Capacitor Action. 3. Capacitor Action Theory Support. Electronics - AC Circuits

Size: px
Start display at page:

Download "Capacitor Action. 3. Capacitor Action Theory Support. Electronics - AC Circuits"

Transcription

1 Capacitor Action Topics covered in this presentation: Capacitors on DC Capacitors on AC Capacitor Charging Capacitor Discharging 1 of 18

2 Charging a Capacitor (DC) Before looking at how capacitors charge with an AC supply, we need to first look at the charging action of a DC supply. When a voltage is applied across a capacitor, the positive voltage attracts electrons from the positive plate, leaving it positively charged. The negative voltage repels electrons to the negative plate, making it negatively charged. 2 of 18

3 Charging a Capacitor (DC) Electrical current is the rate of movement of charge. Therefore, when a capacitor charges a current (I) will flow for a period of time (t) as the electrical charge (Q) moves around the circuit. I Q t 3 of 18

4 Charging a Capacitor (DC) If this supply voltage is then removed, the charge is held in place by the attraction between the opposite charges on the plates. 4 of 18

5 Capacitor on a DC Supply If a capacitor is connected across a DC power supply, a current will initially flow as the capacitor charges. As the capacitor charges and the voltage across it increases, the current in the circuit will decrease. When the capacitor is fully charged, the voltage across the capacitor will be the supply voltage so no current will flow. 5 of 18

6 Capacitor on a DC Supply In practice a resistor is used in the charging circuit to limit the current. If the capacitor is not charged through a resistor, the current can be very large, but only for a very short time. Once fully charged the capacitor has the effect of blocking current flow in a DC circuit as the gap between the two plates is effectively an open circuit. 6 of 18

7 Capacitor on an AC Supply For a capacitor on an AC supply, you need to examine how the capacitor charges and discharges for one complete AC cycle. During the first quarter when a positive going voltage is applied across the capacitor, the capacitor will charge positively. As the voltage across the capacitor increases, the current decreases. When the capacitor is fully charged, the current will be zero. 7 of 18

8 Capacitor on an AC Supply In the second quarter the capacitor discharges as the voltage across it decreases. As the capacitor discharges a current increasing in value will flow in the opposite direction. When the capacitor is fully discharged, the current will be at a maximum. 8 of 18

9 Capacitor on an AC Supply In the third quarter a negative going voltage is applied across the capacitor, and the capacitor will charge negatively. As the voltage across the capacitor increases, the current decreases. When the capacitor is fully charged, the current will be zero. 9 of 18

10 Capacitor on an AC Supply In the fourth quarter the capacitor discharges as the voltage across it decreases. As the capacitor discharges a current increasing in value will flow in the opposite direction. When the capacitor is fully discharged, the current will be at a maximum. 10 of 18

11 Capacitor on an AC Supply For a capacitor connected across an AC supply, a current flows all the time, almost as if the capacitor was allowing current to flow through it. However, this is not the case. Current flow occurs as a result of the capacitor charging and discharging during each cycle of the AC supply. A capacitor in series with an AC supply will allow current to flow through other components in the circuit. 11 of 18

12 Capacitor Charging through a Resistor If a resistor is connected in series with a capacitor it will limit the supply current and slow down the rate at which the capacitor charges. Initially the full voltage appears across the resistor. The capacitor will start charging causing a change in voltage across the capacitor. If the initial rate-of-change of voltage could be maintained the capacitor voltage would reach the applied voltage in a time of CR seconds. This is known as the Time Constant (t): t = CR seconds 12 of 18

13 Capacitor Charging through a Resistor As the capacitor charges, the voltage across the capacitor will increase, so decreasing the voltage across the resistor. The current in the resistor therefore decreases (rate of charge slows down). The voltage rises by 63.2% of the difference between the capacitor voltage and the applied voltage during each time constant. 13 of 18

14 Capacitor Charging through a Resistor Theoretically the capacitor never reaches the full supply voltage. However, after a time of 5CR seconds, the capacitor will be 99.5% charged and it can be assumed that the capacitor is fully charged. Once charged, the power supply can be removed and the capacitor will continue to hold its charge. 14 of 18

15 Capacitor Discharging through a Resistor The capacitor can then be discharged through the resistor. The resistor will limit the current as the capacitor discharges and will slow down the rate of discharge. Initially the full capacitor voltage will appears across the resistor and maximum current will flow.. If the initial rate-of-change of voltage could be maintained the capacitor would discharge in a time of CR seconds. 15 of 18

