 Bilinear transform 7 9

More information

Module 4. Related web links and videos. 1. FT and ZT

Module 4. Related web links and videos. 1.  FT and ZT Module 4 Laplace transforms, ROC, rational systems, Z transform, properties of LT and ZT, rational functions, system properties from ROC, inverse transforms Related web links and videos Sl no Web link

More information

Differential Equations and Lumped Element Circuits

Differential Equations and Lumped Element Circuits Differential Equations and Lumped Element Circuits 8 Introduction Chapter 8 of the text discusses the numerical solution of ordinary differential equations. Differential equations and in particular linear

More information

E : Lecture 1 Introduction

E : Lecture 1 Introduction E85.2607: Lecture 1 Introduction 1 Administrivia 2 DSP review 3 Fun with Matlab E85.2607: Lecture 1 Introduction 2010-01-21 1 / 24 Course overview Advanced Digital Signal Theory Design, analysis, and implementation

More information