16 Capacitor Discharging through a Resistor As the capacitor discharges, voltage across the capacitor decreases, so decreasing the voltage across the resistor. The current therefore decreases and rate of discharge slows down. In each time constant the capacitor voltage falls by 36.8%. 16 of 18

17 Capacitor Discharging through a Resistor Theoretically the capacitor will never be fully discharged. However, after a time of 5CR seconds, the capacitor will be 99.5% discharged and it can be assumed that the capacitor is fully discharged. 17 of 18

18 Capacitor Half-Life The time taken for a capacitor to charge or discharge to half of the supply voltage is called the half-life of the capacitor. It can be shown that the time taken to reach half of the supply voltage is 69% of the time constant. V = 0.5V S after 0.69CR seconds 18 of 18

Electric Charge and Electric field

Electric Charge and Electric field Electric Charge and Electric field ConcepTest 16.1a Electric Charge I Two charged balls are repelling each other as they hang from the ceiling. What can you say about their charges? 1) one is positive,

More information

Coulomb s constant k = 9x10 9 N m 2 /C 2

Coulomb s constant k = 9x10 9 N m 2 /C 2 1 Part 2: Electric Potential 2.1: Potential (Voltage) & Potential Energy q 2 Potential Energy of Point Charges Symbol U mks units [Joules = J] q 1 r Two point charges share an electric potential energy

More information

RC Circuits (32.9) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 1

RC Circuits (32.9) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 1 (32.9) We have only been discussing DC circuits so far. However, using a capacitor we can create an RC circuit. In this example, a capacitor is charged but the switch is open, meaning no current flows.

More information

Which of these particles has an electrical charge?

Which of these particles has an electrical charge? Which of these particles has an electrical charge? A. Proton. B. Electron. C. Ion. D. All of the above. Which is the predominant carrier of charge in copper wire? A. Proton. B. Electron. C. Ion. D. All

More information

[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1

[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1 1 (a) Define capacitance..... [1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. S 1 S 2 6.3 V 4.5 μf Fig. 1.1 Switch S 1 is closed and switch S 2 is left

More information

LECTURE 8 RC AND RL FIRST-ORDER CIRCUITS (PART 1)

LECTURE 8 RC AND RL FIRST-ORDER CIRCUITS (PART 1) CIRCUITS by Ulaby & Maharbiz LECTURE 8 RC AND RL FIRST-ORDER CIRCUITS (PART 1) 07/18/2013 ECE225 CIRCUIT ANALYSIS All rights reserved. Do not copy or distribute. 2013 National Technology and Science Press

More information

Exercise 1: Capacitors

Exercise 1: Capacitors Capacitance AC 1 Fundamentals Exercise 1: Capacitors EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe the effect a capacitor has on dc and ac circuits by using measured

More information

Electrostatics and Charge. Creating Electric Fields

Electrostatics and Charge. Creating Electric Fields Electrostatics and Charge Creating Electric Fields Electric Charges Recall that all matter is made of atoms. Neutral atoms can acquire a charge in several different ways, all of which require movement

More information

Problem Solving 8: Circuits

Problem Solving 8: Circuits MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics OBJECTIVES Problem Solving 8: Circuits 1. To gain intuition for the behavior of DC circuits with both resistors and capacitors or inductors.

More information

104 Practice Exam 1-2/21/02

104 Practice Exam 1-2/21/02 104 Practice Exam 1-2/21/02 1. One mole of a substance contains 6.02 > 10 23 protons and an equal number of electrons. If the protons could somehow be separated from the electrons and placed in separate

More information

Capacitors. Example 1

Capacitors. Example 1 Physics 30AP Resistors and apacitors I apacitors A capacitor is a device for storing electrical charge that consists of two conducting objects placed near one another but not touching. A A typical capacitor

More information

What happens when things change. Transient current and voltage relationships in a simple resistive circuit.

What happens when things change. Transient current and voltage relationships in a simple resistive circuit. Module 4 AC Theory What happens when things change. What you'll learn in Module 4. 4.1 Resistors in DC Circuits Transient events in DC circuits. The difference between Ideal and Practical circuits Transient

More information

Electronics Capacitors

Electronics Capacitors Electronics Capacitors Wilfrid Laurier University October 9, 2015 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists

More information

Charge The most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter

Charge The most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter Basic Concepts of DC Circuits Introduction An electric circuit is an interconnection of electrical elements. Systems of Units 1 Charge The most basic quantity in an electric circuit is the electric charge.

More information

Circuits Capacitance of a parallel-plate capacitor : C = κ ε o A / d. (ρ = resistivity, L = length, A = cross-sectional area) Resistance : R = ρ L / A

Circuits Capacitance of a parallel-plate capacitor : C = κ ε o A / d. (ρ = resistivity, L = length, A = cross-sectional area) Resistance : R = ρ L / A k = 9.0 x 109 N m2 / C2 e = 1.60 x 10-19 C ε o = 8.85 x 10-12 C2 / N m2 Coulomb s law: F = k q Q / r2 (unlike charges attract, like charges repel) Electric field from a point charge : E = k q / r2 ( towards

More information

Physics 126 Fall 2004 Practice Exam 1. Answer will be posted about Oct. 5.

Physics 126 Fall 2004 Practice Exam 1. Answer will be posted about Oct. 5. Physics 126 Fall 2004 Practice Exam 1. Answer will be posted about Oct. 5. 1. Which one of the following statements best explains why tiny bits of paper are attracted to a charged rubber rod? A) Paper

More information

Figure 1. (a) An alternating current power supply provides a current that keeps switching direction.

Figure 1. (a) An alternating current power supply provides a current that keeps switching direction. 1 Figure 1 shows the output from the terminals of a power supply labelled d.c. (direct current). Voltage / V 6 4 2 0 2 0 5 10 15 20 25 Time/ms 30 35 40 45 50 Figure 1 (a) An alternating current power supply

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Part 1: Electric Force Review of Vectors Review your vectors! You should know how to convert from polar form to component form and vice versa add and subtract vectors multiply vectors by scalars Find

More information

The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d:

The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d: PHYS 102 Exams Exam 2 PRINT (A) The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d: It is connected to a battery with constant emf V.

More information

Capacitor Construction

Capacitor Construction Capacitor Construction Topics covered in this presentation: Capacitor Construction 1 of 13 Introduction to Capacitors A capacitor is a device that is able to store charge and acts like a temporary, rechargeable

More information

UNIT G485 Module Capacitors PRACTICE QUESTIONS (4)

UNIT G485 Module Capacitors PRACTICE QUESTIONS (4) UNIT G485 Module 2 5.2.1 Capacitors PRACTICE QUESTIONS (4) 1 A 2200 µf capacitor is charged to a p.d. of 9.0 V and then discharged through a 100 kω resistor. (a) Calculate : (i) The initial charge stored

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter 6 Capacitors and RC Circuits Name: Lab Partner: Section: 6.1 Purpose The purpose of this experiment is to investigate the physics of capacitors in circuits. The charging and discharging of a capacitor

More information

Phys 2025, First Test. September 20, minutes Name:

Phys 2025, First Test. September 20, minutes Name: Phys 05, First Test. September 0, 011 50 minutes Name: Show all work for maximum credit. Each problem is worth 10 points. Work 10 of the 11 problems. k = 9.0 x 10 9 N m / C ε 0 = 8.85 x 10-1 C / N m e

More information

P114 University of Rochester NAME S. Manly Spring 2010

P114 University of Rochester NAME S. Manly Spring 2010 Exam 2 (March 23, 2010) Please read the problems carefully and answer them in the space provided. Write on the back of the page, if necessary. Show your work where indicated. Problem 1 ( 8 pts): In each

More information

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance First Six-Weeks Second Six-Weeks Third Six-Weeks Lab safety Lab practices and ethical practices Math and Calculus

More information

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When more devices are added to a series circuit, the total circuit resistance: a.

More information

Direct Current (DC) Circuits

Direct Current (DC) Circuits Direct Current (DC) Circuits NOTE: There are short answer analysis questions in the Participation section the informal lab report. emember to include these answers in your lab notebook as they will be

More information

Revision checklist SP10. SP10 Electricity and Circuits. SP10a Electric circuits. SP10b Current and potential difference

Revision checklist SP10. SP10 Electricity and Circuits. SP10a Electric circuits. SP10b Current and potential difference Electricity and Circuits a Electric circuits Describe the basic structure of an atom (positions, relative masses and relative charges of protons, neutrons and electrons). Recognise the circuit symbols

More information

CAPACITORS / ENERGY STORED BY CAPACITORS / CHARGING AND DISCHARGING

CAPACITORS / ENERGY STORED BY CAPACITORS / CHARGING AND DISCHARGING PHYSICS A2 UNIT 4 SECTION 3: CAPACITANCE CAPACITORS / ENERGY STORED BY CAPACITORS / CHARGING AND DISCHARGING # Question CAPACITORS 1 What is current? Current is the rate of flow of charge in a circuit

More information

CAPACITANCE. Capacitor. Because of the effect of capacitance, an electrical circuit can store energy, even after being de-energized.

CAPACITANCE. Capacitor. Because of the effect of capacitance, an electrical circuit can store energy, even after being de-energized. D ircuits APAITANE APAITANE Because of the effect of capacitance, an electrical circuit can store energy, even after being de-energized. EO 1.5 EO 1.6 EO 1.7 EO 1.8 EO 1.9 DESRIBE the construction of a

More information

Science Olympiad Circuit Lab

Science Olympiad Circuit Lab Science Olympiad Circuit Lab Key Concepts Circuit Lab Overview Circuit Elements & Tools Basic Relationships (I, V, R, P) Resistor Network Configurations (Series & Parallel) Kirchhoff s Laws Examples Glossary

More information

shown in Fig. 4, is initially uncharged. How much energy is stored in the two capacitors after the switch S is closed for long time?

shown in Fig. 4, is initially uncharged. How much energy is stored in the two capacitors after the switch S is closed for long time? Chapter 25 Term 083 Q13. Each of the two 25-µF capacitors, as shown in Fig. 3, is initially uncharged. How many Coulombs of charge pass through ammeter A after the switch S is closed for long time? A)

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining

More information

P202 Practice Exam 1 Spring 2004 Instructor: Prof. Sinova

P202 Practice Exam 1 Spring 2004 Instructor: Prof. Sinova P202 Practice Exam 1 Spring 2004 Instructor: Prof. Sinova Name: Date: 1. Each of three objects has a net charge. Objects A and B attract one another. Objects B and C also attract one another, but objects

More information

Basic RL and RC Circuits R-L TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri

Basic RL and RC Circuits R-L TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri st Class Basic RL and RC Circuits The RL circuit with D.C (steady state) The inductor is short time at Calculate the inductor current for circuits shown below. I L E R A I L E R R 3 R R 3 I L I L R 3 R

More information

Circuits Practice Websheet 18.1

Circuits Practice Websheet 18.1 Circuits Practice Websheet 18.1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. How much power is being dissipated by one of the 10-Ω resistors? a. 24

More information

PHYSICS ASSIGNMENT ES/CE/MAG. Class XII

PHYSICS ASSIGNMENT ES/CE/MAG. Class XII PHYSICS ASSIGNMENT ES/CE/MAG Class XII MM : 70 1. What is dielectric strength of a medium? Give its value for vacuum. 1 2. What is the physical importance of the line integral of an electrostatic field?

More information

Lecture January, 2011

Lecture January, 2011 Lecture 2 31 January, 2011 Announcements (1/31/11) 401B and 501B: Laboratory Meeting Tues Feb 1, 4 00-7 00 pm Electricity Test in 2 weeks (Feb 14) Today s lecture 3 00-4 00, 5 00-6 00 3x5 Cards Foundations:

More information

Practical 1 RC Circuits

Practical 1 RC Circuits Objectives Practical 1 Circuits 1) Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. 2) Graphically determine the time constant for the decay, τ =.

More information

Do not fill out the information below until instructed to do so! Name: Signature: Section Number:

Do not fill out the information below until instructed to do so! Name: Signature:   Section Number: Do not fill out the information below until instructed to do so! Name: Signature: E-mail: Section Number: No calculators are allowed in the test. Be sure to put a box around your final answers and clearly

More information

Engineering Fundamentals and Problem Solving, 6e

Engineering Fundamentals and Problem Solving, 6e Engineering Fundamentals and Problem Solving, 6e Chapter 17 Electrical Circuits Chapter Objectives Compute the equivalent resistance of resistors in series and in parallel Apply Ohm s law to a resistive

More information

Clicker Session Currents, DC Circuits

Clicker Session Currents, DC Circuits Clicker Session Currents, DC Circuits Wires A wire of resistance R is stretched uniformly (keeping its volume constant) until it is twice its original length. What happens to the resistance? 1) it decreases

More information

Besides resistors, capacitors are one of the most common electronic components that you will encounter. Sometimes capacitors are components that one

Besides resistors, capacitors are one of the most common electronic components that you will encounter. Sometimes capacitors are components that one 1 Besides resistors, capacitors are one of the most common electronic components that you will encounter. Sometimes capacitors are components that one would deliberately add to a circuit. Other times,

More information

PHYS 1102 EXAM - II. SECTION: (Circle one) 001 (TH 9:30 AM to 10:45AM) 002 (TH 3:30 PM to 4:45 PM) You have 1 hr 45 minutes to complete the test

PHYS 1102 EXAM - II. SECTION: (Circle one) 001 (TH 9:30 AM to 10:45AM) 002 (TH 3:30 PM to 4:45 PM) You have 1 hr 45 minutes to complete the test PHYS 1102 EXAM - II SECTION: (Circle one) 001 (TH 9:30 AM to 10:45AM) 002 (TH 3:30 PM to 4:45 PM) Your Name: Student ID: You have 1 hr 45 minutes to complete the test PLEASE DO NOT START TILL YOU ARE INSTRUCTED

More information

10/14/2018. Current. Current. QuickCheck 30.3

10/14/2018. Current. Current. QuickCheck 30.3 Current If QCurrent is the total amount of charge that has moved past a point in a wire, we define the current I in the wire to be the rate of charge flow: The SI unit for current is the coulomb per second,

More information

AP Physics C. Magnetism - Term 4

AP Physics C. Magnetism - Term 4 AP Physics C Magnetism - Term 4 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the world

More information

EXPERIMENT 5A RC Circuits

EXPERIMENT 5A RC Circuits EXPERIMENT 5A Circuits Objectives 1) Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. 2) Graphically determine the time constant for the decay, τ =.

More information

Capacitance. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge.

Capacitance. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. Capacitance A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. a) Parallel-plate capacitor connected to battery. (b) is a circuit

More information

Alternating Current Circuits. Home Work Solutions

Alternating Current Circuits. Home Work Solutions Chapter 21 Alternating Current Circuits. Home Work s 21.1 Problem 21.11 What is the time constant of the circuit in Figure (21.19). 10 Ω 10 Ω 5.0 Ω 2.0µF 2.0µF 2.0µF 3.0µF Figure 21.19: Given: The circuit

More information

AP Physics Electricity and Magnetism #3 Capacitors, Resistors, Ohm s Law, Electric Power

AP Physics Electricity and Magnetism #3 Capacitors, Resistors, Ohm s Law, Electric Power Name Period AP Physics Electricity and Magnetism #3 Capacitors, Resistors, Ohm s Law, Electric Power Dr. Campbell 1. The two plates of a capacitor hold +2500 µc and -2500 µc of charge, respectively, when

More information

Fig. 1 Fig. 2. Calculate the total capacitance of the capacitors. (i) when connected as in Fig. 1. capacitance =... µf

Fig. 1 Fig. 2. Calculate the total capacitance of the capacitors. (i) when connected as in Fig. 1. capacitance =... µf 1. Fig.1 shows two capacitors, A of capacitance 2µF, and B of capacitance 4µF, connected in parallel. Fig. 2 shows them connected in series. A two-way switch S can connect the capacitors either to a d.c.

More information

Chapter 2: Capacitor And Dielectrics

Chapter 2: Capacitor And Dielectrics hapter 2: apacitor And Dielectrics In this chapter, we are going to discuss the different ways that a capacitor could be arranged in a circuit and how its capacitance could be increased. Overview apacitor

More information

AP Physics C. Electricity - Term 3

AP Physics C. Electricity - Term 3 AP Physics C Electricity - Term 3 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the

More information

CIRCUIT ELEMENT: CAPACITOR

CIRCUIT ELEMENT: CAPACITOR CIRCUIT ELEMENT: CAPACITOR PROF. SIRIPONG POTISUK ELEC 308 Types of Circuit Elements Two broad types of circuit elements Ati Active elements -capable of generating electric energy from nonelectric energy

More information

and the charge on a proton is +e. We never see objects that have a charge which is not a whole number multiple of this number.

and the charge on a proton is +e. We never see objects that have a charge which is not a whole number multiple of this number. Name: Physics Chapter 17 Study Guide ----------------------------------------------------------------------------------------------------- Useful Information: e = 1.6"10 #19 C k = 9 "10 9 Nm 2 C 2 $ 0

More information

AP Physics C. Electric Circuits III.C

AP Physics C. Electric Circuits III.C AP Physics C Electric Circuits III.C III.C.1 Current, Resistance and Power The direction of conventional current Suppose the cross-sectional area of the conductor changes. If a conductor has no current,

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. A 400 μf capacitor is charged so that the voltage across its plates rises at a constant rate from 0 V to 4.0 V in 20 s. What current is being used to charge the capacitor?

More information

Version 001 CIRCUITS holland (1290) 1

Version 001 CIRCUITS holland (1290) 1 Version CIRCUITS holland (9) This print-out should have questions Multiple-choice questions may continue on the next column or page find all choices before answering AP M 99 MC points The power dissipated

More information

Electrical Circuits (2)

Electrical Circuits (2) Electrical Circuits (2) Lecture 7 Transient Analysis Dr.Eng. Basem ElHalawany Extra Reference for this Lecture Chapter 16 Schaum's Outline Of Theory And Problems Of Electric Circuits https://archive.org/details/theoryandproblemsofelectriccircuits

More information

Electro - Principles I

Electro - Principles I Electro - Principles I Capacitance The Capacitor What is it? Page 8-1 The capacitor is a device consisting essentially of two conducting surfaces separated by an insulating material. + Schematic Symbol

More information

Physics 248, Spring 2009 Lab 7: Capacitors and RC-Decay

Physics 248, Spring 2009 Lab 7: Capacitors and RC-Decay Name Section Physics 248, Spring 2009 Lab 7: Capacitors and RC-Decay Your TA will use this sheet to score your lab. It is to be turned in at the end of lab. To receive full credit you must use complete

More information

EDEXCEL NATIONAL CERTIFICATE. UNIT 38 ELECTRICAL and ELECTRONIC PRINCIPLES OUTCOME 2

EDEXCEL NATIONAL CERTIFICATE. UNIT 38 ELECTRICAL and ELECTRONIC PRINCIPLES OUTCOME 2 EDEXCEL NATIONAL CERTIFICATE UNIT 38 ELECTRICAL and ELECTRONIC PRINCIPLES OUTCOME 2 Electric fields and capacitors Electric fields: electrostatics, charge, electron movement in field, force on unit charge,

More information

CAPACITANCE. Figure 1(a). Figure 1(b).

CAPACITANCE. Figure 1(a). Figure 1(b). Reading 11 Ron Bertrand VK2DQ http://www.radioelectronicschool.com CAPACITANCE In this reading we are going to talk about capacitance. I have to make a distinction here between capacitor and capacitance.

More information

Physics 2135 Exam 2 October 18, 2016

Physics 2135 Exam 2 October 18, 2016 Exam Total / 200 Physics 2135 Exam 2 October 18, 2016 Printed Name: Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. 1. A light bulb having

More information

Physics 202 Exam 1 (Thursday, September 24) Fall 2014 (Saslow)

Physics 202 Exam 1 (Thursday, September 24) Fall 2014 (Saslow) Physics 202 Exam 1 (Thursday, September 24) Fall 2014 (Saslow) Name (printed) Lab Section(+2 pts) Name (signed as on ID) Show all work. Partial credit will be given, if earned. Write your answers in the

More information

Physics 2135 Exam 2 October 20, 2015

Physics 2135 Exam 2 October 20, 2015 Exam Total / 200 Physics 2135 Exam 2 October 20, 2015 Printed Name: Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. 1. A straight wire segment

More information

Northern Regional: January 19 th, Circuit Lab B Test. Name(s): Team Name: School Name: Rank: Team Number: Score:

Northern Regional: January 19 th, Circuit Lab B Test. Name(s): Team Name: School Name: Rank: Team Number: Score: Northern Regional: January 19 th, 2019 Circuit Lab B Test Name(s): Team Name: School Name: Team Number: Rank: Score: Circuits Lab B Test Instructions: Each team has 50 minutes to complete this test. This

More information

Chapter 13. Capacitors

Chapter 13. Capacitors Chapter 13 Capacitors Objectives Describe the basic structure and characteristics of a capacitor Discuss various types of capacitors Analyze series capacitors Analyze parallel capacitors Analyze capacitive

More information

Exercise 2: The DC Ohmmeter

Exercise 2: The DC Ohmmeter Exercise 2: The DC Ohmmeter EXERCISE OBJECTIVE When you have completed this exercise, you will be able to measure resistance by using a basic meter movement. You will verify ohmmeter operation by measuring

More information

Physics Investigation 10 Teacher Manual

Physics Investigation 10 Teacher Manual Physics Investigation 10 Teacher Manual Observation When a light bulb is connected to a number of charged capacitors, it lights up for different periods of time. Problem What does the rate of discharging

More information

Higher Physics. Electricity. Summary Notes. Monitoring and measuring a.c. Current, potential difference, power and resistance

Higher Physics. Electricity. Summary Notes. Monitoring and measuring a.c. Current, potential difference, power and resistance Higher Physics Electricity Summary Notes Monitoring and measuring a.c. Current, potential difference, power and resistance Electrical sources and internal resistance Capacitors Conductors, semiconductors

More information

As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR

As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR LDR As light level increases, resistance decreases thermistor As temperature increases, resistance decreases capacitor Voltage across capacitor increases with time Potential divider basics: R 1 1. Both

More information

What produces a net electric charge? An excess or shortage of electrons produces a net electric charge.

What produces a net electric charge? An excess or shortage of electrons produces a net electric charge. Electric Charge What produces a net electric charge? An excess or shortage of electrons produces a net electric charge. Electric Charge Electric charge is a property that causes subatomic particles such

More information

ELEC 103. Objectives

ELEC 103. Objectives ELEC 103 Voltage, Current, and Resistance Objectives Define voltage and discuss its characteristics Define current and discuss its characteristics Define resistance and discuss its characteristics Identify

More information

General Physics II (PHYS 104) Exam 2: March 21, 2002

General Physics II (PHYS 104) Exam 2: March 21, 2002 General Physics II (PHYS 104) Exam 2: March 21, 2002 Name: Multiple Choice (3 points each): Answer the following multiple choice questions. Clearly circle the response (or responses) that provides the

More information

CHAPTER 18 ELECTRIC POTENTIAL

CHAPTER 18 ELECTRIC POTENTIAL CHAPTER 18 ELECTRIC POTENTIAL BASIC CONCEPTS: ELECTRIC POTENTIAL ENERGY ELECTRIC POTENTIAL ELECTRIC POTENTIAL GRADIENT POTENTIAL DIFFERENCE POTENTIAL ENERGY 1 h PE = U = mgh Or PE U KE K And U + K = total

More information

Static Electricity. Electric Field. the net accumulation of electric charges on an object

Static Electricity. Electric Field. the net accumulation of electric charges on an object Static Electricity the net accumulation of electric charges on an object Electric Field force exerted by an e - on anything that has an electric charge opposite charges attract like charges repel Static

More information

What does it mean for an object to be charged? What are charges? What is an atom?

What does it mean for an object to be charged? What are charges? What is an atom? What does it mean for an object to be charged? What are charges? What is an atom? What are the components of an atom? Define the following: Electric Conductor Electric Insulator Define the following: Electric

More information

ECE2262 Electric Circuits. Chapter 1: Basic Concepts. Overview of the material discussed in ENG 1450

ECE2262 Electric Circuits. Chapter 1: Basic Concepts. Overview of the material discussed in ENG 1450 ECE2262 Electric Circuits Chapter 1: Basic Concepts Overview of the material discussed in ENG 1450 1 Circuit Analysis 2 Lab -ECE 2262 3 LN - ECE 2262 Basic Quantities: Current, Voltage, Energy, Power The

More information

Pre-Lab Quiz / PHYS 224. R-C Circuits. Your Name Lab Section

Pre-Lab Quiz / PHYS 224. R-C Circuits. Your Name Lab Section Pre-Lab Quiz / PHYS 224 R-C Circuits Your Name Lab Section 1. What do we investigate in this lab? 2. For the R-C circuit shown in Figure 1 on Page 3, RR = 100 ΩΩ and CC = 1.00 FF. What is the time constant

More information

Solutions to these tests are available online in some places (but not all explanations are good)...

Solutions to these tests are available online in some places (but not all explanations are good)... The Physics GRE Sample test put out by ETS https://www.ets.org/s/gre/pdf/practice_book_physics.pdf OSU physics website has lots of tips, and 4 additional tests http://www.physics.ohiostate.edu/undergrad/ugs_gre.php

More information

Physics 6b Winter 2015 Final Campagnari Section Test Form D

Physics 6b Winter 2015 Final Campagnari Section Test Form D Physics 6b Winter 2015 Final Campagnari Section Test Form D Fill out name and perm number on the scantron. Do not forget to bubble in the Test Form (A, B, C, or, D). At the end, only turn in the scantron.

More information

Physics 6b Winter 2015 Final Campagnari Section Test Form A

Physics 6b Winter 2015 Final Campagnari Section Test Form A Physics 6b Winter 2015 Final Campagnari Section Test Form A Fill out name and perm number on the scantron. Do not forget to bubble in the Test Form (A, B, C, or, D). At the end, only turn in the scantron.

More information

Switched Capacitor Circuits I. Prof. Paul Hasler Georgia Institute of Technology

Switched Capacitor Circuits I. Prof. Paul Hasler Georgia Institute of Technology Switched Capacitor Circuits I Prof. Paul Hasler Georgia Institute of Technology Switched Capacitor Circuits Making a resistor using a capacitor and switches; therefore resistance is set by a digital clock

More information

Electric Fields and Potentials

Electric Fields and Potentials Electric Fields and Potentials Please do not write on the conducting sheet, and do not use more than 5 volts from the power supply. Introduction The force between electric charges is intriguing. Why are

More information

2) As two electric charges are moved farther apart, the magnitude of the force between them.

2) As two electric charges are moved farther apart, the magnitude of the force between them. ) Field lines point away from charge and toward charge. a) positive, negative b) negative, positive c) smaller, larger ) As two electric charges are moved farther apart, the magnitude of the force between

More information

Electromagnetic Induction

Electromagnetic Induction Electromagnetic Induction PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html previously: electric currents generate magnetic field. If a current

More information

Electric Potential Energy Chapter 16

Electric Potential Energy Chapter 16 Electric Potential Energy Chapter 16 Electric Energy and Capacitance Sections: 1, 2, 4, 6, 7, 8, 9 The electrostatic force is a conservative force It is possible to define an electrical potential energy

More information

PHYS 2135 Exam II March 20, 2018

PHYS 2135 Exam II March 20, 2018 Exam Total /200 PHYS 2135 Exam II March 20, 2018 Name: Recitation Section: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. For questions 6-9, solutions must

More information

26 Capacitance and Dielectrics

26 Capacitance and Dielectrics Green Items that must be covered for the national test Blue Items from educator.com Red Items from the 8 th edition of Serway 26 Capacitance and Dielectrics 26.1 Definition of Capacitance 26.2 Calculating

More information

not to scale Show that the potential difference between the plates increases to about 80 V. Calculate the energy that is now stored by the capacitor.

not to scale Show that the potential difference between the plates increases to about 80 V. Calculate the energy that is now stored by the capacitor. Q1.The figure below shows a capacitor of capacitance 370 pf. It consists of two parallel metal plates of area 250 cm 2. A sheet of polythene that has a relative permittivity 2.3 completely fills the gap

More information

Impedance. Reactance. Capacitors

Impedance. Reactance. Capacitors Impedance Ohm's law describes the relationship between current and voltage in circuits that are in equilibrium- that is, when the current and voltage are not changing. When we have a situation where the

More information

Exercise 1: RC Time Constants

Exercise 1: RC Time Constants Exercise 1: RC EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the time constant of an RC circuit by using calculated and measured values. You will verify your results

More information

Electricity. Chapter 21

Electricity. Chapter 21 Electricity Chapter 21 Electricity Charge of proton Positive Charge of electron Negative Charge of neutron NONE Atoms have no charge because the charges of the protons and electrons cancel each other out.

More information

E40M Charge, Current, Voltage and Electrical Circuits. M. Horowitz, J. Plummer, R. Howe 1

E40M Charge, Current, Voltage and Electrical Circuits. M. Horowitz, J. Plummer, R. Howe 1 E40M Charge, Current, Voltage and Electrical Circuits M. Horowitz, J. Plummer, R. Howe 1 Understanding the Solar Charger Lab Project #1 We need to understand how: 1. Current, voltage and power behave in

More information

Lab 4 RC Circuits. Name. Partner s Name. I. Introduction/Theory

Lab 4 RC Circuits. Name. Partner s Name. I. Introduction/Theory Lab 4 RC Circuits Name Partner s Name I. Introduction/Theory Consider a circuit such as that in Figure 1, in which a potential difference is applied to the series combination of a resistor and a capacitor.

More information

Physics 212. Lecture 8. Today's Concept: Capacitors. Capacitors in a circuits, Dielectrics, Energy in capacitors. Physics 212 Lecture 8, Slide 1

Physics 212. Lecture 8. Today's Concept: Capacitors. Capacitors in a circuits, Dielectrics, Energy in capacitors. Physics 212 Lecture 8, Slide 1 Physics 212 Lecture 8 Today's oncept: apacitors apacitors in a circuits, Dielectrics, Energy in capacitors Physics 212 Lecture 8, Slide 1 Simple apacitor ircuit Q +Q -Q Q= Q Battery has moved charge Q

More information

MOS Capacitors ECE 2204

MOS Capacitors ECE 2204 MOS apacitors EE 2204 Some lasses of Field Effect Transistors Metal-Oxide-Semiconductor Field Effect Transistor MOSFET, which will be the type that we will study in this course. Metal-Semiconductor Field

More information

Figure 1: Capacitor circuit

Figure 1: Capacitor circuit Capacitors INTRODUCTION The basic function of a capacitor 1 is to store charge and thereby electrical energy. This energy can be retrieved at a later time for a variety of uses. Often, multiple capacitors

More information

Ideal wires, Ideal device models, Ideal circuits. Ideal models for circuit elements Wires

Ideal wires, Ideal device models, Ideal circuits. Ideal models for circuit elements Wires Ideal wires, Ideal device models, Ideal circuits Ideal models for circuit elements Wires Currents and Voltages Joints Resistors Voltage sources Current sources. EE 42 Lecture 1 1 Cast of Characters Fundamental

More information